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Abstract. The present paper presents the evaluation of three-dimensional (3D) stress dis-
tributions of shell structures in the large displacement and rotation fields. The proposed
geometrical nonlinear model is based on a combination of the Carrera Unified Formula-
tion (CUF) and the Finite Element Method (FEM). Besides, a Newton-Raphson lineariza-
tion scheme is adopted to compute the geometrical nonlinear equations, which are con-
strained using the arc-length path-following method. Static analyses are performed using
refined models and the full Green-Lagrange strain-displacement relations. The Second Piola-
Kirchhoff (PK2) stress distributions are evaluated, and lower- to higher-order expansions are
employed. Popular benchmarks problems are analyzed, including cylindrical isotropic shell
structure with various boundary and loading conditions. Various numerical assessments
for different equilibrium conditions in the moderate and large displacement fields are pro-
posed. Results show the distribution of axial and shear stresses, varying the refinement of
the proposed two-dimensional (2D) shell model. It is shown that for axial components, a
lower-order expansion is sufficient, whereas a higher-order one is needed to accurately pre-
dict shear stresses.

Keywords: Carrera Unified Formulation, three-dimensional stress field, second Piola–Kirchhoff
stress, refined 2D shell theory, geometrical nonlinearity.

1. INTRODUCTION

Nowadays, shell structures are increasingly employed in many engineering fields, for in-
stance, in aerospace, for aircraft and spacecraft skins and civil, for bridges and roofs, among
the others. Basically, shells consist of curved structures where the thickness is smaller than the
other two dimensions and can support twisting, extension, compression, bending, transverse
shear, and in-plane shear loads. The geometric characteristics of shell structures, including the
initial curvatures, have a direct influence on the stiffness properties [1]. The main advantage
of these thin-walled structures is the capability of carrying loads with high efficiency. Carrera
et al. [2] described the importance of the adoption of a two-dimensional (2D) model, which is
able to accurately describe internal stress states and displacement fields when external loading
conditions become large. In fact, shell structures are prone to suffer large rotations. A proper
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design of such structures is crucial to perform accurate stress predictions under different load-
ing conditions. The popularity of the 2D shell models is thanks to their lower computation cost
compared to three-dimensional (3D) models.

The aforementioned reasons led scientists to develop efficient 2D shell models. The clas-
sical theories are represented by Poisson [3], Love [4], Mindlin [5], Kirchhoff [6], Reissner [7]
and Cauchy [8]. Commercial codes adopt these classical theories [9, 10] within their shell ele-
ments. As discussed by Petrolo and Carrera [11], it is important to process various parameters,
for example, the anisotropy, gradients in the strain and stress fields, thickness ratio, and in-
homogeneity to evaluate the accuracy of classical models. The applicability of the classical
theories is limited to a narrow range of applications, for example, when dealing with the thin-
walled structure and without local effects. By contrast, if the assessment of transverse stresses
is important, more attention is needed. Recently, different higher-order 2D formulations were
formulated to improve the accuracy of classical theories. A review of the theories is not the
scope of this work, but given the importance of the topic, a brief overview follows. Petrolo
and Carrera [11] developed a useful review of methods and guidelines for the choice of shell
theories. A parabolic distribution of transverse shear deformations across the thickness was
considered by Reddy and Liu [12] in their shear model. A simple high-order theory for lami-
nated composite 2D structures was reported by Reddy [13]. The same author [14], illustrated
a review of the mechanics of a laminated composite plate and shell with different analyses.
In addition, in the framework of Carrera Unified Formulation (CUF) [15, 16] different refined
shell theories are studied. Cinefra and Carrera [17] provided finite shell elements with different
through-the-thickness kinematics for the linear analysis of cylindrical multilayered structures.
Other significant works on refined shell theories can be found in [18, 19].

In recent decades, different engineering fields use highly flexible structures. As reported
by Pagani et al. [20], these structures are prone to support large displacements and rotations,
and snapping phenomena can occur. Consequently, Wu et al. [21] described that an accurate
failure prediction is of primary importance in the analyses of the nonlinear response of highly
flexible structures in the geometrical nonlinear domain. In the open literature, there are several
studies related to higher-order shell models in order to accurately perform geometrical non-
linear analyses. Considerable interest in this topic is evident in modern literature. Recently,
different popular nonlinear benchmark problems of shells were suggested by Sze et al. [22].
Palazotto [23] provided many of the features associated with large displacements and rotations
within a cylindrical shell, including through-the-thickness shear flexibility. Ma and Wang [24]
adopted a classical nonlinear von Kármán plate theory to study circular plates under mechan-
ical and thermal loadings in the large displacement field. The von Kármán theory provides
a good approximation for the nonlinear analysis of 2D structures, and for this reason, it was
widely adopted by scientists. Carrera and Parisch [25] proved that the von Kármán approx-
imation provides reliable results in the study of thin shell structures, but not for thick ones.
A nonlinear finite element (FE) formulation for the quasi-static analysis of shells in the large
strains and rotations field is implemented by Hughes and Liu [26]. Surana [27] analyzed 3D
curved shell elements using a Total Lagrangian (TL) method. Lee and Kanouk-Nukulchai [28]
adopted the arc-length method to catch any load-deflection curves for isotropic and composite
shells in the large deformation domain. A new shell element able to remove locking phenom-
ena in the geometrical nonlinear analysis was investigated by Ko et al. [29]. Many applications
for capturing accurate 3D stresses in shell-like structures were conducted [30], and a num-
ber of stress definitions were developed in the last decades. For example, Tortorelli [31] used
the Piola-Kirchhoff stress and the Cauchy stress formulation to perform a sensitivity analysis
for nonlinear constrained elastostatic system. Asghari [32] developed a modified couple stress
theory in a geometrical nonlinear micro-plate formulation to capture size effects. Belytschko et
al. [33, 34] provided a complete descriptions for different stress formulations.
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In the literature, most of the works make use of the nonlinear von Kármán approximation.
Furthermore, an Updated Lagrangian (UL) approach is often used with the assessment of coro-
tational Cauchy stresses [35]. Stresses referred to the deformed configuration have a simpler
physical interpretation because equilibrium equations express the balancing of internal stresses
of the deformed state. However, as reported by Pai [1], the Lagrangian formulation is typically
adopted in geometrical nonlinear problems because the structure, once unloaded, returns to
its natural undeformed configuration. For nonlinear problems, strain and stress formulations
need to be work-conjugate to employ in constitutive equations. Thus, a TL approach is more
used that a UL formulation, since the accuracy of the current equilibrium condition does not de-
pend on the previous solution, according to the iterative solution usually adopted for nonlinear
problems. Moreover, the calculated displacements, stresses, and strains do not need any coor-
dinate transformation at each iteration. Green–Lagrange strains and Second Piola-Kirchhoff
(PK2) stresses are perfectly formulated in the TL approach. In addition, in order to perform
stress analyses of geometrical nonlinear structures, PK2 stresses are sometimes transformed
into true Cauchy’s stresses, which are physically meaningful. Since the deformed configura-
tion of many problems, especially those involving solids, is not known, it is not convenient to
work with stress tensor, which is expressed in terms of spatial coordinates. In some cases, it
is more convenient to deal with stress tensor that is referred to as the undeformed or an inter-
mediate configuration. Even though the PK2 does not admit a physical interpretation there are
three good reasons for using it as a measure of the forces acting on a material: (1) it is sym-
metric; (2) it is energy conjugate to the Green-Lagrange strain; (3) it is parametrized only by
material coordinates.

The goal of this work is to show a new approach that, considering geometrical nonlinear-
ities, can accurately calculate the 3D stress field. To perform these analyses, investigations are
conducted by using CUF [36, 37]. CUF is a hierarchical formulation in which the order of the
structural model is considered as an input of the analysis so that no ad-hoc formulations are
needed to achieve any refined generic models. As reported by Carrera et al. [2], any theory is
degenerated into generalized kinematics using an arbitrary expansion of the generalized vari-
ables. With this procedure, the nonlinear governing equations and the relative FE arrays of the
shell theories are formulated in terms of Fundamental Nuclei (FNs). FNs are the basic building
blocks of the proposed formulation. CUF has been adopted for different engineering prob-
lems [38–41], and it has been extended to nonlinear geometric analyses, for the resolution of
the static behaviour of metallic and composite structures [42–44] and in dynamics [45, 46]. In a
unified formulation, different expansion functions are considered to approximate the through-
the-thickness kinematics. The expansion functions and their order can be arbitrary (e.g., poly-
nomials, exponentials, harmonic functions). Taylor (TE) and Lagrange (LE) polynomials are
widely adopted as typical expansion functions. The unknowns of a TE model are displace-
ments and N-order derivatives of the displacement field. On the other hand, the unknown
variables become pure displacements if Lagrange polynomials are adopted as expansion func-
tions.

This article is structured as follows: (i) firstly, preliminary information about the 2D CUF
model are illustrated in Section 2, including the Green-Lagrange nonlinear geometrical rela-
tions and the FE approximation; (ii) then, Section 3 presents the method used to perform geo-
metrical nonlinear analyses; (iii) numerical results are presented in Section 4, and they involve
shell structures with various boundary and loading conditions; (iv) finally, conclusions are
given in Section 5.
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2. UNIFIED FINITE SHELL ELEMENT

2.1. Preliminaries
A shell is a structural element where the thickness is smaller than the other dimensions.

Typically, this geometry is represented by means of an orthogonal curvilinear reference system
(α,β,z), where α and β indicate the two in-plane directions and z the through-the-thickness
direction. A typical shell structure with curvatures and the reference system is depicted in
Fig. 1.

Fig. 1. Reference system of a generic shell

For the sake of brevity, the complete description of the shell formulation is not the purpose
of this work, and interested readers are referred to [10, 21, 47].

For highly flexible shell structures, it is particularly important to consider high-order terms
for an accurate description of their static behaviour. Considering only geometrical nonlinear
problems, Lagrangian formulations are typically adopted. The advantage of using this formu-
lation is that strains are written in terms of the undeformed configuration. For this reason, the
TL formulation [35] is used in this work. In this domain, the Green-Lagrange strains ε, that is
work-conjugate to the PK2 stress vector S in the curvilinear reference system, is considered.

ε = {εαα, εββ, εzz, εαz, εβz, εαβ}T,

S = {Sαα, Sββ, Szz, Sαz, Sβz, Sαβ}T.
(1)

The displacement-strain relations are written as

ε = εl + εnl = (bl + bnl)u, (2)

where bl and bnl are the linear and nonlinear differential operators, and u is the 3D displace-
ment vector. These differential operators in the case of 2D model are reported in [2, 21]. The
displacement vector is defined as

u(α, β, z) = {uα, uβ, uz}T. (3)

Using the constitutive equations, stresses are computed as

S = Cε, (4)

where the material elastic matrix C is reported in Ref. [48, 49].
Therefore, in order to perform accurate nonlinear analyses and to evaluate reliable strains

and stresses, a Lagrangian formulation is adopted and, in particular, the PK2 stress tensor is
used.
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2.2. CUF and FE approximations
The 3D displacement field u(α,β,z) of the proposed shell model is written, within the frame-

work of the CUF, as a set of thickness functions depending only on the thickness coordinate z
and the corresponding variables depending on the in-plane coordinates α and β. Thus, we
write

u(α, β, z) = Fτ(z)uτ(α, β), τ = 0, 1, . . . , N (5)

where Fτ represents the expansion function of the thickness coordinate z, uτ(α, β) denotes the
generalized in-plane displacement vector and N is the order of expansion in the thickness di-
rection. The class of 2D CUF shell model adopted is determined by the arbitrary choice of Fτ

and N; e.g., Taylor Expansions [50], Lagrange Expansions [51], Hierarchical Legendre Expan-
sions [52].

In this article, LE and TE are considered as Fτ functions over the thickness direction. Car-
rera et al. [53] illustrated how the interfacial continuity of shear stresses using LE is opportunely
obtained when the thickness functions are adequately refined. Furthermore, the proposed shell
formulation adopts only displacement variables. For the sake of brevity, the adopted shell theo-
ries are denoted by the acronym LDN, which represent the Lagrange expansion, Displacement-
based theory with the order N. In particular, the two-node linear (LD1), three-node quadratic
(LD2), and the four-node cubic (LD3) LE functions are assumed in the z-direction in order to
generate linear to higher-order kinematics CUF shell models with geometrical nonlinearities.
On the other hand, the two-dimensional models based on the TE consider different base func-
tions to model the displacement field of a structure along the thickness using polynomials of
any order. The reader is referred to [37] for the complete expressions for both formulations.

For the sake of generality, when the FE discretization is introduced, the in-plane general-
ized displacement vector is approximated using the shape functions Ni(α,β) as

uτ(α, β) = Ni(α, β)qτi, i = 1, 2, . . . , nel (6)

where qτi are the unknown nodal variables, nel indicates the number of nodes per element and
the index i denotes summation.

For the sake of completeness, Fig. 2 illustrates the approximations of a typical shell struc-
ture adopting a 2D model. In this figure, the classical 2D four-node quadratic FE (Q4) and the
2D nine-node quadratic FE (Q9) are illustrated.

Q4Q9

Ni( , )

F (z)

Fig. 2. The 2D model approximations of a typical shell structure

Q9 FE is the most widely used element for 2D model due to its high accuracy in analysis
and flexibility in modelling. Since the goal of this work is to perform accurate stress analy-
ses, the Q9 FE was used for the shape function in the α-β plane in the following evaluations.
Readers are referred to [37] for a complete derivation of the shell FE formulations.
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3. NONLINEAR GOVERNING EQUATIONS

When large displacements and rotations occur, nonlinear analyses are necessary. The prin-
ciple of virtual work is introduced to derive the nonlinear FE governing equations. Hence:

δLint = δLext, (7)

where δLint and δLext represent the virtual variation of the strain energy and the virtual varia-
tion of the work of external loads, respectively. To perform large deflection analyses of flexible
structures, complex nonlinear differential problems should be solved. Since it is difficult to
compute these problems, the nonlinear equilibrium equations of the shell structure based on
the FEM and CUF can be written and solved as a system of nonlinear algebraic equations.

Considering the TL formulation and introducing the geometrical and constitutive rela-
tions, the virtual variation of the internal strain energy is formulated as (omitting some mathe-
matical steps, which can be found in [21])

δLint =
∫

V
δεTσdV = δqT

sjK
ijτs
S qτi, (8)

where Kijτs
S is the secant stiffness matrix. For the sake of brevity, the complete form of this

matrix is omitted, see [21]. The virtual variation of the external work can be written as

δLext = δqT
sj psj, (9)

where psj represents the nodal loading vector, see [36] for its derivation. The nonlinear equilib-
rium conditions and the related finite element arrays of the generic shell theory is formulated
as follows

Kijτs
S qij − psj = 0, (10)

This system constitutes a set of three nonlinear algebraic equations. Eq. (10) is arbitrarily ex-
panded to obtain any desired theory by choosing the value for τ, s = 1, 2, . . . , M and i, j =
1, 2, . . . , p + 1, to give

KSq− p = 0, (11)
where KS, q and p represent the global, assembled FE arrays of the final structure.

For the FE calculation of the nonlinear algebraic governing equations, an iterative method
is needed. Usually, an incremental linearized scheme, typically the Newton–Raphson method
is adopted to solve the geometrical nonlinear systems. According to the Newton–Raphson
method, Eq. (11) is formulated as follows

ϕres = KSq− p = 0, (12)

where ϕres denotes the vector of the residual nodal forces (unbalanced nodal force vector). For
the sake of brevity, the reader is referred to [54–56] for a complete description of this method.

4. NUMERICAL RESULTS

This section discusses representative benchmark problems, and particular emphasis is
given to the potentiality of the proposed full geometrical nonlinear shell model to evaluate
the 3D stress fields. Isotropic metallic shell structures are considered. At first, convergence
analyses are shown, comparing the results with those provided from the literature. 1LD2 is
chosen for the thickness expansion for the convergence analysis on the in-plane mesh approx-
imations. Then, on the converged model, PK2 stress distributions are evaluated, and different
expansions are adopted, from lower-order to higher-order. The considered cases are suggested
by Sze’s well-known paper [22]. The reference solutions reported in the following analyses are
obtained using Abaqus.
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4.1. Pinched cylindrical shell
P
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Fig. 3. Geometric properties, boundary and
loading conditions of the pinched

cylindrical shell

The first analysis deals with a clamped cylin-
drical shell under a pinching force at the free end.
The vertical deflection and the rotation about the
β-axis are restrained along its longitudinal edges.
The model is reported in Fig. 3, along with its
geometrical characteristics, L = 3.048 m, Rα =
1.016 m, and thickness equal to 0.03 m. The mate-
rial has an elastic modulus E = 2.0685× 107 N/m2

and a Poisson’s ratio ν = 0.3.
This analysis case was presented by Wu et

al. [21] and by Sze et al. [22]. Nevertheless, no
through-the-thickness stress benchmarks were yet
reported. The undeformed and deformed config-
urations of the pinched cylindrical considering a
force of P = 2000 N in the linear analysis are shown in Fig. 4.

(a) Undeformed (b) Deformed

Fig. 4. Configurations of the pinched cylindrical shell under the point load
P = 2000 N in the linear analysis

First, in order to perform an accurate static analysis, a convergence study on the in-plane
finite element mesh is carried out. Fig. 5 shows the transverse deflection for different two-
dimensional shell models, and from 100Q9 to 1600Q9 elements are considered for the surface
approximation, whereas one LD2 is used in the z-direction.

Moreover, Tab. 1 shows the transverse displacement values for different models and loads,
along with the total degrees of freedom (DOFs). As evident from Fig. 5 and Tab. 1, the kinemat-

Table 1. Equilibrium points of nonlinear response curves at the load point of the pinched cylindrical
shell for different geometrical nonlinear shell models

Model DOFs
−uz, [m]

500 N 1500 N 2000 N

10 × 10Q9 + 1LD2 3969 0.34 0.73 1.24
16 × 16Q9 + 1LD2 9801 0.44 1.40 1.53
32 × 16Q9 + 1LD2 19305 0.49 1.55 1.70
32 × 32Q9 + 1LD2 38025 0.50 1.57 1.72
40 × 40Q9 + 1LD2 59049 0.50 1.57 1.72
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Fig. 5. Convergence study of nonlinear response curves for the isotropic pinched cylindrical shell.
Comparison of different in-plane mesh approximations

ics 32 × 32Q9 is a reliable approximation for the in-plane mesh. In addition, for the evaluation
of the 3D stress fields, including the circumferential normal stress Sαα and the transverse shear
stress Sβz, another convergence analysis on the expansion functions in the thickness direction
is necessary. Both LE and TE functions are considered and compared in this analysis. Fig. 6
depicts the stress distributions for different expansion orders.
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Fig. 6. Through-the-thickness PK2 stress distributions for different TE and LE functions of nonlinear
response for the pinched cylindrical shell under the load P= 1500 N. Values are evaluated at the middle

point. 32×32 Q9 in-plane mesh model

The corresponding stress values are tabulated in Tab. 2, comparing the circumferential
normal and the transverse shear PK2 stress values for different shell theories and loads.

Clearly, at least 1LD3 kinematics should be used to accurately predict the stress values. Re-
sults suggest that a low-order model is sufficient to evaluate the circumferential normal stress,
whereas a high-order model is needed to accurately predict the transverse shear stress compo-
nent. Furthermore, Fig. 7 shows circumferential normal and transverse shear stresses over the
z-axis for two different loads.
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Table 2. Circumferential normal stress and transverse shear stress values of nonlinear response curves
of the pinched cylindrical shell (with 32 × 32 Q9 in-plane mesh) for different expansion theories and

loads at α = 1.595 m, β = 1.524 m and z = 0.015 m

Theory DOFs
Sαα × 10−4, [Pa] Sβz, [Pa]

500 N 1500 N 500 N 1500 N

TE1 25350 −10.72 −100.75 −704.74 −24.28
TE2 38025 −9.80 −97.12 −748.48 573.55
TE3 50700 −9.85 −97.88 34.82 724.84
TE4 63375 −9.85 −97.87 29.49 777.75

1LD1 25350 −10.72 −100.74 −908.82 −35.38
1LD2 38025 −9.80 −97.11 −760.31 622.33
2LD2 63375 −9.84 −97.62 −173.83 717.30
1LD3 50700 −9.85 −97.87 29.53 756.33
2LD3 88725 −9.85 −97.87 29.67 755.49
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Fig. 7. Through-the-thickness distributions of normal (a, b) and transverse shear (c, d) PK2 stresses for
two different loads. Values are evaluated at the middle point. Pinched cylindrical shell

with 32×32Q9 model
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The stress distributions of both TE of order one (TE1) and one LD3 shell models are re-
ported to highlight the different capabilities of the two CUF shell theories in catching accurate
stress distributions. The linear interpolation provided by the TE1 approximation is not enough
to catch the parabolic distribution of the transverse shear stress, as underlined in Fig. 7(d).
Indeed, it needs to consider at least 1LD3 for a proper description of the given problem.

4.2. Hinged cylindrical shell
The following case deals with a hinged cylindrical shell under a central transverse force P,

as illustrated in Fig. 8. This nonlinear benchmark problem is very popular due to the snapping
behaviour, which means that the tangent global stiffness matrices become singular at some
intermediate cases [57, 58]. The material properties of the isotropic cylindrical shell are E =
3102.75 MPa and ν = 0.3, with L = 508 mm, Rα = 2540 mm, θ = 0.1 rad and thickness equal to
12.7 mm. All nodal displacements are restrained along the hinged edges.

P

α
θ

α

free

free

hin
ge
d

hin
ged

L

Fig. 8. Hinged cylindrical shell under a central transverse force

The undeformed and deformed configurations in the linear analysis are shown in Fig. 9.

(a) Undeformed (b) Deformed

Fig. 9. Configurations of the hinged isotropic cylindrical shell under the point load P = 3000 N
in the linear analysis

First, in order to perform an accurate static evaluation, convergence analysis of the in-plane
2D shell model is carried out. Then, a stress evaluation is performed for different expansion
orders. Fig. 10 plots the transverse deflection for different in-plane finite element mesh. From
25Q9 to 225Q9 elements are used for the surface approximation, whereas one LD2 is adopted
over the z-direction. The nonlinear response curves are divided into three regions A, B and C.

In addition, transverse displacements for different in-plane meshes and loads are reported
in Tab. 3, along with the number of DOFs.
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Fig. 10. Convergence study of nonlinear response curves for the hinged cylindrical shell under the point
load. Comparison of different in-plane mesh approximations

Table 3. Equilibrium points of nonlinear response curves of the hinged cylindrical shell for different
surface mesh approximations and loads at α = 254.0 mm, β = 254.0 mm and z = 0 mm

Model DOFs −uz [mm] in A −uz [mm] in B −uz [mm] in C

1000 N 1500 N 2000 N 1000 N 1500 N 2000 N 1000 N 1500 N 2000 N

5 x 5Q9 + 1LD2 726 2.71 4.51 7.03 17.76 16.25 13.10 22.23 24.35 25.72
6 x 6Q9 + 1LD2 1521 2.72 4.52 7.08 18.18 13.96 13.31 22.51 24.56 25.71
8 x 8Q9 + 1LD2 2601 2.82 4.79 7.39 15.51 14.43 13.80 22.75 24.92 26.02

10 x 10Q9 + 1LD2 3969 2.89 4.81 7.65 15.70 14.79 14.10 22.91 24.89 26.29
15 x 15Q9 + 1LD2 8649 2.90 4.80 7.66 15.71 14.80 14.11 22.92 24.88 26.30
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Fig. 11. Through-the-thickness PK2 stress distributions for different LE and TE functions of the hinged
cylindrical shell under a point load, P = 2000 N in region A, at α = 127.0 mm and β = 254.0 mm.

10×10 Q9 in-plane mesh model

Consequently, the kinematics 10×10Q9 will be taken as converged discretization and,
therefore, it is used for the stress evaluation. To perform an accurate stress prediction, different
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expansion functions in the z-direction are compared. Both LE and TE functions are considered
in this analysis. Fig. 11 shows the comparison for different through-the-thickness kinematic
theories for the stress assessment.

The corresponding stress values at α = 127.0 mm, β = 254.0 mm and z = 6.35 mm for
circumferential normal stress and z = 0 mm for transverse shear stress are tabulated in Tab. 4
for different shell theories.

Table 4. Circumferential normal PK2 stress and transverse shear PK2 stress values of nonlinear analyses
of the hinged cylindrical shell under a P = 2000 N (with 10×10 Q9 in-plane mesh) for different CUF shell

theories at α = 127.0 mm and β = 254.0 m

Theory DOFs Sαα [N/mm2] in A at z = 6.35 mm Sαz [N/mm2] in A at z = 0 mm

TE1 2646 −6.73 −0.046
TE2 3969 −4.67 −0.058
TE3 5292 −4.67 −0.095
TE4 6615 −4.67 −0.095
TE8 11907 −4.67 −0.096

1LD2 3969 −4.67 −0.058
2LD2 6615 −4.67 −0.112
2LD3 9261 −4.67 −0.112

In addition, results at α = 254.0 mm, β = 254.0 mm and z = 6.35 mm are reported in Tab. 5,
showing the circumferential normal PK2 stress values for different CUF shell theories and
loads.

Table 5. Circumferential normal PK2 stress values of nonlinear response curves of the hinged cylindrical
shell (with 10×10 Q9 in-plane mesh) for different CUF shell theories and loads

at α = 254.0 mm, β = 254.0 mm and z = 6.35 mm

Theory DOFs
Sαα [N/mm2] in A Sαα [N/mm2] in B Sαα [N/mm2] in C

1000 N 2000 N 1000 N 2000 N 1000 N 2000 N

TE1 2646 −12.82 −29.81 −26.69 −31.07 −28.24 −36.20
TE2 3969 −14.08 −30.24 −28.98 −36.46 −30.13 −38.56
TE3 5292 −14.33 −30.07 −29.29 −36.89 −30.34 −38.97
TE4 6615 −14.25 −30.59 −29.09 −36.65 −30.27 −38.85
TE8 11907 −14.25 −30.60 −29.07 −36.63 −30.26 −38.86

1LD2 3969 −13.63 −30.24 −29.98 −36.46 −30.13 −38.56
2LD2 6615 −14.28 −30.70 −29.06 −36.67 −30.27 −38.90
2LD3 9261 −14.28 −30.69 −29.05 −36.68 −30.26 −38.91

Clearly, at least 2LD2 kinematics should be exploited to predict the stress values accurately.
Fig. 12 depicts the circumferential normal and transverse shear PK2 stresses over the z-axis for
different loads.

As previously reported, the PK2 stresses obtained using TE1 formulations are also reported
in these graphs. According to Fig. 12, using a TE1 shell theory cannot be able to accurately
predict the PK2 stresses, especially if the transverse shear stresses are evaluated.
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Fig. 12. Through-the-thickness distribution of normal (a, b) and transverse shear (c, d) PK2 stresses
for two different loads in region A at α = 127.0 mm and β = 254.0 mm. Hinged cylindrical shell with

10×10Q9 model.

5. CONCLUSIONS

The purpose of this paper was to provide accurate three-dimensional (3D) stress fields
within cylindrical structures using two-dimensional (2D) shell models. A full geometrical non-
linear refined shell theory based on the Carrera Unified Formulation (CUF) and a Total La-
grangian (TL) approach has been adopted. The nonlinear governing equations and the related
finite element arrays have been expressed by means of the principle of virtual work. The an-
alyzed cases have been studied by employing a path-following Newton-Raphson linearized
incremental scheme employing an arc-length constraint to compute the nonlinear algebraic
system. Nonlinear static analyses of typical benchmark shell structures have been performed
to obtain the load-deflection curves and, in particular, the stress distributions. Convergence
analyses have been carried out for several in-plane mesh approximations and different expan-
sion functions in the z-direction. Both Lagrange functions and Taylor polynomials have been
considered for the implementation of low- to high-order structural models and compared to
show the different stress results that can be obtained. The Second Piola-Kirchhoff (PK2) stresses



252 A. Pagani, R. Azzara, R. Augello, E. Carrera, B. Wu

have been reported to provide a stress benchmark for future comparisons. The results suggest
that refined models are able to deal with the large deflection and to rigorously evaluate the
stress distributions using various shell theories. Furthermore, it is shown that for the normal
stress components, a lower-order CUF shell model is sufficient, whereas to accurately predict
transverse shear stresses, a higher-order model is demanded.
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