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Abstract. The article presents a numerical model for estimation of heat transfer parame-
ters, e.g. thermal conductivity and convective coefficient, in two-dimensional solid bodies
under steady-state conduction. This inverse problem is stated as an optimization prob-
lem, in which input is reference temperature data and the output is the design variables,
i.e. the thermal properties to be identified. The search for optimum design variables is
conducted by using a recent heuristic method, namely Grey Wolf Optimizer. During the
heuristic search, direct heat conduction problem has to be solved several times. The set of
heat transfer parameters that lead to smallest error rate between computed temperature
field and reference one is the optimum output of the inverse problem. In order to acceler-
ate the process, the model order reduction technique Proper-Orthogonal-Decomposition
(POD) is used. The idea is to express the direct solution (temperature field) as a linear
combination of orthogonal basis vectors. Practically, a majority of the basis vectors can be
truncated, without losing much accuracy. The amplitude of this reduced-order approxi-
mation is then further interpolated by Radial Basis Functions (RBF). The whole scheme,
named as trained POD-RBF, is then used as a surrogate model to retrieve the heat transfer
parameters.

Keywords: inverse analysis, Grey Wolf Optimizer, heat transfer parameters identification,
Proper Orthogonal Decomposition (POD), Radial Basis Function (RBF).

1. INTRODUCTION

In direct heat transfer analysis, distribution of temperature within a conducting do-
main is determined given known boundary conditions and thermal properties. In con-
trast, based on the knowledge of temperature history within a conducting body, inverse
heat transfer analysis is used to determine the thermal properties and/or boundary con-
ditions. The estimated quantities of inverse heat transfer analysis are very sensitive to
the inaccuracy of input data. Mathematically, the problem is ill-posed [1]. Unfortunately,
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noise in measurement of temperature is not avoidable. Therefore, development of com-
putational schemes which can overcome the issue of ill-posedness has attracted much
attention from researchers.

Inverse analysis has been widely used in heat transfer to identify heat flux [2–4],
boundary conditions [5–7] and unknown thermal properties such as conductivity and
convective coefficient [8–11]. Basically, the problem is described as minimization of the
error rate between computed temperature and measured data. The design variables are
the unknown quantities to be determined. For solution of optimization problem, ei-
ther gradient-based or non-gradient-based methods can be used. The gradient-based
approaches [3,4,8] usually involve sensitivity analysis, i.e. the computation of derivative
of objective function with respect to the sought variables. However, derivation of objec-
tive function as an explicit function of design variables is usually not a trivial task. An-
other drawback is that the gradient-based approach may fall into local optimum. On the
other hand, the non-gradient-based methods do not require sensitivity analysis. Instead,
various heuristic algorithms are used such as Genetic Algorithm [11], Particle Swarm
Optimization [2], Differential Evolution [12], Firefly Algorithm [7], Cuckoo Search [13]
and so on. Although each algorithm has a different strategy, they commonly employ
a group of M agents which search N rounds in the admissible solution space to find
the optimum one, i.e. the unknown quantities to be estimated. Indeed, it is common
knowledge that there exists no algorithm which is superior to the others in all types of
problems. Nevertheless, the attractiveness of GWO algorithm comes from the fact that it
has small number of user-defined parameters to control the balance of exploitation (local
search) and exploration (global search). In this work, the recently proposed Grey Wolf
Optimizer (GWO) [14] is used to solve the optimization problem to identify the thermal
parameters, e.g. heat conductivity and convective coefficient. The algorithm has been
widely applied in many fields such as machine learning [15,16], electric engineering [17],
earthquake engineering [18], image processing [19], path planning [20]. However, to the
best knowledge of the authors, GWO has not been investigated in inverse heat transfer
analysis.

During the search for optimum solution, the direct heat transfer problems have to
be solved many times to evaluate temperature field. The difference between the com-
puted temperature and reference one, i.e. the objective function, is then determined. The
process is time-consuming and needs to be accelerated. The model order reduction tech-
nique Proper Orthogonal Decomposition (POD) has been successfully employed in direct
heat transfer problems [21–24]. The core idea is to find a set of orthogonal vectors (POD
bases) using singular value decomposition, which is then utilized to approximate the
temperature field. Temperature is expressed as a linear combination of POD basis and
associated amplitudes. Usually, this linear combination can be truncated, thus the prob-
lem size is reduced, while high accuracy is still attained. Ostrowski et al. [9, 25] pointed
out that POD also acts as a filter to lessen the influence of noise in measured temper-
ature data, improving the stability of inverse heat transfer analysis. Consequently, the
benefit of the employment of POD in inverse heat transfer problems is two-fold: acceler-
ation of computational process and regularization method to treat the ill-posedness. The
amplitude vectors in POD approximation is then further interpolated using Radial Basis
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Functions (RBF), which are defined as functions of thermal parameters, resulting in the
trained POD-RBF surrogate model [9, 26–28].

In this paper, the trained POD-RBF is coupled with GWO to develop a numerical
model to identify thermal conductivity and convective coefficient, in two-dimensional
solid bodies under steady-state conduction.

The paper is organized as follows. Immediately after the Introduction, a brief review
of GWO is presented in Section 2. Section 3 is reserved for trained POD-RBF in identifica-
tion of thermal properties. In Section 4, a numerical example is presented and discussed
in details, demonstrating the numerical scheme. Finally, conclusions and remarks are
given in the last Section.

Nomenclature (units are given in square bracket)

Symbol Definition Symbol Definition

α The alpha wolf (i.e. the
search agent that has the
best fitness in the whole
search)

δ The delta wolf (i.e. the search
agent that has the third best
fitness in the whole search)

β The beta wolf (i.e. the search
agent that has the second
best fitness in the whole
search)

T [K] Temperature h [W/(m2K)] Convective heat transfer co-
efficient

q [W/m2] Heat flux k [W/(mK)] Thermal conductivity

Ta [K] Ambient temperature

Tsnap Snapshot matrix p Vector of thermal properties
(i.e. h and k in the current
work)

Φ Orthogonal basis vectors

2. GREY WOLF OPTIMIZER (GWO)

GWO is a bio-inspired optimization technique recently proposed by Mirjalili et al.
[14]. In an attempt to mimic the social hierarchy of grey wolf, the fitness of wolves after
each iteration is sorted in ascending order (in the context of minimization problem, the
wolf with lowest value of objective function is the fittest). The three fittest solutions are
named the alpha (α), the beta (β), and the delta (δ), respectively. The rest of the population
is called omegas. With the hypothesis that the leadership hierarchy of grey wolf also
applies in hunting process, the algorithm updates the position of an ordinary grey wolf
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(i.e the omegas) at the current iteration t + 1, ~X (t + 1), by the last known positions of the
best candidates, i.e. the alpha, beta and delta wolf

~X (t + 1) =
1
3

(
~X1 + ~X2 + ~X3

)
, (1)

where ~X1, ~X2, ~X3 are some points surrounding the positions of three dominant wolves
(denoted by ~Xα, ~Xβ, ~Xδ)

~X1 = ~Xα − aα · ~Dα, ~Dα =
(

cα · ~Xα − ~X (t)
)

, (2)

~X2 = ~Xβ − aβ · ~Dβ, ~Dβ =
(

cβ · ~Xβ − ~X (t)
)

, (3)

~X3 = ~Xδ − aδ · ~Dδ, ~Dδ =
(

cδ · ~Xδ − ~X (t)
)

, (4)

The numbers ai and ci (i = α, β, δ) are calculated by

ai = 2s · r1 − s, (5)

ci = 2r2, (6)
where r1 and r2 are random real values ranging from 0 to 1. Parameter s gradually de-
creases from some pre-defined value smax (in [14], smax is set to 2) to zero with respect to
the number of iterations

s = smax

(
1− t

tmax

)
, (7)

with tmax being the pre-set maximum number of iterations. The value of controlling
parameter s has influence on ai in Eq. (5), which is key for a wolf to decide whether
it approaches or run away from the three leading wolves (the alpha, beta and delta).
Particularly, if |ai| < 1, the wolf will join with the three dominant ones to encircle and
attack the prey. This is exploitation, i.e. the local search in optimization. On the other
hand, if |ai| > 1, the wolf runs away to explore the space far from the leaders, with a
hope to discover a more attractive prey. This option allows exploration, i.e. the global
search, in order to avoid being trapped in local optimum.

Gao and Zhao [29] argue that the equal weights in Eq. (1) do not reflect the rank of
the three dominant wolves. The individual roles of the alpha, beta and delta are the same,
despite the fact that alpha is closest to the prey (in the context of optimization problem).
Instead, more weights should be assigned to the alpha in order to enhance local search.
Furthermore, the weights should also follow a descending order: ω1 ≥ ω2 ≥ ω3 ≥ 0.
Based on the above reasoning, they propose the following calculation of the weights

ω1 = cos θ, ω2 =
1
2

sin θ · cos φ, ω3 = 1−ω1 −ω2, (8)

where

θ =
2
π
· arccos

(
1
3

)
· arctan t and φ =

1
2
· arctan t. (9)

The second argument of Gao and Zhao [29] is that in the beginning of the search,
the wolves should be encouraged to go for a global search, while in long term, local
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search should be more emphasized. Therefore the controlling parameter s is suggested
to decline exponentially, instead of linearly as in Eq. (7)

s = smax · exp
(
− 10t

tmax

)
. (10)

3. TRAINED POD-RBF FOR IDENTIFICATION OF THERMAL PROPERTIES

3.1. Governing equations of direct heat transfer problems in two-dimensional do-
mains
Let us consider a two-dimensional solid body Ω being bounded by Γ. When there is

no heat sink/source, the governing equation of steady-state heat transfer in the body Ω
is written by

∇ · (k∇T) = 0, (11)

where T is the temperature and k is the thermal conductivity. Without consideration of
heat radiation, the boundary conditions are given as follows

T = T̄, on Γ1: Dirichlet boundary, (12)

(k∇T) · n = q̄, on Γ2: Neumann boundary, (13)

(k∇T) · n = h (Ta − T) , on Γ3: convection boundary. (14)

In Eqs. (12)–(14), T̄ is the prescribed temperature; q̄ is the prescribed heat flux; n is
the outward normal unit vector of the boundary; Ta is the ambient temperature and h is
the convective heat transfer coefficient.

After some mathematical manipulation, the partial differential equation (11) is trans-
formed into weak formulation as follows∫

Ω

(δ∇T) k∇TdΩ−
∫
Γ

q̄δTdΓ−
∫
Γ

h (Ta − T) δTdΓ = 0. (15)

3.2. Training data and reference data
Given the same domain geometry and boundary conditions, the training data are

temperature values obtained from solution of direct problem, corresponding to known
thermal properties, i.e. thermal conductivity k and convective coefficient h. One set of
(k, h) is connected to one set of training temperature data. In fact, the training data can
be obtained by measurement, given that the number of experiments and the number of
sampling points are large enough. Another option is that a finite element model can be
developed for generation of training data.

Reference data are temperature values collected at some certain points in problem
domain (usually on the boundaries). Thermal properties that lead to reference data are
not known a priori and have to be identified by inverse analysis. In this paper, the ref-
erence data are also taken from finite element solution of the direct steady-state heat
transfer. At each point, a noise of 5% is added to finite element solution to mimic that of
measurement.
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3.3. Model order reduction by Proper Orthogonal Decomposition
The training data can be arranged as an m-by-n matrix Tsnap, in which n is the number

of data sets (one data set corresponds to one set of parameters (k, h)), and m is the number
of points where the data are collected. In this work, nodal values of temperature at all
nodes obtained by direct solution of finite element analysis are taken as the training data.
Following the terminology used in literatures [21–24,30], each column of training data is
called a snapshot, and the matrix of training data itself is called the snapshot matrix

Tsnap =
[

T1 T2 . . . Ti . . . Tn
]

. (16)

A singular value decomposition applied on Tsnap reads

Tsnap = ΦDVT, (17)

where Φ (size m-by-m) and V (size n-by-n) are orthogonal matrices, and D is a rectangular
matrix of size m-by-n. In matrix D, only the values along the diagonal are non-negative,
which are called singular values, while the rest are all zeroes. In practice, the singular
values are sorted in descending order, i.e. λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0, r = min(m, n).
Denote A = DVT, Eq. (17) can be rewritten as

Tsnap = ΦA. (18)

By Eq. (18), the snapshot matrix is expressed as a linear combination, in which Φ
is the set of orthogonal basis vectors and A stores the associated amplitudes. Taking
the advantage that the singular values in D drop quickly to zero, the snapshot can be
approximated with up to l terms, with l ≤ r, without losing much accuracy

Tsnap ≈ Φ̄Ā, (19)

in which the set of truncated orthogonal basis vectors Φ̄ is the first l columns of Φ. The
set of truncated amplitudes is calculated by

Ā = Φ̄TTsnap. (20)

Similarly to [23], the “cumulative energy coefficient” is defined as

e (l) =

l

∑
i=1

λi

r

∑
j=1

λj

. (21)

The “truncated energy” is then calculated by

ε = 1− e (l) . (22)

Simply by setting the expected value of ε, e.g. ε = 10−8, the l number of POD basis
vectors can be selected.
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3.4. Approximation of the amplitudes by Radial Basis Function (RBF)
Let the amplitudes in Eq. (20) be function of thermal properties, the following linear

combination can be written for each column of Ā

ā = ā (p) = B · f (p) , (23)

in which B stores the unknown coefficients; p is the vector of thermal properties; and f is
the vector of n Radial Basis Functions (corresponding to n sets of parameters mentioned
in Section 3.2)

f (p) =
[

f1 (p) f2 (p) . . . fi (p) . . . fn (p)
]T . (24)

Various types of RBF have been introduced in literatures. Curious readers are re-
ferred to [31] for details. Here, the recently proposed quartic polynomial radial basis is
employed [32]

fi (p) = 1− 6r2
i + 8r3

i − 3r4
i , where ri =

∥∥∥p− pi
∥∥∥ . (25)

Requiring that Eq. (23) holds for all the snapshots in the training data, the following
matrix equation is obtained

Ā = Ā (p) = B · F (p) , (26)

where

F =


1 f1

(
p2, p1

)
. . . f1

(
pn, p1

)
f2

(
p1, p2

)
1 . . . f2

(
pn, p2)

...
...

. . .
...

fn

(
p1, pn

)
fn
(
p2, pn) . . . 1

 . (27)

The n sets of thermal properties in Eq. (24), i.e. p1, p2, . . . , pn, are the sets used to get
training data and thus are all known. Therefore, matrices F and B can be easily computed.

When POD basis Φ̄ and the matrix of coefficients B are known, the POD-RBF system
has been trained. For an arbitrary set p, e.g. the one generated by the optimization
algorithm, the temperature values can be quickly retrieved by

Tretrieved = Φ̄ · B · f (p) . (28)

4. NUMERICAL EXAMPLES

Let us consider a steady-state heat transfer problem in a complicated domain as pre-
sented in Fig. 1. The width of the three fins are the same. Temperature on the right surface
is prescribed by T = 300 K. Heat convection takes place on the left surface with ambient
temperature Ta = 200 K and convective coefficient is h W/(m2K). The other boundaries
are all insulated. Thermal conductivity within the domain is k W/(mK). Inward heat flux
is applied on the curved surface of the middle fin is q = 20000 W/m2. Parameters h and k
will be identified by the proposed trained POD-RBF system.

The finite element model, which is used to generate the training data, is verified by a
convergence study. Three levels of quadrilateral mesh are considered: 219 elements (272



408 Minh Ngoc Nguyen, Nha Thanh Nguyen, Thien Tich Truong

nodes), 546 elements (622 nodes), 1984 elements (2125 nodes). The “equivalent thermal
energy” is defined as

U =
∫
Ω

(∇T)T k (∇T)dΩ (29)
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Table 1. The 10 reference points 

Points Coordinates Ref. Temperature [K] 
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Ref. Temperature [K] 
(FEA solution,  5%  noise) 

P1 [0.05, 0.4] 253.2039 256.8404 

P2 [0.45, 0.4] 300.0839 296.5855 

P3 [0.1, 0.2] 261.5149 256.1581 
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Fig. 3. Finite element mesh and location of
10 reference points

The value of h is h = 100 W/(m2K) and
that of k is k = 100 W/(mK). The convergence
of the equivalent thermal energy with respect
to number of nodes is displayed in Fig. 2. Due
to the lack of analytical solution, the result ob-
tained by a fine mesh of 4464 elements (4675
nodes) is used as reference to evaluate the nu-
merical error. It is observed that with the mesh
of 546 elements (see Fig. 3), numerical error
is only 1.2%. In linear heat transfer analysis,
which is the case being considered, the same
convergence would be recorded for other val-
ues of h and k. Therefore, it is acceptable to use
the mesh of 546 quadrilateral elements to gen-
erate the training data.

The training data, i.e. the snapshot matrix
defined in Eq. (16), is generated by finite ele-
ment analysis (FEA) of direct problems, using
the following sets: k = 1, 6, 11, . . . , 196, 201 W/(mK) and h = 1, 6, 11, . . . , 196, 201
W/(m2K). In fact, the lower bound and upper bound of design parameters shall be
guessed. Uniform discretization of design space is a basic and common approach. In
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order to reduce the number of training data, the Taguchi’s method for design of exper-
iments can be employed, as presented by [33]. However, this method is not within the
scope of the current work.

Temperature at 10 points (marked by dots in Fig. 3) are taken as reference data, with
k = 87.25 W/(mK) and h = 103.5 W/(m2K). Minimization of error rate between reference
temperature and the values retrieved by the trained POD-RBF is the objective of the op-
timization block using Grey Wolf Optimizer. In order to mimic measurement error, 5%
noise is added into the finite element solution, i.e. the “measured” temperature at each
point is assumed to be within the range 0.95TFEM ≤ T ≤ 1.05TFEM. Reference temper-
ature at each point is the averaged value of 5 “measurements”. Details are presented in
Tab. 1. A comparison study is conducted between two variants of Grey Wolf Optimizer:
the original one as described in [14], denoted by GWO, and the improved one, denoted
by VW-GWO. In VW-GWO, variable weights (Eq. (8)) and the exponential-decay control
parameter (Eq. (10)) are used.

Figure 3. Finite element mesh and location of 10 reference points

Table 1. The 10 reference points

Points Coordinates Ref. Temperature [K]
(FEA solution, without noise)

Ref. Temperature [K]
(FEA solution, 5% noise)

P1 [0.05, 0.4] 253.2039 256.8404
P2 [0.45, 0.4] 300.0839 296.5855
P3 [0.1, 0.2] 261.5149 256.1581
P4 [0.4, 0.2] 300.8999 296.8543
P5 [0.35, 0.1] 313.1507 315.2422
P6 [0.15, 0.1] 299.1058 291.6881
P7 [0.15, 0] 298.4134 298.1384
P8 [0.35, 0] 311.9706 312.8024
P9 [0.2, 0.2] 361.0809 357.3288
P10 [0.3, 0.2] 361.2115 356.1655

Two cases are consider: (a) Reference data are obtained without noise and (b) Refer-
ence data are obtained with 5% noise. For each case, the inverse analysis is run 10 times
by both GWO and VW-GWO. In all cases, the number of grey wolves is 10.

Results are presented in Tab. 2. It is observed that for both cases (i.e. zero noise and
5% noise in reference data), VW-GWO exhibits better performance than GWO. Although
the mean values of estimated k and h are almost the same, the standard deviation in VW-
GWO is much lower. For comparison, the results obtained by Genetic Algorithm (GA)
are also presented. Agreement between the three algorithms can be observed, although
the performance of GA is slightly behind. The possible reason is that the information of
the best agents are taken into account by the two GWO variants, but not by GA.

For case (a), i.e. zero noise, the values of k and h by the surrogate model are almost
equal to the true ones. For case (b), i.e. 5% noise in reference data, error rates of the mean
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values of estimated k and h, compared with the correct ones (i.e. k = 87.25 and h = 103.5),
are 4.87% and 5.40%, respectively. These error rates are very close to the noise existed
in reference data. The above results have demonstrated the accuracy of inverse analysis
using trained POD-RBF and GWO.

Table 2. Parameters estimated by the proposed model in both cases (a) and (b). The true values
of k and h are: k = 87.25 W/(mK) and h = 103.5 W/(m2K). Results obtained by Genetic Algorithm

(GA) are also presented

k h

Mean Standard deviation Mean Standard deviation

Case (a)
(zero noise)

GWO 87.2527 0.0350 103.5016 0.0772

VW-GWO 87.2506 0.0023 103.5006 0.0011

GA 86.5116 4.5390 105.2710 6.0082

Case (b)
(5% noise)

GWO 91.5073 0.0743 108.8373 0.1280

VW-GWO 91.4993 0.0084 108.8626 0.0267

GA 81.09318 6.6859 111.7144 5.8421

Figs. 4 and 5 present the mean convergence curves of 10 runs, each run with 10
agents, achieved by GWO, VW-GWO amd GA for case (a) and case (b), respectively. In
both cases, the optimization process using VW-GWO tends to converge with much less
iterations than GWO. Fig. 4 clearly exhibits the efficiency of VW-GWO, as best fitness
quickly drops to zero after more than 50 iterations. After 100 iterations, the best fitness
obtained by GWO is still higher than that by VW-GWO. Similar observation is recorded
in Fig. 5 for case (b). VW-GWO requires much smaller number of iteration than GWO to
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value of objective function) repeatedly does not change within many iterations (e.g. 50 iterations), the 
optimization process can be considered as being converged and thus can be terminated. 

 
Figure 4. Convergence curve obtained by GWO and VW-GWO for case (a): zero noise in reference data 

 
Figure 5. Convergence curve obtained by GWO and VW-GWO for case (b): 5% noise in reference data 

5. CONCLUSION AND OUTLOOKS 
In this paper, a trained POD-RBF system is coupled with Grey Wolf Optimizer to develop a 

surrogate model for estimation of thermal parameters. It is demonstrated that the proposed numerical 
scheme yields reliable output. When there is no noise in reference data, the error rate between predicted 
thermal parameters and the true ones is almost zero. When noise is included in the reference data, the 
parameters are predicted with an error rate within the range of noise.  

Comparison between two variants of Grey Wolf Optimizer, i.e. the original one (namely GWO) 
and the improved one (namely VW-GWO) has been conducted. It is shown that by using VW-GWO, 

Fig. 4. Convergence curve obtained by GWO
and VW-GWO for case (a): zero noise in refer-

ence data

Minh Ngoc Nguyen, Nha Thanh Nguyen and Thien Tich Truong 10 

value of objective function) repeatedly does not change within many iterations (e.g. 50 iterations), the 
optimization process can be considered as being converged and thus can be terminated. 

 
Figure 4. Convergence curve obtained by GWO and VW-GWO for case (a): zero noise in reference data 

 
Figure 5. Convergence curve obtained by GWO and VW-GWO for case (b): 5% noise in reference data 

5. CONCLUSION AND OUTLOOKS 
In this paper, a trained POD-RBF system is coupled with Grey Wolf Optimizer to develop a 

surrogate model for estimation of thermal parameters. It is demonstrated that the proposed numerical 
scheme yields reliable output. When there is no noise in reference data, the error rate between predicted 
thermal parameters and the true ones is almost zero. When noise is included in the reference data, the 
parameters are predicted with an error rate within the range of noise.  

Comparison between two variants of Grey Wolf Optimizer, i.e. the original one (namely GWO) 
and the improved one (namely VW-GWO) has been conducted. It is shown that by using VW-GWO, 

Fig. 5. Convergence curve obtained by GWO
and VW-GWO for case (b): 5% noise in refer-

ence data



Estimation of heat transfer parameters by using trained POD-RBF and Grey Wolf Optimizer 411

reach convergence. Computational time for each iteration is not much difference between
GWO and VW-GWO. Therefore, with higher rate of convergence, there is potential to
save elapsed time by using VW-GWO. The number of necessary iterations is not known
beforehand. It is possible to define a lower limit for the number of iterations. After that
limit, if fitness value (i.e. the value of objective function) repeatedly does not change
within many iterations (e.g. 50 iterations), the optimization process can be considered as
being converged and thus can be terminated.

5. CONCLUSION AND OUTLOOKS

In this paper, a trained POD-RBF system is coupled with Grey Wolf Optimizer to de-
velop a surrogate model for estimation of thermal parameters. It is demonstrated that the
proposed numerical scheme yields reliable output. When there is no noise in reference
data, the error rate between predicted thermal parameters and the true ones is almost
zero. When noise is included in the reference data, the parameters are predicted with an
error rate within the range of noise.

Comparison between two variants of Grey Wolf Optimizer, i.e. the original one
(namely GWO) and the improved one (namely VW-GWO) has been conducted. It is
shown that by using VW-GWO, the convergence rate of the optimizing process is in-
creased. Therefore, less number of iterations is required and as a result, computational
time can be potentially saved.

There are still many issues left open. Improving computational efficiency of the opti-
mization process is a constant demand. For the POD-RBF block, the size of training data
would increase with respect to the number of the parameters to be identified. Loosely
speaking, if identification of 1 parameter needs N samples, then identification of d pa-
rameters would need Nd samples. Special technique is necessary to handle with a large
and multi-dimensional data. Experiments could be involved in both the preparation of
training data and the collection of reference data. However, a large number of data is
usually required for training. Therefore, a numerical data generator might be more prac-
tical. On the other hand, the numerical model has to be verified before it can be used for
generation of training data. The reference data in practice shall be obtained from mea-
surement. Obviously, the more number of sensors are placed, the more information could
be gained. Unfortunately, in most of the cases, the number of sensors cannot be large due
to the cost issues. Therefore, it is necessary to optimize the number of sensors and the
positions where the sensors are located [34, 35]. This is also an interesting research topic
which can be employed together with inverse analysis.
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APPENDIX A

The flow chart of the proposed procedure for inverse heat transfer analysis is given
in Fig. A.1.
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