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Abstract. Dynamic vibration absorber (DVA) is a simple and effective device for vibration
absorption used in many practical applications. Determination of suitable parameters for
DVA is of significant importance to achieve high vibration reduction effectiveness. This
paper presents a method to find the optimal parameters of a DVA attached to a linear
damped rotary system excited by harmonic torque. To this end, a closed-form formula
for the optimum tuning parameter is derived using the fixed-point theory based on an as-
sumption that the damped rotary systems are lightly or moderately damped. The optimal
damping ratio of DVA is found by solving a set of non-linear equations established by the
Chebyshev’s min-max criterion. The performance of the proposed optimal DVA is com-
pared with that obtained by existing optimal solution in literature. It is shown that the
proposed optimal parameters allow to obtain superior vibration suppression compared
to existing optimal formula. Extended simulations are carried out to examine the perfor-
mance of the optimally designed DVA and the sensitivity of the optimum parameters. The
simulation results show that the improvement of the vibration performance on damped
rotary system can be as much as 90% by using DVA.

Keywords: dynamic vibration absorber, torsional excitation, optimazed parameters, rotary
systems.

1. INTRODUCTION

Vibration control is essential in many engineering fields. Among vibration control
methods, the dynamic vibration absorbers (DVAs) are widely applied because of its ef-
ficiency, reliability, and rather low expense [1]. The early study on DVA was conducted
by Frahm [2]. Ormondroyd and Den Hartog [3] first introduced the concept of the DVA
with spring and viscous damper arranged in parallel. Den Hartog proposed in his book
the fixed-points theory which helps find out the closed-form optimal parameters of DVA

© 2020 Vietnam Academy of Science and Technology

https://doi.org/10.15625/0866-7136/14897
mailto: ketquancs@gmail.com


386 Vu Duc Phuc, Tong Van Canh, Pham Van Lieu

attached to undamped structures [4]. That approach mainly aims at reducing the max-
imum amplitude magnification factor of the primary system, which is still widely used
nowadays [5–7]. Since then, a number of optimization criteria have been proposed for
optimal design of DVA, in which the H∞ and H2 optimizations were employed by many
authors [1, 8, 9]. Nishihara and Asami [10] proposed an analytical solution for the op-
timal parameters of DVA using H∞ optimization, which minimized the maximum dis-
placement of the primary mass. Shen et al. [11] studied the optimal design of DVA with
negative stiffness based on the H∞ optimization. The H2 optimization was used to min-
imize the mean square displacement of the main mass [12], and the power dissipated by
the absorber [13]. Yamaguchi [14] found the optimal parameters of DVA using a stability
maximization criterion for minimizing the transient vibration of the system. Argentini et
al. [15] proposed a closed-form optimal tuning of TMD coupled with an undamped single
DOF system forced by a rotating unbalance. Bisegna and Caruso [16] took the exponen-
tial time-decay rate of the system transient response as an optimality condition. Then,
the closed-form expressions of the optimal exponential time-decay rate were proposed
for undamped systems. The other optimization approaches, such as the frequency locus
method [17], the min-max criteria [18], and the numerical optimization scheme [19–21],
and averaging technique [22] were also proposed.

The above-mentioned studies have provided a comprehensive background to the de-
sign optimization of DVAs. However, there have been few studies on DVA for rotary sys-
tems with torsional vibration. The torsional vibrations usually result in significant harm-
ful effects on rotating systems. For example, torsional vibration causes the fluctuation in
rotational speed of electric motor leading a severe perturbation of the electro-magnetic
flux and thus additional oscillation of the electric currents in the motor [13]. Torsional
vibration is one of the greatest danger factors for the shaft line and the crankshaft of the
marine power transmission system [23]. Minimization of torsional vibration helps to in-
crease the fatigue durability and the efficient functioning of a large turbo-generator [24].
Recently, several attempts have been made to find out the closed-form optimal param-
eters of DVA used to reduce torsional vibration of undamped rotary system [25]. For
the damped rotary system, Phuc et al. [26] have focused on approximating the damped
rotary system by an equivalent undamped rotary system by using the least square cri-
terion [27], from which the optimization problem was solved by using the fixed-points
theory.

In this paper, the optimal parameters for a DVA attached on damped rotary system
under torsional excitation are determined. Approximation approach for lightly damped
systems is used to derive approximated solution for the optimum tuning parameter of
DVA. Then, the Chebyshev equioscillation theorem is used to find out the optimal damp-
ing ratio. This paper is organized as follows. In Section 2, the model of damped rotary
system coupled with a DVA is introduced and the system equations of motion are pre-
sented. In Section 3, the optimization problems are solved for the optimal parameters
of DVA. Section 4 presents the numerical results. The present method is compared to
an existing method. Extended numerical results are also presented to examine the per-
formance of the optimal DVA and investigate the effect of mass and damping ratio of
damped rotary system on the optimal results. Finally, Section 5 concludes the paper.
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2. MODEL OF DAMPED ROTARY SYSTEM ATTACHED WITH A DYNAMIC
VIBRATION ABSORBER UNDER TORSIONAL EXCITATION

2.1. Vibration equations of damped rotary system with dynamic vibration absorber
Fig. 1 shows the model of the damped rotary system attached DVA where the

damped rotary system is the one DOF shaft which has the mass (ms), inertial momen-
tum (Js), torsional stiffness (ks) and internal coefficient of torsional viscous damper (cs).
The DVA consists of a passive disk having inertial momentum (Ja) is connected to the
damped rotary system by springs and dampers with stiffness (k j) and coefficient of vis-
cous damper (cj), respectively. The springs and dampers are arranged in parallel and
they are distributed on the circles with radius e1 and e2, respectively. The rotary system
is damped because the damper (cs) is imposed in the model.Vu Duc Phuc, Tong Van Canh, Pham Van Lieu 
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Fig. 1 Model of damped rotary system attached DVA 

By applying the second order Lagrange equation, the differential equations of motion for the 
system in Figure 1 can be obtained as: 

                                                         (1) 

In the equations (1),  and  are the relative torsional angles of main disk and passive disk, 
respectively. is the harmonic torsional moment given by: 

                                                                           (2) 

 is the excitation frequency,  and  indicate the radial positions of springs and dampers, 
respectively. 

2.2. Amplitude magnification factor (AMF) 
By describing the harmonic excitation torque in a complex form as: 

                                                                                        (3) 

The solution for equation (1) can be determined as follows: 

                                                                                                                       (4) 

Substituting equation (4) and its derivation into equation (1), and solving the obtained equation, 
the relative torsional angle of main disk can be obtained as: 

                                                                                                                       (5) 

where  is the transfer function of the system described by: 
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Fig. 1. Model of damped rotary system attached DVA

By applying the Lagrange formulation the differential equations of motion for the
system shown in Fig. 1 can be obtained as

(Js + Ja) θ̈s + Ja θ̈a + cs θ̇s + ksθs = Mt ,

Ja(θ̈r + θ̈a) +
n

∑
j=1

cje2
2θ̇a +

n

∑
j=1

k je2
1θa = 0. (1)

In Eqs. (1), θs and θa are the relative torsional angles of main disk and passive disk,
respectively. Mt is the harmonic torsional moment given by

Mt = M0 sin Ωt, (2)

where Ω is the excitation frequency, e1 and e2 indicate the radial positions of springs and
dampers, respectively.

2.2. Amplitude magnification factor (AMF)
By describing the harmonic excitation torque in a complex form as

Mt = M0eiΩt, (3)
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the solution for Eqs. (1) can be determined as follows{
θs(t) = θ̂s(Ω)eiΩt,
θa(t) = θ̂a(Ω)eiΩt.

(4)

Substituting Eqs. (4) into Eqs. (1), and solving the obtained equation, the relative
torsional angle of main disk θ̂s can be obtained as

θ̂s =
M0

ks
<(αj, ζ j), (5)

where <(αj, ζ j) is the transfer function of the system described by

<(αj, ζ j) =
1

1− (1 + µη2) β2 + 2ζsβi− µ2η4β4

−µη2β2 +
n
∑

j=1

(
γ2µα2

j + 2λ2µβαjζ ji
) . (6)

The other parameters in Eq. (6) are given as follows

µ =
ma

ms
, η =

ρa

ρs
, γ =

e1

ρs
, λ =

e2

ρs
, ωj =

√
k j

ma
, αj =

ωj

ωs
,

ζ j =
cj

2maωj
, ωs =

√
ks

Js
, ζs =

cs

2Jsωs
, β =

Ω
ωs

,

(7)

where µ is the mass ratio; γ, λ and η respectively represent the ratio between radial posi-
tion of springs, radial position of dampers and the gyration radius of passive disk to the
gyration radius of main disk; ωs indicates the natural frequency of rotary system; α and
ζ are the tuning and damping ratios, respectively; β is the frequency ratio; the indexes j
and s stand for the DVA and main disk, respectively. The amplitude magnification factor
(AMF) is defined as the magnitude of the complex transfer function as

H = |< (α, ζ)| =

√
Aζ2 + B

Cζ2 + Dζ + E
. (8)

In Eq. (8), all the springs and dampers of the DVA are assumed identical, that means
αj = α and ζ j = ζ(j = 1, 2, . . . , n). The other parameters in Eq. (8) are described as

A = 4λ4n2β2α2,

B = (η2β2 − nα2γ2)2,

C = 4n2α2λ4β2
[(

µη2β2 + β2 − 1
)2

+ 4β2ζ2
s

]
,

D = 8ζsβ2λ2nα
[
(η2β2−nα2γ2)(µη2β2+β2−1)+η2β2(nµα2γ2−β2+1)+nα2γ2(β2−1)

]
,

E =
[
nµα2η2γ2β2 + (1− β2)(η2β2 − nα2γ2)

]2
+ 4β2ζ2

s (η
2β2 − nα2γ2)2.

(9)
To reduce torsional vibration of damped rotary system, the parameters α and ζ are

needed to define for minimum torsional angle θs (Eq. (4)) at resonant frequency. These
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parameters are called optimal parameters of DVAs (signed αopt and ζopt) that will be
determined in the below section.

3. OPTIMAL PARAMETER OF DYNAMIC VIBRATION ABSORBER

When the rotary system is coupled with a damper, the fixed-points feature is dimin-
ished. However, the amplitude magnification curves roughly pass two points when the
rotary system is lightly or moderately damped, and the mass ratio between the rotary sys-
tem and the DVA is small. To satisfying the above-mentioned conditions, it is assumed
that the fixed-point theory is approximately maintained [28]. Based on this assumption,
an approximate solution for the optimum tuning parameter αopt for the damped model
can be realized. The two approximated fixed points (signed as S and T) are found by
finding the intersections of the amplitude magnification curves. The two AMF curves
defined at ζ equals to 0, and ζ approaches ∞ are chosen

H|ζ=0 =

√
B
E
=

√
(η2β2 − nα2γ2)2

[nµα2η2γ2β2 + (1− β2)(η2β2 − nα2γ2)]2 + 4β2ζ2
s (η

2β2 − nα2γ2)2
,

(10)

H|ζ→∞ = lim
ζ→∞

√
Aζ2 + B

Cζ2 + Dζ + E
=

√
A
C

=

√
1

(µη2β2 + β2 − 1)2 + 4β2ζ2
s

. (11)

Equating H in Eqs. (10) and (11) results in∣∣∣∣∣ (η2β2 − nα2γ2)2

[nµα2η2γ2β2+(1−β2)(η2β2−nα2γ2)]
2+4β2ζ2

s (η
2β2−nα2γ2)2

∣∣∣∣∣ =
∣∣∣∣∣ 1

(µη2β2+β2−1)2+4β2ζ2
s

∣∣∣∣∣ .

(12)
Solving Eq. (12) gives the frequency ratios at S and T as

β2
S,T =

nα2γ2(µη2 + 1) + η2 ∓
√

n2α4γ4 (µη + 1)2 + η2(η2 − 2nα2γ2)

η2(η2µ + 2)
. (13)

To find the optimal tuning ratio, let the ordinates of points S and T be equal resulting in

1∣∣∣(µη2β2
S + β2

S − 1
)2

+ 4β2
Sζ2

s

∣∣∣ = 1∣∣∣(µη2β2
T + β2

T − 1
)2

+ 4β2
Tζ2

s

∣∣∣ . (14)

By substituting βS, βT in Eq. (13) into Eq. (14), and then solving this equation, αopt is
found as follows

αopt =
η

γ
√

n(1 + η2µ)

√
1− 2ζ2

s −
2ζ2

s
(η2µ + 1)

. (15)

From Eq. (15), the optimal tuning parameter of undamped system can be calculated
by setting the damping ratio of the main system ζs = 0. Then resulting αopt for undamped
system is

αopt =
η

γ
√

n(1 + η2µ)
. (16)
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It is seen that αopt in Eq. (16) is the same as the one derived for undamped system by
using the fixed-point theory [25, 26]. Phuc et al. [26] found the optimal tuning parameter
of DVA for damped rotary system using an equivalent undamped model as following

αopt =
η

γ
√

n(1 + η2µ)

(√
4ζ2

s
π2 + 1− 2ζs

π

)
. (17)

The comparison between the optimal parameter proposed in this paper and [26] will
be presented in the next section.

Fig. 2 shows the AMF curves versus β with varying damping ratios of DVA (ζ).
To reduce the maximum peaks of AMF, we determine the value of ζ so that the AMF
function has two equal peak values with a minimal distance from a straight line L as
shown in Fig. 2.
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Fig. 2 Demonstration of parameters in equation (18) 

In this way, the optimum solution can be found by using the Chebyshev equioscillation theorem 
[18, 19]. To this end, the following equations will be solved: 

                 (18) 

where  indicates the maximum peak value of the AMF curve determined from the ordinate 
(see Figure 2). ,  and  are the frequency ratios at which the AMF curve reaches 

maximum and minimum. Unlike the result of Ghosh and Basu [29], which only found the optimal 
tuning parameter, this study allows finding the optimal damping parameter through solving the system 
of 6 nonlinear equations (18) for 6 unknowns (i.e.  and ). Compared to the system of 
equations of Liu and Coppola [19], the unknown  is eliminated in our system of equations (18). This 
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The optimal damping ratio of undamped in equation (19) is determined by using the fixed-point 
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To demonstrate the proposed method, this section presents numerical simulation for a sample 
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Fig. 2. Demonstration of parameters in Eq. (18)

In this way, the optimum solution can be found by using the Chebyshev equioscilla-
tion theorem [18, 19]. To this end, the following equations will be solved

dH
dβ

∣∣∣∣
β=β1

= 0,
dH
dβ

∣∣∣∣
β=β2

= 0,
dH
dβ

∣∣∣∣
β=β3

= 0,

H(β1)− H(β3) = 0, 2L− [H(β1) + H(β3)] = 0, 2∆− [H(β1)− H(β2)] = 0.
(18)

where ∆ indicates the maximum peak value of the AMF curve determined from the or-
dinate H = L (see Fig. 2). β1, β2 and β3 are the frequency ratios at which the AMF curve
reaches maximum and minimum. Unlike the result of Ghosh and Basu [28], which only
found the optimal tuning parameter, this study allows finding the optimal damping pa-
rameter through solving the system of 6 nonlinear equations (18) for 6 unknowns (i.e.
β1, β2, β3, L, ∆ and ζ). Compared to the system of equations of Liu and Coppola [19], the
unknown α is eliminated in our system of equations (18). This is because the expression
of the optimal tuning parameter (15) has been substituted into the amplitude magnifica-
tion factor (H) before the equation system equations (18) were established.
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The fsolve function provided by Matlab is used to solve system equations (18). With
respect to the nonlinear equations system, the fsolve solver requires good initial values of
the roots for a quick convergence. The initial parameters were set as: β1 = 0.85, β2 =
1, β3 = 1.05, L = 0, ∆ = 0. The initial value of ζ is selected as the optimal value for
undamped rotary system, that is

ζ =

√
3
8

µη4γ2

nλ4(1 + µη2)
. (19)

The optimal damping ratio of undamped in Eq. (19) is determined by using the fixed-
point theory [25, 26].

4. NUMERICAL RESULTS AND DISCUSSION

To demonstrate the proposed method, this section presents numerical simulation for
a sample damped DVA system with the parameters given in Tab. 1. The parameters of
this system are taken from reference [26]. First, a comparison is performed to compare
the current method with the existing method. Then, further simulations are carried out
to examine the performance of the optimal DVA and investigate the effect of several
important parameters of DVA system on the optimal parameters.

4.1. Model comparison
The present method is compared with the method proposed by Phuc et al. [26]. In

their method [26], the authors obtained the optimal parameters of damped DVA system
via two steps. In the first step, the damped rotary system is converted into an equivalent
undamped rotary system using the least squares estimation of equivalent linearization
method, which was developed by Anh et al. [27]. The second step determines the optimal
parameters of DVA of equivalent undamped rotary system using the traditional fixed
point theory.

Tab. 2 and Fig. 3 show the effect of damping ratio of rotary system ζs on the optimal
parameters determined by present method and the method proposed in [26]. The opti-
mal parameters are determined for two values of mass ratio, µ = 0.033 and µ = 0.05.
Fig. 3(a) shows that increasing ζs leads to the reduction of optimal tuning parameter of

Table 1. Input parameters of damped rotary system and DVA

Parameters Unit Value

Mass of main disk (ms) kg 6
Gyration radius of main disk (ρs) m 0.12
Amplitude of excitation moment (M0) Nm 8.0
Stiffness of main spring (ks) Nm/rad 12,000
Gyration radius of passive disk (ρa) m 0.12
Radial position of dampers of DVA (e2) m 0.08
Radial position of springs of DVA (e1) m 0.05
Number of springs and dampers of DVA (n) - 4
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DVA. Higher µ value requires a smaller αopt value for both methods. On contrary, ζopt
calculated by the present method increases with increasing either ζs or µ. The value of
ζopt found by [26] is almost constant in entire range of ζs. Fig. 3 shows that the optimal
parameters of the present method and [26] are only approximated at low ζs.

Table 2. Optimum tuning ratio and damping ratio of DVA for different rotary
system damping ratios

Rotary system
damping ratios

(ζs)

Optimum tuning ratio (αopt) Optimum damping ratio (ζopt)

Phuc et al. [26] Present study Phuc et al. [26] Present study

µ = 0.033 µ = 0.05 µ = 0.033 µ = 0.05 µ = 0.033 µ = 0.05 µ = 0.033 µ = 0.05

0.010 1.1539 1.1356 1.1611 1.1426 0.0516 0.0626 0.0527 0.0641
0.015 1.1503 1.1320 1.1608 1.1424 0.0516 0.0626 0.0530 0.0644
0.020 1.1466 1.1284 1.1604 1.1420 0.0516 0.0626 0.0532 0.0648
0.025 1.1430 1.1248 1.1599 1.1415 0.0516 0.0626 0.0539 0.0654
0.030 1.1393 1.1212 1.1592 1.1408 0.0516 0.0626 0.0546 0.0658
0.035 1.1357 1.1177 1.1585 1.1401 0.0516 0.0626 0.0559 0.0662
0.040 1.1321 1.1141 1.1576 1.1393 0.0516 0.0626 0.0580 0.0672
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Figure 4 shows the amplitude amplification factor determined by the present method and [27] 
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Fig. 3. Effect of main system damping ratio and mass ratio on optimal parameters
Fig. 4 shows the amplitude amplification factor determined by the present method

and [26] for several values of ζs. There are two peaks of the AMF, which occur around
the resonance frequency.

It can be seen from Fig. 4(a) that at low damping ratio such as ζs = 0.01, the AMF
calculated by the two methods are almost the same. This is because the values of opti-
mum parameters obtained by the two methods at low damping ratios are approximated
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as shown in Fig. 3. When the damping ratio increases, the maximal peak value of AMF
determined by [26] is higher than that of the present method (show in Fig. 4(d)).

Tab. 3 shows the AFM calculated at the resonant frequency (H(β=1)) by the present
method and [26] with varying the damping ratio. This table also shows the maximum
AFM (Hmax) calculated by the two methods. From this table, the maximum reduction
percentages of H estimated at β = 1, and Hmax are 1.89% and 5.24%, respectively. There-
fore, present method clearly shows better vibration suppression compared to [26].

Fig. 5 compares the maximum of AMF determined by proposed formulae and [26]
with varying the damping ratio of the damped rotary system. It can be seen that the
increase rate of difference in maximal peaks of AMF is increased as ζs is greatly increased.
Therefore, the proposed optimal parameters give a better mitigation than that of [26] in
terms of maximum magnification factor.

The sensitivity of optimal parameters on the amplitude magnification factor is pre-
sented in Fig. 6. In which, the vertical axes show the deviation percentage of AMF, which
are calculated by

∆Hζ =
Hζ,αopt − Hαopt,ζopt

Hαopt,ζopt

× 100, (20)
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Table 3. Comparison of AFM estimated at resonance frequency (H(β=1)) and the maximal value
of AFM (Hmax) with varying the damping ratio

Rotary
system

damping
ratios
(ζs)

H in resonance frequency Hmax in resonance frequency region

Phuc et
al. [26]

Present
study

Improvement from Phuc’s
result in percentage terms

Phuc et
al. [26]

Present
study

Improvement from Phuc’s
result in percentage terms

µ = 0.033 µ = 0.033

0.010 6.227 6.200 0.43 7.074 7.008 0.93
0.015 5.926 5.867 1.00 6.740 6.653 1.29
0.020 5.657 5.561 1.70 6.443 6.327 1.80
0.025 5.414 5.318 1.77 6.145 6.029 1.89
0.030 5.194 5.096 1.89 5.880 5.572 5.24
0.035 4.993 4.920 1.46 5.631 5.501 2.31
0.040 4.810 4.790 0.42 5.399 5.272 2.35
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and

∆Hα =
Hα,ζopt − Hαopt,ζopt

Hαopt,ζopt

× 100, (21)

where Hα,ζopt , Hζ,αopt and Hαopt,ζopt are the maximum values of AMF determined at the
correspondent damping and tuning ratios given in the subscript indexes.

Fig. 6 demonstrates that the tuning parameter is more sensitive to the variation of
AMF than the damping ratio. When the damping ratio varies from −10% to 40% around
ζopt, the maximum deviation percentage of AMF (∆Hζ) is below 1%, whereas ∆Hζ is
higher than 40% in the case of error in αopt. In addition, the actual optimal damping ratio
should be about 15% higher than the calculated value with Eq. (19). In the case of tuning
ratio, the actual optimal tuning ratio should be about 1.5% smaller than the value found
by proposed equation (15). However, the differences between ∆Hζ and ∆Hα computed by
actual optimal parameters and proposed formulae (Eqs. (20) and (21)) are relatively small
(about 2%). Therefore, the proposed optimal parameters are approximated solutions,
although they can still be used with satisfactory accuracy. Fig. 6 also shows that the
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actual optimal damping and tuning ratios should be around 20% higher and 3% lower
than those proposed in [26], respectively. Therefore, the proposed optimal parameters in
this paper are closer to actual optimality point than those in [26].

4.2. Numerical investigation
In this section, numerical simulation is performed to examine the effect optimal DVA

on the system vibration. Moreover, the effects of damping ratio of rotary system and mass
ratio on the optimal parameters of DVA are investigated. The parameters of the damped
rotary system are the same as those depicted in Tab. 1.

Fig. 7 shows the AMF and vibration response in time domain of the damped rotary
system without DVA and with optimally designed DVA.

Fig. 7(a) shows that using optimal DVA remarkably reduces the peak of AMF around
the resonance frequency. At the frequencies far from the resonance, such as at β = 0.85, the
AMF may not be reduced. In general, vibration control using passive DVAs is normally
very effective for a certain frequency-bandwidth. However, the vibration of the system
is usually large around the resonant frequency (see Fig. 7(a)). Hence, the effectiveness of
optimal DVA is still well achieved.

The vibration response in time domain in Fig. 7(b) is simulated at the frequency
ratio β = 1 (resonance condition). It is clear that the rotary system attached with optimal
DVA quickly obtains the steady state vibration with vibration amplitude significant lower
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Fig. 7. Performance of the system without DVA and with optimal DVA, (a) AMF, (b) vibration
response in time domain (Ω = ωs, ζs = 0.01, µ = 0.0333, n = 4)

than that without DVA, the effective of vibration control to 87.6% in resonance condition
(Fig. 7(b)).

Fig. 8 shows the deviation percentage of AMF calculated by Eqs. (20) and (21) for
several values of ζs. Fig. 8(a) shows that increasing ζ results in a larger difference between
the actual and predicted optimal damping ratio (signed as ∆ζopt). Such as, ∆ζopt is about
2.7% for ζs = 0.02, and ∆ζopt is approximate 17% for ζs = 0.1.

The difference between the actual and predicted optimal tuning ratio (signed as
∆αopt) is also increased with the increase of ζs as shown in Fig. 8(b). However, the
value of ∆αopt is relatively small (less than 2%) even in the case of highest damping ratio
(ζs = 0.1). From Fig. 8, the maximum differences of ∆Hζ and ∆Hα determined at actual
optimal parameters and proposed formulae are around 0.453% and 3.622%, respectively.
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Fig. 9 shows the deviation percentage of AMF with varying µ and it illustrates that
the sensitivity of optimal parameters is dependent on µ. In particularly, the sensitivity of
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αopt is reduced with the increase of µ. For example, with the same 10% erroneous in αopt,
∆Hα reduces from 59.21% to 46.43% when µ is increased from 0.02 to 0.06. It is seen that
the values of ∆Hα and ∆Hζ determined at actual optimal parameters vary with varying
µ; however, the changes are minor.
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Fig. 10 shows the comparison of the AMF of a damped rotary system determined
by the method in [26] and the proposed method in this study. In this figure, the solid
green line indicates the AMF determined by [26] and the solid blue line presents the AMF
calculated with optimal tuning and damping ratios determined by the present method.
It can be seen that the maximum peak value of AMF curve obtained by the proposed
method is smaller than that by [26]. Fig. 10 further shows the AMF estimated with the
optimal tuning ratio proposed in this study, while a non-optimal damping ratio is used
as calculated by Eq. (19). The AFM curve for this case is indicated by the red-dashed
line in Fig. 10. It is observed that even using only the proposed optimal tuning ratio, the
maximum value of the AMF curve is still smaller than that of [26]. Hence, the AMF by
the proposed method is a generally superior compared to [26].

5. CONCLUSIONS

In this study, the optimum parameters of a DVA attached to a damped rotary system
are proposed. The aim of optimization is to minimize the maximum amplitude magni-
fication factor of the damped rotary system. A closed-form formula for the optimum
tuning ratio is obtained using the fixed-point theory with assuming low-to-moderate
damping in the damped rotary system. A semi-analytical process for calculating the
optimal damping ratio of DVA is presented. The numerical results prove that the pro-
posed optimal parameters have better suppression of the resonant vibration amplitude
than the existing method and the control performance of DVA can be up to 90%. A time
history analysis is performed to demonstrate the efficiency of the proposed formulae. It
is shown that there is a slight difference between actual and proposed optimal tuning
and damping ratios of DVA. Therefore, the proposed optimal formulation is an approxi-
mate solution. Nevertheless, the error caused by approximated solution is very small as
shown by 3.62% difference in deviation percentage of magnification factor (Fig. 8).
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