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Abstract. Based on the circle assemblage model, the effective properties of the inclu-
sion with imperfect interface are derived. The equivalent inclusion is incorporated in
the Fourier Transform algorithm to determine the effective conductivity of the composite
with lowly conducting or highly conducting interface. The size effect is considered for
both cases. Numerical results are provided to illustrate the dependence of the effective
conductivity on the size of inhomogeneities.

Keywords: effective conductivity, imperfect interface, size effect.

1. INTRODUCTION

Many studies concerning the effective property of composite assume a perfect in-
terface between the constituent phases. However, due to presence of roughness or mis-
match between the phases, this assumption is not appropriate. In the context of thermal
conduction, two kinds of imperfect interface models are considered. The first one is the
well-known Kapitza’s thermal resistance model [1] called also lowly conducting interface
model (LC), according to which the temperature is discontinuous across an interface and
the normal heat flux component is continuous and proportional to the temperature jump
across the interface. Dual to the first model, the highly conducting interface model (HC)
assumes that the normal heat flux is discontinuous across the interface while the tem-
perature is continuous across it. The theoretical studies of this problem were conducted
by Benveniste and Miloh [2, 3], Hasselman and Johnson [4], Torquato and Rintoul [5],
Hashin [6], Le et al. [7]. The lowly conducting interface model or the highly conducting
interface model can be derived in an asymptotic way from the physically-based configu-
ration where a very thin lowly or highly conducting interphase is situated between two
constituent phases. Numerical modelling of the effective conductivity of composite with
imperfect interface were proposed by Le et al. [7, 8], Monchiet [9]. An important point to
all these works is that the effective conductivity of the composites depends on the size
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of the inhomogeneity. The objective of the present paper is to investigate the size de-
pendence of the effective conductivity of composite media with imperfect interfaces in
two-dimensional space. The paper is structured as follows. Section 2 presents a model
of inclusion with imperfect interface. In Section 3, the equivalent inclusion incorporating
with the Fourier Transform algorithm is presented. In Section 4, the size effect on the ef-
fective conductivity of composite is numerically illustrated. A few remarks are provided
in the last part.

2. INCLUSION WITH IMPERFECT INTERFACE

Let us consider a representative volume element V of Hashin–Shtrikman two-phase
coated circle assemblage. Here, circle of phase 1 are coated by circular shells of phase
2. The relative volume proportions and coating orders of the phases in all compound
circles are the same. The space of V is entirely filled by such compound circles distributed
randomly with diameters varying to infinitely small. In this case, v1, c1 are the volume
fraction and conductivity of the inclusion phase, while v2, c2 are referred to as the volume
fraction and conductivity of the matrix phase. With the thin coating (v2 � 1), one obtains
asymptotically expression of the effective conductivity of isotropic materials [10, 11]

ce f f = c1 + v2
(c2 − c1)(c1 + c2)

2c2
+ O(v2

2). (1)

In the case of thin coating thickness h (
h

R1
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hence
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+ O
(
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, (4)

2.1. Inclusion with lowly conducting interface
In the lowly conducting imperfect interface model [7], it is assumed that

c2 =
h

αK
,

h
R1
→ 0, (5)

where αK is called the Kapitza thermal resistance.
Substituting (4) and (5) into (1), one derives the asymptotic expression of the effective

conductivity c1L of the assemblage of circular inclusions of phase 1 coated by the infinitely
thin shell of thermal resistance αK

c1L =
c1

1 +
c1αK

R1

+ O
(

h
R1

)
. (6)



Size dependent of the effective conductivity of composite with imperfect interfaces 377

2.2. Inclusion with highly conducting interface
In the highly conducting imperfect interface model [7], it is assumed that

c2 =
cs

h
,

h
R1
→ 0, (7)

where cs is called the surface conductivity.
Substituting (4) and (7) into (1), one derives the asymptotic expression of the effec-

tive conductivity c1H of the assemblage of circular inclusions of phase 1 coated by the
infinitely thin shell of surface conductivity cs

c1H = c1 +
2cs

R1
+ O

(
h

R1

)
. (8)

3. FFT SIMULATION FOR COMPOSITE WITH IMPERFECT INTERFACE

Consider a periodic composite reinforced by fibers aligned in the direction Ox3. The
fibers are randomly distributed in the unit cell. The contact between fibers and matrix is
the imperfect interface. This problem can be modelled as a composite of three-component
(see for instance [6,7]): circular inclusion (v1, c1), matrix (vM, cM) and interphase with vol-

ume fraction v2 =
2h
R1

(R1 is radii of the inner circle), conductivity c2 =
h

αK
or c2 =

cs

h
(Fig. 1(a)). By substitution scheme, one can consider the two-component composite with
perfect interface (Fig. 1(b)) in which the conductivity of equivalent inclusion is deter-
mined by (6) or (8)

cEI = c1L =
c1

1 + c1αK
R1

for lowly conducting

or cEI = c1H = c1 +
2cs

R1
for highly conducting (9)

Fig. 1. Unit cell: coated circle assemblage randomly distributed (a), equivalent inclusion (b)
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The algorithm for determining the effective conductivity of two-phase periodic ma-
terials based on the Fourier transform method (FFT) has been introduced in the litera-
ture [12]. In the next section, this method will be applied to calculate the effective con-
ductivity of the composite with imperfect interface.

4. SIZE EFFECT ON THE EFFECTIVE CONDUCTIVITY

In this section, we will study the size dependent of the effective conductivity of the
fiber-matrix composites. A unit cell having the dimension 1 along each space directions
is considered containing Ninclu circular inclusions non overlapping with the same radius
R1 (Fig. 2).

Fig. 2. Unit cell with randomly distributed inclusions
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4.1. Lowly conducting interface
To investigate the size effect on the effective properties of the composites, one intro-

duces the dimensionless Kapitza resistance

α∗K =
αKcMR∗1

R1
, (10)

with R∗1 is the dimensionless radius

R∗1 =
R1

L
. (11)

In practice, the size dependent of the effective conductivity is studied by increasing (de-
creasing) the radius of the inclusions R1 or by decreasing (increasing) the dimension-
less Kapitza resistance α∗K while the dimensionless radius R∗1 is kept constant. Consider
the unit cell containing Ninlcu = 30 inclusions. The volume fraction of reinforcement is
NinlcuπR2

1/L2 = 0.236. The thermal conductivities of the matrix and the inclusion are
cM = 1 Wm−1K−1, c1 = 10 Wm−1K−1 while the thermal resistance of the interface is
αK = 10−5 m2K/W. In this example, R∗1 = 0.05 and the radius R1 vary from 0.02 µm to
250 µm. The effective conductivity is obtained from algorithm of FFT in [12] in which
the conductivity of the equivalent inclusion is determined from first equation of (9). The
values of the effective conductivity Ce f f

11 and Ce f f
22 for each occurrences are respectively

presented on Figs. 3, 4 for R1 = 50 µm. The cumulated average value of the effective
conductivity is also computed.

Fig. 3. Statistical convergence of the effective conductivity Ce f f
11 for R = 50 µm

On Tab. 1, we present the cumulated average value of the effective conductivity Ce f f
11

and Ce f f
22 for each inclusion radius. A small difference between the results related to both

directions but the behavior is also practically isotropic. The Mori–Tanaka scheme and the
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Fig. 4. Statistical convergence of the effective conductivity Ce f f
22 for R = 50 µm

Table 1. Cumulated average value of the effective conductivities obtained with 15 occurrences.
Case of lowly conducting imperfect interface

R1 (in µm) 0.02 0.1 0.5 2.5 12.5 50 250

Ce f f
11 0.6048 0.6105 0.6375 0.7466 1.0252 1.2986 1.4587

Ce f f
22 0.6081 0.6136 0.6402 0.7479 1.0252 1.3004 1.4631

Monchiet [9] 0.6289 0.6336 0.6565 0.7541 1.0252 1.2993 1.4526
Mori–Tanaka 0.6199 0.6248 0.6484 0.7494 1.0251 1.2906 1.4323

numerical results of Monchiet presented in [9] are also included for comparison. It can
be seen that the results of present approach are slightly different to those of Monchiet.
In [9], the discontinuities of the temperature are simulated by adding a temperature field
of third order polynomial which are null outside of the inclusion but are different of zero
inside the inclusion. This method gives accurate results but requires more time calcula-
tions and computer memory. With the equivalent-inclusion approach, the FFT simulation
in this paper provides a simpler method for computing the effective conductivity while
still ensuring accuracy.

4.2. Highly conducting interface
Similarly to the previous section, one introduces the dimensionless surface conduc-

tivity

c∗s =
csR∗1
cMR1

. (12)
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Consider the same micro-structure as previous section, the volume fraction of reinforce-
ment is 0.236 with 30 inclusions. The inclusion is assumed to be less conducting than
the matrix one. The thermal conductivities of the matrix and the inclusion are cM =
1 Wm−1K−1, c1 = 0.1 Wm−1K−1 while the surface conductivity is cs = 10−6 W/K. The
radius R1 vary from 0.02 µm to 250 µm. The effective conductivity is obtained from algo-
rithm of FFT in [12] in which the conductivity of the equivalent inclusion is determined
from second equation of (9). The cumulated average value of the effective conductivity
Ce f f

11 and Ce f f
22 are presented in Tab. 2.

Table 2. Cumulated average value of the effective conductivities obtained with 15 occurrences.
Case of highly conducting imperfect interface

R1 (in µm) 0.02 0.1 0.5 2.5 12.5 50 250

Ce f f
11 1.6714 1.5867 1.3465 0.9755 0.7545 0.6924 0.6739

Ce f f
22 1.6797 1.5930 1.3487 0.9755 0.7555 0.6941 0.6759

Mori–Tanaka 1.6006 1.5422 1.3343 0.9755 0.7569 0.6982 0.6811

The variations of the effective conductivity with the size of the inclusions are pre-
sented on Figs. 5 and 6. The size dependent with the inclusion radius is clearly observed.

Fig. 5. Variations of the effective conductivity with the radius of inclusion for the case of
lowly conducting interface
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Fig. 6. Variations of the effective conductivity with the radius of inclusion for the case of
highly conducting interface

5. CONCLUSION

In this paper, the plane problem of periodic composite containing random distributed
fibres was studied. The effect of the imperfect interface is taken into account. The prin-
ciple of the approach is to consider a very thin lowly or highly conducting interphase
situated between the fibers and matrix. The inclusion and thin interphase are considered
as a coated-inclusion and can be replaced by the equivalent inclusion whose conductivity
depends on the radius, the conductivity of the inclusion and the conductivity of the inter-
phase (9). The equivalent inclusion is incorporated in the Fourier Transform algorithm to
compute the effective conductivity of composites with lowly conducting (LC) or highly
conducting (HC) interfaces. The results show that the effect of LC imperfect interfaces de-
crease the effective conductivity of the composite when the heterogeneity size becomes
small. Inversely, the effect of HC imperfect interfaces increase the effective conductivity
of the composite when the radius of inclusion decrease. The comparison with other nu-
merical results and analytic solutions coming from the Mori–Tanaka scheme show good
agreement. The method could be extend to other physical problems involving surface
discontinuities.
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