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Abstract. This paper points out how much useful vibration can be extracted from a base-
excited oscillator, which is controlled by the on-off electrical damping. We studies the class
of on-off electrical damping controller, which switches the damping level from high to low
and back at fixed times every quarter of period. The problem reduces to the maximization
of a single-variable function. This result can open the new direction to amplify the useful
vibration using controllable dampings.
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1. INTRODUCTION

A base-excited oscillator is a well-known model to extract useful vibration [1]. The
optimization of electrical damping to extract maximum useful vibration has been exten-
sively investigated in [1] and many references therein. If the damping is too large, the
useful vibration is suppressed. Conversely, the too small electrical damping can make
large vibration due to the resonance effect but this large vibration is useless. Those are
the reason why the damping should be optimized to maximize the useful vibration.

To suppress the useless vibration, it is well-known that the performance of constant
passive damping can be enhanced by the semi-active damping [2, 3]. However, to am-
plify the useful vibration, semi-active damping is still not considered much. The switch-
ing technique applied to a piezoelectric harvester has been studied in some papers [4–6].
Some theoretical analyses of semi-active damping in energy harvesting have been pre-
sented in [7, 8].

In the field of vibration control, some papers pointed out how much useless vibration
can be suppressed by a general controller of on-off damping [9–12]. In this paper, in
the converse way, we derive clearly how much useful vibration can be extracted using
on-off electrical damping. In literature, there is still no optimal solution (of constant
damping) for the transient response. Therefore, for comparison, in this paper, only the
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steady responses are considered. Energy extraction from transient response by on-off
damping is indeed an interesting topic for the future studies. The found solution also
gives a good direction to design the future practical on-off electrical damping controllers.

2. PROBLEM STATEMENT

Let us consider a base-excited SDOF oscillator with electromagnetic transduction as
shown in Fig. 1.

 
Figure 1.  SDOF base-excited oscillator 

The motion equation of the system has form [1]: 

  (1) 

in which m, k and cm respectively as the mass, the stiffness and the mechanical damping of 
spring-mass-damper system, ce is the electrical damping provided by the electromotive force fe. It is 
noted that the useful vibration mostly depends on the electrical damping. Denote r and x as the 
absolute displacements of the foundation and the oscillator's mass, respectively. The non-dimensional 
form of (1) is: 

  (2) 

where  is the natural frequency,  and  respectively 
are the mechanical and electrical damping ratios.  

The actual useful vibration is expressed by the average power extracted by the electrical load: 

  (3)  

where T is a certain simulation time. Under harmonic base excitation with flat acceleration 
spectrum, consider the harmonic response at steady state, the optimal electrical damping ratio ze has 
been derived as [1]: 

  (4) 

The existence of the optimal ze is explained as follows. If ze is too large, the relative velocity is 
suppressed that reduces the value of (3). Conversely, ze is too small, the vibration can be large but the 
useful vibration in (3) once again is reduced.  

In this paper, we consider the on-off electrical damping in the form: 

  (5) 

in which gh and gl, respectively, are the on-value and off-value of gain of on-off electrical 
damping. If gh=gl=1, we return to the constant passive damping. 
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Fig. 1. SDOF base-excited oscillator

The motion equation of the system has form [1]

mẍ + (cm + ce) (ẋ− ṙ) + k (x− r) = 0, (1)

in which m, k and cm respectively as the mass, the stiffness and the mechanical damping
of spring-mass-damper system, ce is the electrical damping provided by the electromo-
tive force fe. It is noted that the useful vibration mostly depends on the electrical damp-
ing. Denote r and x as the absolute displacements of the foundation and the oscillator’s
mass, respectively. The non-dimensional form of (1) is

ẍ + 2 (ζm + ζe)ωn (ẋ− ṙ) + ω2
n (x− r) = 0, (2)

where ωn =
√

k
/

m is the natural frequency, ζm = c
/
(2mωn) and ζe = ce

/
(2mωn) respec-

tively are the mechanical and electrical damping ratios.
The actual useful vibration is expressed by the average power extracted by the elec-

trical load

P =
1
T

T∫
0

fe (ẋ− ṙ) dt =
2mωn

T

T∫
0

ζe(ẋ− ṙ)2dt, (3)

where T is a certain simulation time. Under harmonic base excitation with flat accel-
eration spectrum, consider the harmonic response at steady state, the optimal electrical
damping ratio ζe has been derived as [1]

ζ
opt
e = ζm. (4)

The existence of the optimal ζe is explained as follows. If ζe is too large, the rela-
tive velocity is suppressed that reduces the value of (3). Conversely, ζe is too small, the
vibration can be large but the useful vibration in (3) once again is reduced.
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In this paper, we consider the on-off electrical damping in the form

ζe = γζ
opt
e ,

γ =

[
γh certain condition
γl otherwise

(5)

in which γh and γl , respectively, are the on-value and off-value of gain of on-off electrical
damping. If γh = γl = 1, we return to the constant passive damping.

3. MAXIMIZATION OF USEFUL VIBRATION

Let us consider a class of on-off damping controller, which switches the damping
level from high to low and back at fixed times every half period of each given frequency
[9]. This controller is quite general that can be use not only to suppress useless vibration
but also to amplify useful vibration. Fig. 2 illustrates the switching law of mentioned
controller, where t1 is the switching time from the high to low, t2 is the back switching
time and Ω is the excitation frequency. For all permissible switching times, the controller
can be optimized to maximize the useful vibration.
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Figure 2: Illustration of switching times over an excitation period 

To simplify the solution, the paper [9] introduced the normalized damping width  and the 
normalized centre of damping peak, t0. Both are illustrated in Fig.2 and nondimensional. All 
permissible switching times can be described by these two parameters. As mentioned in [1], the 
acceleration spectrum of vibration sources commonly available in daily lives is relatively flat with 
frequency. Therefore, we consider the foundation displacement in the form: 

  (6) 

In which D is the acceleration constant amplitude. Let the relative displacement be written in the 
approximated form: 

  (7) 

The solution in [9] gives: 

  (8) 

  (9) 

in which, we denote: 
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Fig. 2. Illustration of switching times over an excitation period

To simplify the solution, the paper [9] introduced the normalized damping width t̄
and the normalized centre of damping peak, t0. Both are illustrated in Fig. 2 and nondi-
mensional. All permissible switching times can be described by these two parameters.
As mentioned in [1], the acceleration spectrum of vibration sources commonly available
in daily lives is relatively flat with frequency. Therefore, we consider the foundation
displacement in the form

r =
∆

Ω2 sin Ωt, (6)

in which ∆ is the acceleration constant amplitude. Let the relative displacement be writ-
ten in the approximated form

x− r ≈ a1 cos Ωt + b1 sin Ωt. (7)



90 La Duc Viet

The solution in [9] gives

a1 =
−2∆ωnΩ (ζt + ζs cos 2t0)

4ω2
nΩ2

(
ζ2

t − ζ2
s
)
+ (ω2

n −Ω2)2 , (8)

b1 =
∆
(
ω2

n −Ω2 − 2ωnΩζs sin 2t0
)

4ω2
nΩ2

(
ζ2

t − ζ2
s
)
+ (ω2

n −Ω2)2 , (9)

in which, we denote

ζt =

(
γh − γl

π
t̄ + γl

)
ζ

opt
e + ζm, ζs =

γh − γl

π
ζ

opt
e sin t̄. (10)

Over one vibration period, substitute T = 2π/Ω into (3) give the useful vibration in
form

P =
mωnΩ

π

2π/Ω∫
0

ζe(ẋ− ṙ)2dt (11)

From the motion equation (2), we have

−ωnζe (ẋ− ṙ) = ẍ + 2ζmωn (ẋ− ṙ) + ω2
n (x− r) (12)

which changes (11) to

P =
−mΩ

2π

2π/Ω∫
0

(
ẍ (ẋ− ṙ) + ω2

n (x− r) (ẋ− ṙ) + 2ζmωn(ẋ− ṙ)2
)

dt (13)

Substituting the harmonic forms (6) and (7) into (13) and simplifying give

P =
−mΩ

2
(
∆a1 + 2Ωζmωn

(
a2

1 + b2
1
))

(14)

Substituting (8) and (9) into (14), some manipulations yields

P =
m∆2α2

ωn

(
4α2

(
ζ2

t − ζ2
s
)
+ (1− α2)

2
)×

ζt − ζm + ζs

cos 2t0

(
4α2 (ζ2

t − ζ2
s
)
+
(
1− α2)2 − 8α2ζtζm

)
+ 2ζmα

(
1− α2) sin 2t0 − 8ζmζsα2

4α2
(
ζ2

t − ζ2
s
)
+ (1− α2)

2

 ,

(15)

in which, the normalized frequency is introduced

α =
Ω
ωn

. (16)

It is important to noted that, in the passive case, we have

γh = γl = 1, ζs = 0, (17)
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which turns the solution (15) to the one presented in [1]. Otherwise, in the on-off electrical
damping case, the problem now is to maximize P, which is a function of two variables t̄
and t0. By using the Cauchy–Schwarz inequality, it is not difficult to check that

P (t̄, t0) ≤ P0 (t̄) =
m∆2α2

ωn

(
4α2

(
ζ2

t − ζ2
s
)
+ (1− α2)

2
)×

ζt − ζm − ζs

8ζmζsα2 −
√(

4α2
(
ζ2

t − ζ2
s
)
+ (1− α2)

2 − 8α2ζtζm

)2
+ 4ζ2

mα2(1− α2)
2

4α2
(
ζ2

t − ζ2
s
)
+ (1− α2)

2

 .

(18)

The equality holds when

cos 2t0 opt =
4α2 (ζ2

t − ζ2
s
)
+
(
1− α2)2 − 8α2ζtζm√(

4α2
(
ζ2

t − ζ2
s
)
+ (1− α2)2 − 8α2ζtζm

)2
+ 4ζ2

mα2(1− α2)2
,

sin 2t0 opt =
2ζmα

(
1− α2)√(

4α2
(
ζ2

t − ζ2
s
)
+ (1− α2)2 − 8α2ζtζm

)2
+ 4ζ2

mα2(1− α2)2
,

(19)

where t0 opt is the optimal value of t0. The problem now is to find the maximum of a
single-variable function P0 in a fixed interval (0 ≤ t̄ ≤ π)

PM = max
0≤t̄≤π

P0 (t̄) (20)

where PM is the maximum useful vibration can be extracted by on-off electrical damping.
It is noted that maximizing a single-variable function in a bound interval can be done by
many efficient algorithms.

4. COMPARISONS BETWEEN ON-OFF DAMPING AND PASSIVE DAMPING

Fig. 3 shows some plots of the normalized useful vibration Pωn/m/∆2 in the fre-
quency domain for varying values of higher gain γh and lower gain γl . It is seen that the
useful vibration can be amplified remarkable by the on-off electrical damping in com-
parison with the optimal passive electrical damping. The peak of useful vibration can
not be heightened. This conclusion can be drawn from (18) as follows. The peak useful
vibration of the passive case is obtained when α = 1 [1]. Substitute α = 1 into (18) we
have

P0 (t̄)|α=1 =
m∆2

4ωn
(
ζ2

t − ζ2
s
) (ζt − ζm − ζs

2ζmζs −
∣∣ζ2

t − ζ2
s − 2ζtζm

∣∣
ζ2

t − ζ2
s

)
. (21)
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Figure 3. Normalized useful vibration versus normalized frequency for varying gains and for ζm=0.1 

It is seen that the useful vibration can be amplified remarkable by the on-off electrical damping in 
comparison with the optimal passive electrical damping. The peak of useful vibration can not be 
heightened. This conclusion can be drawn from (18) as follows. The peak useful vibration of the 
passive case is obtained when a=1 [1]. Substitute a=1 into (18) we have 

  (21) 

After some manipulations, we simplify (21) as: 

  (22) 

It is noted that for any u we have 
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  (24) 
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Fig. 3. Normalized useful vibration versus normalized frequency
for varying gains and for ζm = 0.1

After some manipulations, we simplify (21) as

ωnP0 (t̄)
m∆2

∣∣∣∣
α=1

=


(ζt − ζs)− ζm

4(ζt − ζs)
2 ζ2

t − ζ2
s − 2ζtζm ≥ 0

(ζt + ζs)− ζm

4(ζt + ζs)
2 ζ2

t − ζ2
s − 2ζtζm < 0

(22)

It is noted that for any u we have

u− ζm

u2 ≤ 1
4ζm

. (23)

The equality holds when
u = 2ζm. (24)

In (22), if we substitute u by ζt − ζs or ζt + ζs, we have

ωnP0 (t̄)
m∆2

∣∣∣∣
α=1
≤ 1

16ζm
, (25)

Because the value 1/16/ζm is the peak of normalized useful vibration in the passive
case, the formula (24) implies that the on-off damping can not heighten the peak of useful
vibration as shown in Fig. 3.

However, it is also seen in Fig. 3, the width of the curve can be increased, which
implies the useful vibration can be amplified in a wider frequency range. The effects of
gains are simple: the on-value should be as large as possible while the off-value should
be as small as possible.

To see the effect of on-off damping in the limit case, let us consider the zero value of
off-gain (γl = 0) and the very large value of on-gain, i.e γh increases to a very large value.
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The normalized useful vibration Pωn/m/∆2 is plotted versus the normalized frequency
α in Fig. 4.

  (25) 
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and the very large value of on-gain, i.e gh increases to a very large value. The normalized useful 
vibration Pwn/m/D2 is plotted versus the normalized frequency a in Fig. 4. 

 
Figure 4. Normalized useful vibration versus normalized frequency for ζm=0.1, gl=0 and gh tends to 

infinity 

It is seen that the useful vibration tends to the maximum one of the passive case in a wider range of 
frequency. The same proof can be done as above when we observe (10) and (18). From (10), when 
zl=0 and zh tends to infinity, two terms zt and zs also tend to infinity. The expression (18) reduces to: 

  (26) 

The expression (26) completely coincides with (21). From (25) we also have 
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Fig. 4. Normalized useful vibration versus normalized frequency
for ζm = 0.1, γl = 0 and γh tends to infinity

It is seen that the useful vibration tends to the maximum one of the passive case in
a wider range of frequency. The same proof can be done as above when we observe (10)
and (18). From (10), when ζl = 0 and ζh tends to infinity, two terms ζt and ζs also tend to
infinity. The expression (18) reduces to

lim
ζh→∞
ζl=0

P0 (t̄) =
m∆2

4ωn
(
ζ2

t − ζ2
s
) (ζt − ζm − ζs

2ζmζs −
∣∣ζ2

t − ζ2
s − 2ζtζm

∣∣
ζ2

t − ζ2
s

)
. (26)

The expression (26) completely coincides with (21). From (24) we also have

lim
ζh→∞
ζl=0

ωnP0 (t̄)
m∆2 ≤ 1

16ζm
. (27)

The value 1/16/ζm is indeed the peak of useful vibration in the passive case in seen
in Figs. 3 and 4. The difference between (25) and (27) is that (27) holds for all frequencies.

5. CONCLUSIONS

This paper considers the problem of amplifying useful vibration from a base-excited
oscillator with on-off electrical damping. We derive the theoretical solution of the max-
imum available useful vibration can be extracted. The on-off damping can not heighten
the peak of useful vibration in the frequency domain in comparison with optimal pas-
sive damping. However the larger on-damping and smaller off-damping can widen the
useful vibration curve in the frequency domain. Moreover, in the theoretical limit case,
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if the on-damping tends to infinity and off-damping is zero, the simple solution shows
that, the peak of useful vibration in the passive case can be extracted in all frequency by
the on-off damping. This conclusion opens the opportunities to find the future practical
on-off damping controller to extract remarkable useful vibration.
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