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Abstract. A two-dimensional functionally graded sandwich (2D-FGSW) beam model
formed from three constituent materials is proposed and its free vibration is studied for
the first time. The beam consists of three layers, a homogeneous core and two functionally
graded skin layers with material properties varying in both the length and thickness direc-
tions by power gradation laws. Based on a third-order shear deformation theory, a beam
element using the transverse shear rotation as an independent variable is formulated and
employed in the study. The obtained numerical result reveals that the variation of the ma-
terial properties in the length direction plays an important role on the natural frequencies
and vibration modes of the beam. The effects of the material distribution and layer thick-
ness ratio on the vibration characteristics are investigated in detail. The influence of the
aspect ratio on the frequencies is also examined and discussed.

Keywords: 2D-FGSW beam, third-order shear deformation theory, transverse shear rota-
tion, free vibration, finite element method.

1. INTRODUCTION

With the development of advanced manufacturing methods [1], functionally graded
materials (FGMs), a new type of composite material initiated by Japanese researchers
in mid-1980 [2], can now be incorporated into sandwich construction to improve per-
formance of the structures. Functionally graded sandwich (FGSW) structures can be
designed to have a smooth variation of properties, which helps to avoid the interface
separation problem as often seen in the conventional sandwich structures. Investigations
on mechanical behaviour of FGSW structures have been intensively reported in recent
years, contributions that are most relevant to present work are briefly discussed below.
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Chakraborty et al. [3] derived a beam element for thermoelastic analysis of FGM
beams and FGSW beams. The element employing the solution of static equilibrium equa-
tions of a Timoshenko beam segment to interpolate the displacement field is free of the
shear locking. Different beam theories were employed by Apetre et al. [4] to study static
bending of the sandwich beams with an FGM core. The modified differential quadrature
method was used by Pradhan and Murmu [5] to investigate thermomechanical vibration
of FGM and FGSW beams supported by a foundations. Rahmani et al. [6] considered free
vibration of sandwich beams with a syntactic core using a higher-order sandwich panel
theory. The element free Galerkin and mesh-free radial point interpolation methods were
employed by Amirani et al. [7] to perform vibration analysis of sandwich beams with
an FGM core. Based on a sinusoidal shear deformation beam theory, Zenkour et al. [8]
investigated the bending response of an FGM viscoelastic sandwich beam resting on a
Pasternak foundation. The refined shear deformation theories in which the transverse
displacement is split into bending and shear parts were employed by Vo et al. [9, 10] to
study free vibration and buckling of FGSW beams. Bennai et al. [11] considered vibration
and buckling of FGSW beams using a refined hyperbolic shear and normal deformation
beam theory. The frequencies of FGSW beams resting on an elastic foundation were eval-
uated by Su et al. [12] using a modified Fourier method. Şimşek and Al-shujairi [13]
investigated bending and vibration of FGSW beams using a semi-analytical method. Fi-
nite element method was used to study free vibration of functionally graded carbon nan-
otubes reinforced laminated beams [14].

The sandwich beams in the above discussed references have material properties
varying in the thickness direction only. There are practical circumstances, in which the
unidirectional FGMs may not be so appropriate to resist multi-directional variations of
thermal and mechanical loadings. For example, the temperature on the outer surface of
the new aerospace craft in sustained flight can range from 1033K along the top of the fuse-
lage to 2066K at the nose and from outer surface temperature to room temperature inside
the plane [15]. Development of FGM and FGSW beams with effective material properties
varying in two or more directions to withstand severe general loadings is of great impor-
tance in practice [15, 16]. Several models for bi-dimensional FGM beams and their me-
chanical behaviour have been considered recently. In this line of works, Şimşek [17] con-
sidered the material properties vary in both the length and thickness directions, by an ex-
ponential function in vibration study of a Timoshenko beam. Polynomials were assumed
for the displacement field in computing natural frequencies and dynamic response of the
beam. Wang et al. [18] presented an analytical method for free vibration analysis of a
2D-FGM beam. The material properties are also assumed to vary exponentially in the
beam thickness and length. Bending of a two-dimensional FGM sandwich (2D-FGSW)
beam was investigated by Karamanli [19] using a quasi-3D shear deformation theory and
a symmetric smoothed particle hydrodynamics method. Nguyen et al. [20] proposed a
2D-FGM beam model formed from four different constituent materials with volume frac-
tions to vary by power-law functions in both the thickness and longitudinal directions.
Timoshenko beam theory was adopted by the authors in evaluating dynamic response of
the beam to a moving load. The beam model has been adopted by Tran and Nguyen [21]
in examining the thermal effect of free vibration of the beam.
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In this paper, a two-dimensional functionally graded sandwich (2D-FGSW) beam
model formed from three constituent materials is proposed and its free vibration analy-
sis is carried out for the first time. The beam consists of three layers, a homogeneous core
and two skin layers of 2D-FGM. The material properties of the skin layers are consid-
ered to vary in both the thickness and longitudinal directions by power gradation laws.
Based on a third-order shear deformation theory, a beam element using the transverse
rotation as an independent variable is formulated and employed to compute vibration
characteristics. Numerical investigation is carried out to show the accuracy of the de-
rived element and to illustrate the effects of the material distribution and layer thickness
ratio on vibration frequencies and vibration modes of the beam.

2. 2D-FGSW BEAM MODEL

A 2D-FGSW beam model formed from three distinct materials, material 1 (M1), ma-
terial 2 (M2) and material 3 (M3), as depicted in Fig. 1 is proposed herein. The beam with
rectangular cross section consists of three layers, a fully core of M1 and two 2D-FGM
skin layers of M1, M2 and M3. The Cartesian coordinates (x, z) in the figure is chosen
such that the x-axis is on the mid-plane and the z-axis directs upward. Denoting z0, z3, z1
and z2 are, respectively, the vertical coordinates of the bottom and top surfaces, and the
interfaces of the layers. The volume fraction of M1, M2 and M3 are assumed to vary in
the x- and z-directions according to

for z ∈ [z0, z1]
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)nz
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where V1, V2 and V3 are, respectively, the volume fraction of the M1, M2 and M3; nx and
nz are the material grading indexes, defining the variation of the constituents in the x and
z directions, respectively. As seen from Eq. (1), the top and bottom corners at the left end
of the beam are pure M2, while the corresponding corners at the right end are pure M3.
The model defines a softcore sandwich beam if M1 is a metal, and it is a hardcore one if
M1 is a ceramic. Fig. 2 shows the variation of V1, V2 and V3 in the thickness and length
directions for nx = nz = 0.5, and z1 = −h/10, z2 = h/10.
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Fig. 1. A 2D-FGSW beam model formed from three materials
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Fig. 2. Variation of V1, V2 and V3 of 2D-FGSW beam for nx = nz = 0.5 and z1 = −h/10, z2 = h/10

The effective material properties P (k)
f of the kth layer (k = 1, . . . , 3) evaluated by

Voigt’s model are of the form

P (k)
f = P1V1 + P2V2 + P3V3, (2)

where P (k)
f represents the effective material properties such as mass density ρ

(k)
f , elastic

modulus E(k)
f and shear modulus G(k)

f ; P1, P2, and P3 are, respectively, the properties of
the M1, M2 and M3. Substituting Eq. (1) into Eq. (2) one gets

P (k)
f (x, z) =


[P1 −P23(x)]

(
z− z0

z1 − z0

)nz

+ P23(x) for z ∈ [z0, z1]

P1 for z ∈ [z1, z2]

[P1 −P23(x)]
(

z− z3

z2 − z3

)nz

+ P23(x) for z ∈ [z0, z1]

(3)

with P23(x) = P2 −
(
P2 − P3

)( x
L
)nx . One can easily verity that if nx = 0 or M2 is

identical to M3, Eq. (3) returns to the expression for the effective material properties of
unidirectional FGSW beam in [9]. Furthermore, if nz = 0, Eq. (3) reduces to property of a
homogeneous beam of M1.
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3. MATHEMATICAL MODEL

The third-order shear deformation theory recently proposed by Shi [22] is adopted
herein. According to the theory, the displacements of a point in x- and z-directions,
u1(x, z, t) and u3(x, z, t), respectively, are given by

u1(x, z, t) = u(x, t) +
z
4
(5θ + w,x)−

5z3

3h2 (θ + w,x),

u3(x, z, t) = w(x, t),
(4)

where t is the time variable; z is the distance from the point to the x-axis; u(x, t) and
w(x, t) are, respectively, the axial and transverse displacements of the point on the x-axis;
θ(x, t) is the cross-sectional rotation. A subscript comma in Eq. (4) and hereafter is used
to denote the derivative with respect to the variable which follows.

Following the work in [21], the transverse shear rotation, γ0 = θ + w,x, is employed
herewith as an independent variable. In this regard, we can rewrite the displacements in
(4) in the form

u1(x, z, t) =u(x, t) +
z
4
(5γ0 − 4w,x)−

5z3

3h2 γ0,

u3(x, z, t) =w(x, t).
(5)

The axial strain (εxx) and shear strain (γxz) resulted from Eq. (5) are of the forms

εxx = u,x +
z
4
(5γ0,x − 4w,xx)−

5z3

3h2 γ0,x , γxz =
5

4h2 (h
2 − 4z2)γ0. (6)

The constitutive equation for the beam is of the form{
σxx
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}
=
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]{
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}
(7)

where E(k)
f (x, z) and G(k)

f (x, z), are, respectively, the elastic and shear moduli, defined by
Eq. (3); σxx and τxz are the axial stress and shear stress, respectively.

The strain energy U of the beam resulted from Eqs. (6) and (7) is of the form

U =
1
2
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,x + 25
( 1

16
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1
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1
h4 B44

)
γ2

0

]
dx,

(8)

where L and A are, respectively, the total beam length and cross-sectional area; A11, A12,
A22, A34, A44, A66, B11, B22 and B44 are the beam rigidities, defined as
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(A11, A12, A22, A34, A44, A66) = b
3

∑
k=1
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3
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(9)

with b is the beam width.
The kinetic energy T resulted from Eq. (5) is

T =
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(10)

where I11, I12, I22, I34, I44, and I66 are the mass moments, defined as

(I11, I12, I22, I34, I44, I66) = b
3

∑
k=1

zk∫
zk−1

ρ
(k)
f (x, z)(1, z, z2, z3, z4, z6)dz, (11)

with ρ
(k)
f is the effective mass density, defined by Eq. (3).

4. FINITE ELEMENT FORMULATION

The beam rigidities and mass moments, as seen from in Eqs. (9) and (11), depend
on the co-ordinate x, thus a closed-form solution for differential equation of motion of
such a beam is hardly derived. Instead of deriving the differential equation of motion,
the equation of motion in the context of finite element analysis for free vibration analysis
will be derived. Assuming the beam is divided into a number of elements with length l,
Hamilton’s principle for free vibration states that

δ

t2∫
t1

NE

∑ (Ue − Te)dt = 0, (12)

where the summation is taken over the total number of elements NE; Ue and Te are,
respectively, the strain and kinetic energies of an element. The expressions for Ue and
Te are the same as Eqs. (8) and (10), respectively, but with a integral span of [0, l]. The
Hamilton’s principle leads to discretized equation of motion in the form

MD̈ + KD = 000, (13)

where M, K, D, and D̈ are, respectively, the global mass matrix, stiffness matrix, and
vectors of nodal displacements and accelerations. Assuming a harmonic form for the
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vector of nodal displacements, Eq. (13) leads to an eigenvalue problem for determining
the frequency ω as (

K−ω2M
)

D̄ = 000, (14)
with ω is the circular frequency and D̄ is the vibration amplitude. Eq. (14) leads to an
eigenvalue problem, and its solution can be obtained by the standard method [23].

A two-node beam element with four degrees of freedom per node as in Ref. [21] is
adopted herewith. The vector of nodal displacements is of the form

d = {u1 w1 wx1 γ1 u2 w2 wx2 γ2}T , (15)

where ui, wi, wxi and γi (i = 1, 2) are, respectively, the values of u, w, w,x and γ0 at the
node i; a superscript ’T’ in (15) and hereafter is used to denote the transpose of a vector
or a matrix.

The axial displacement u(x, t) and transverse shear rotation γ0(x, t) are linearly in-
terpolated, while cubic Hermite polynomials are used for the transverse displacement
w(x, t). In this regard, and following same procedure as in [21] one can express the strain
and kinetic energies of the element in the forms

Ue =
1
2

NE

∑ dTke d , Te =
1
2

NE

∑ ḋTme ḋ , (16)

where ke and me are, respectively, the element stiffness and mass matrices. The expres-
sions for these matrices are as follows

ke = k11
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and

me = m11
uu + m11
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uγ + m22
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γγ , (19)

where

m11
uu =

l∫
0

NT
u I11Nudx, m11

ww =

l∫
0

NT
w I11Nwdx, m66

γγ =
25
9h4

l∫
0

NT
γ I66Nγdx,

m12
uγ =

l∫
0

[
NT

u I12

(
5
4

Nγ −Nw,x

)
+

(
5
4

Nγ −Nw,x

)T

I12Nu

]
dx,

m22
γw =

l∫
0

(
5
4

Nγ −Nw,x

)T

I22

(
5
4

Nγ −Nw,x

)
dx,

m34
uγ = − 5

3h2

l∫
0

[
NT

u I34Nγ + NT
γ I34Nu

]
dx,

m44
γγ = − 5

3h2

l∫
0

[
NT

γ I44

(
5
4

Nγ −Nw,x

)
+

(
5
4

Nγ −Nw,x

)T

I44Nγ

]
dx.

(20)

In Eqs. (18) and (20), Nu, Nγ and Nw are, respectively, the matrices of the interpolation
functions for u, γ0 and w as stated in [21]. Gauss quadrature is used herein to evaluate
the integrals in Eqs. (18) and (20).

5. NUMERICAL RESULTS

Aluminum (Al), zirconia (ZrO2) and alumina (Al2O3) are respectively employed as
M1, M2 and M3 for a softcore beam used in this section. The material properties of
these constituent materials adopted from [9] are given in Tab. 1. Three types of boundary
conditions, namely simply supported (SS), clamped at both ends (CC) and clamped at
left end and free at the other (CF), are considered. The frequency parameter is defined as

µi = ωi
L2

h

√
ρAl

EAl
, (21)

where ωi is the ith natural frequency. The layer thickness ratio, as in Ref. [9], is denoted
by three numbers in brackets, e.g. (1-2-1) means that the thickness ratio of the bottom,
core and top layers is 1:2:1.

The accuracy and convergence of the derived element are firstly verified. Since the
beam model is proposed herein for the first time, and no data of its frequencies are avail-
able, the verification is carried for a special case of a unidirectional FGSW beam. Since
Eq. (1) results in V2 = 0 when nx = 0, and in this case the 2D-FGSW beam becomes
a unidirectional FGSW beam formed from M1 and M3 with material properties vary in
the thickness direction only. Thus, the frequencies of the unidirectional FGSW beam can
be obtained from the present formulation by simply setting nx to zero. Table 2 lists the
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Table 1. Material properties of constituent materials for the 2D-FGSW beam

Property Aluminum Alumina Zirconia

Young’s modulus (E, GPa) 70 380 150
Density (ρ, kg/m3) 2702 3960 3000
Poison’s ratio (ν) 0.3 0.3 0.3

fundamental frequencies of the unidirectional FGSW beam with L/h = 20, obtained in
the present work, where the result of Ref. [9] is also given. Regardless of the aspect ratio,
the material index and layer thickness ratio, a good agreement between the result of the
present work with that of Ref. [9] is noted from Tab. 2.

Table 2. Comparison of frequency parameter µ1 of SS beam with nx = 0 and L/h = 20

nz Source 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1

0 Ref. [9] 2.8371 2.8371 2.8371 2.8371 2.8371 2.8371 2.8371
Present 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353

0.5 Ref. [9] 4.8579 4.7460 4.6050 4.6294 4.4611 4.4160 3.7255
Present 4.8416 4.7311 4.6274 4.6156 4.4856 4.4040 3.7186

1 Ref. [9] 5.2990 5.2217 5.0541 5.1160 4.9121 4.8938 4.0648
Present 5.2931 5.2147 5.0942 5.1086 4.9569 4.8863 4.0600

2 Ref. [9] 5.5239 5.5113 5.3390 5.4410 5.2242 5.2445 4.3542
Present 5.5184 5.5043 5.3798 5.4330 5.2754 5.2358 4.3483

5 Ref. [9] 5.5645 5.6382 5.4834 5.6242 5.4166 5.4843 4.5991
Present 5.5599 5.6320 5.5168 5.6166 5.4667 5.4752 4.5922

10 Ref. [9] 5.5302 5.6452 5.5073 5.6621 5.4667 5.5575 4.6960
Present 5.5266 5.6392 5.5347 5.6545 5.5134 5.5483 4.6889

The convergence of the derived element is shown in Tab. 3, where the fundamen-
tal frequency parameters of the SS beam obtained by different number of the elements
are given for various grading indexes and layer thickness ratios. As seen from the table,
the unidirectional FGSW needs only 14 element to achieve the convergence, while the
2D-FGSW beam requires 24 elements. Thus, the longitudinal variation of the material
properties considerably slows down the convergence of the element. Because of this con-
vergence result, a mesh of 24 elements are used in all the computations reported below.

The fundamental frequency parameters of the 2D-FGSW beam with an aspect ratio
L/h = 20 are given in Tabs. 4, 5 and 6 for the SS, CC and CF beams, respectively. As
seen from the tables, the frequency parameter increases by increasing the index nz, but
it decreases by the increase of the nx, irrespective of the layer thickness ratio and the
boundary conditions. The dependence of the frequency parameter upon the material
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Table 3. Convergence of the element in evaluating fundamental frequencies
of SS beam (L/h = 20)

Beam nx nz NE = 10 NE = 12 NE = 14 NE = 16 NE = 18 NE = 20 NE = 22 NE = 24

(2-1-2) 0

0.5 4.7312 4.7311 4.7311 4.7311 - - - -
1 5.2148 5.2147 5.2147 5.2147 - - - -
2 5.0045 5.0043 5.0043 5.0043 - - - -
5 5.6322 5.6320 5.6320 5.6320 - - -

(2-2-1) 0

0.5 4.4859 4.4858 4.4857 4.4856 4.4856 - - -
1 4.9573 4.9572 4.9571 4.9569 4.9569 - -
2 5.2757 5.2756 5.2755 5.2754 5.2754 - -
5 5.4672 5.4670 5.4668 5.4667 5.4667 - - -

(2-1-2) 2

0.5 3.9141 3.9143 3.9144 3.9145 3.9145 3.9146 3.9146 3.9146
1 4.2544 4.2547 4.2549 4.2550 4.2551 4.2552 4.2552 4.2552
2 4.4881 4.4885 4.4887 4.4889 4.4890 4.4891 4.4892 4.4892
5 4.6236 4.6241 4.6244 4.6246 4.6247 4.6248 4.6249 4.6249

(2-2-1) 2

0.5 3.7513 3.7515 3.7516 3.7516 3.7516 3.7516 3.7516 3.7516
1 4.0630 4.0631 4.0632 4.0633 4.0634 4.0634 4.0634 4.0634
2 4.2947 4.2950 4.2951 4.2952 4.2953 4.2953 4.2953 4.2953
5 4.4534 4.4536 4.4538 4.4539 4.4540 4.4541 4.4541 4.4541

Table 4. Fundamental frequency parameter of SS beam with L/h = 20 for various grading indexes
and layer thickness ratios

nx nz 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1

0.3

0 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353
0.3 4.3280 4.2081 4.1257 4.0994 3.9968 3.9191 3.4063
0.5 4.7630 4.6296 4.5261 4.5028 4.3734 4.2842 3.6264
1 5.2687 5.1460 5.0200 5.0138 4.8557 4.7664 3.9445
2 5.5648 5.4872 5.3512 5.3752 5.2033 5.1337 4.2191
5 5.6814 5.6752 5.5431 5.6063 5.4343 5.4017 4.4564

0.5

0 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353
0.3 4.2269 4.1116 4.0341 4.0082 3.9119 3.8380 3.3598
0.5 4.6429 4.5122 4.4140 4.3898 4.2674 4.1813 3.5639
1 5.1347 5.0096 4.8887 4.8791 4.7276 4.6394 3.8605
2 5.4313 5.3448 5.2129 5.2304 5.0639 4.9922 4.1182
5 5.5586 5.5364 5.4067 5.4600 5.2917 5.2531 4.3422

1

0 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353
0.3 3.9989 3.9001 3.8347 3.8120 3.7308 3.6678 3.2671
0.5 4.3564 4.2429 4.1592 4.1375 4.0333 3.9590 3.4373
1 4.7849 4.6738 4.5695 4.5595 4.4292 4.3516 3.6865
2 5.0481 4.9682 4.8533 4.8662 4.7216 4.6572 3.9047
5 5.1654 5.1396 5.0257 5.0692 4.9219 4.8853 4.0957

5

0 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353
0.3 3.4642 3.4089 3.3725 3.3593 3.3144 3.2785 3.0592
0.5 3.6728 3.6078 3.5602 3.5471 3.4881 3.4444 3.1514
1 3.9284 3.8644 3.8034 3.7973 3.7216 3.6747 3.2900
2 4.0863 4.0422 3.9737 3.9825 3.8972 3.8580 3.4144
5 4.1537 4.1446 4.0761 4.1052 4.0175 3.9962 3.5254
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Table 5. Fundamental frequency parameters of CC beam with L/h = 20 for various grading
indexes and layer thickness ratios

nx nz 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1

0.3

0 6.3324 6.3324 6.3324 6.3324 6.3324 6.3324 6.3324
0.3 9.4021 9.1394 8.9369 8.9100 8.6669 8.5386 7.5011
0.5 10.3011 9.9988 9.7378 9.7254 9.4101 9.2716 7.9467
1 11.3627 11.0623 10.7395 10.7630 10.3662 10.2360 8.5856
2 12.0085 11.7856 11.4386 11.5119 11.0727 10.9743 9.1322
5 12.2931 12.2126 11.8814 12.0150 11.5717 11.5272 9.6011

0.5

0 6.3324 6.3324 6.3324 6.3324 6.3324 6.3324 6.3324
0.3 9.1858 8.9360 8.7487 8.7194 8.4944 8.3709 7.4062
0.5 10.0391 9.7478 9.5047 9.4870 9.1935 9.0576 7.8185
1 11.0620 10.7642 10.4606 10.4738 10.1012 9.9693 8.4127
2 11.7007 11.4670 11.1374 11.1951 10.7793 10.6744 8.9242
5 12.0018 11.8940 11.5759 11.6878 11.2643 11.2074 9.3655

1

0 6.3324 6.3324 6.3324 6.3324 6.3324 6.3324 6.3324
0.3 8.8262 8.6054 8.4429 8.4141 8.2188 8.1072 7.2625
0.5 9.5857 9.3262 9.1140 9.0944 8.8383 8.7139 7.6224
1 10.5052 10.2363 9.9689 9.9761 9.6486 9.5260 8.1442
2 11.0873 10.8714 10.5786 10.6253 10.2574 10.1587 8.5962
5 11.3703 11.2617 10.9769 11.0713 10.6946 10.6389 8.9886

5

0 6.3324 6.3324 6.3324 6.3324 6.3324 6.3324 6.3324
0.3 8.1139 7.9558 7.8414 7.8179 7.6802 7.5960 6.9879
0.5 8.6739 8.4874 8.3365 8.3193 8.1371 8.0414 7.2465
1 9.3576 9.1650 8.9719 8.9762 8.7406 8.6459 7.6260
2 9.7902 9.6385 9.4247 9.4617 9.1948 9.1206 7.9590
5 9.9962 9.9263 9.7165 9.7926 9.5178 9.4801 8.2507

Table 6. Fundamental frequency parameters of CF beam with L/h = 20 for various grading
indexes and layer thickness ratios

nx nz 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1

0.3

0 1.0127 1.0127 1.0127 1.0127 1.0127 1.0127 1.0127
0.3 1.4454 1.4106 1.3811 1.3788 1.3438 1.3260 1.1763
0.5 1.5744 1.5357 1.4971 1.4985 1.4525 1.4340 1.2403
1 1.7249 1.6899 1.6413 1.6513 1.5925 1.5781 1.3337
2 1.8123 1.7916 1.7391 1.7596 1.6942 1.6884 1.4151
5 1.8451 1.8466 1.7969 1.8281 1.7626 1.7689 1.4859

0.5

0 1.0127 1.0127 1.0127 1.0127 1.0127 1.0127 1.0127
0.3 1.3809 1.3502 1.3254 1.3225 1.2930 1.2768 1.1493
0.5 1.4943 1.4595 1.4267 1.4264 1.3874 1.3699 1.2035
1 1.6293 1.5964 1.5546 1.5612 1.5107 1.4957 1.2831
2 1.7103 1.6887 1.6429 1.6584 1.6016 1.5935 1.3531
5 1.7436 1.7406 1.6965 1.7214 1.6638 1.6658 1.4145

1

0 1.0127 1.0127 1.0127 1.0127 1.0127 1.0127 1.0127
0.3 1.2907 1.2667 1.2483 1.2452 1.2233 1.2100 1.1133
0.5 1.3801 1.3524 1.3277 1.3263 1.2969 1.2820 1.1541
1 1.4886 1.4616 1.4295 1.4332 1.3946 1.3809 1.2149
2 1.5551 1.5366 1.5009 1.5115 1.4675 1.4589 1.2689
5 1.5834 1.5796 1.5447 1.5631 1.5179 1.5174 1.3168

5

0 1.0127 1.0127 1.0127 1.0127 1.0127 1.0127 1.0127
0.3 1.2051 1.1880 1.1754 1.1727 1.1576 1.1477 1.0801
0.5 1.2707 1.2506 1.2333 1.2317 1.2110 1.1996 1.1085
1 1.3515 1.3319 1.3089 1.3109 1.2833 1.2723 1.1514
2 1.4014 1.3883 1.3622 1.3698 1.3380 1.3307 1.1904
5 1.4221 1.4205 1.3947 1.4087 1.3757 1.3747 1.2253
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grading index nz can be explained by the change of the effective Young’s modulus as
shown by Eqs. (1) and (3). An increase of nz leads to an increase of volume fraction of
Al2O3 and ZrO2. Since Young’s modulus of Al is much lower than that of Al2O3 and
ZrO2, the effective modulus increases by increasing nz and this results in an increase of
the beam rigidities. The mass moments also increase by increasing the index nz, but this
increase is much lower than that of the rigidities. As a result, the frequencies increase by
increasing nz. A similar argument can be explained for the decrease of the frequencies by
increasing nx. The numerical result in Tabs. 4–6 reveals that the variation of the material
properties in the length direction plays an important role in the frequencies of the 2D-
FGSW beams, and a desired frequency can be obtained by approximate choice of the
material grading indexes.

In addition to the material grading indexes, Tabs. 4–6 also show an important role of
the layer thickness ratio on the frequency of the sandwich beam. A larger core thickness
the beam has a smaller frequency parameter is, regardless of the material index and the
boundary conditions. However, change of the frequency parameter by the change of the
layer thickness ratio is different between the symmetrical and asymmetrical beams.

The variation of the first four frequency parameters µi (i = 1, . . . , 4) with the material
grading indexes is displayed in Figs. 3–5 for the SS, CC and CF beams, respectively. The
figures are obtained for the (2-1-2) beams with an aspect ratio L/h = 20. The dependence
of the higher frequency parameters upon the grading indexes is similar to that of the
fundamental frequency parameter. All the frequency parameters increase by increasing
the index nz, and they decrease by the increase of the index nx, regardless of the boundary
conditions.
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To examine the effect of the aspect ratio on the frequencies of the beam, Tab. 7 lists
the fundamental frequency parameter of the SS beam with an aspect ratio L/h = 5. By
comparing Tab. 7 with Tab. 4 one can see that the frequency parameter of the beam with
L/h = 5 is lower than that of the beam with L/h = 20. The effect of the aspect ratio
on the frequency parameter can also be seen from Fig. 6, where the aspect ratio versus
the frequency parameter µ1 is shown for the SS and CF beams with various values of the
layer thickness ratio. Regardless of the layer thickness ratio and the boundary conditions,
the frequency parameter increases by the increase of the aspect ratio. The layer thickness
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ratio can change the frequency amplitude, but it hardly change the dependence of the
frequency on the aspect ratio. The numerical result in Tab. 7 and Fig. 6 shows the ability
of the formulated element in modelling the shear deformation effect of the 2D-FGSW
beams.

Table 7. Fundamental frequency parameters of SS beam with L/h = 5

nx nz 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1

0.3 0 2.6540 2.6540 2.6540 2.6540 2.6540 2.6540 2.6540
0.3 3.9317 3.8075 3.7456 3.7068 3.6266 3.5530 3.1377
0.5 4.3056 4.1543 4.0789 4.0297 3.9311 3.8396 3.3171
1 4.7611 4.5904 4.5009 4.4416 4.3231 4.2107 3.5690
2 5.0623 4.9055 4.8084 4.7507 4.6207 4.4964 3.7789
5 5.2282 5.1197 5.0214 4.9810 4.8464 4.7219 3.9550

0.5 0 2.6540 2.6540 2.6540 2.6540 2.6540 2.6540 2.6540
0.3 3.8472 3.7298 3.6710 3.6346 3.5587 3.4893 3.0996
0.5 4.2045 4.0604 3.9880 3.9421 3.8478 3.7613 3.2670
1 4.6447 4.4799 4.3929 4.3377 4.2232 4.1172 3.5040
2 4.9413 4.7859 4.6907 4.6367 4.5100 4.3932 3.7035
5 5.1114 4.9970 4.9000 4.8605 4.7285 4.6113 3.8723

1 0 2.6540 2.6540 2.6540 2.6540 2.6540 2.6540 2.6540
0.3 3.6573 3.5579 3.5073 3.4769 3.4119 3.3528 3.0224
0.5 3.9658 3.8437 3.7805 3.7428 3.6610 3.5874 3.1634
1 4.3486 4.2090 4.1321 4.0882 3.9876 3.8984 3.3656
2 4.6077 4.4757 4.3911 4.3495 4.2378 4.1414 3.5382
5 4.7577 4.6589 4.5725 4.5436 4.4270 4.3324 3.6858

5 0 2.6540 2.6540 2.6540 2.6540 2.6540 2.6540 2.6540
0.3 3.2090 3.1516 3.1222 3.1045 3.0671 3.0325 2.8464
0.5 3.3951 3.3237 3.2858 3.2640 3.2154 3.1714 2.9244
1 3.6307 3.5497 3.5018 3.4780 3.4161 3.3629 3.0403
2 3.7897 3.7155 3.6618 3.6419 3.5719 3.5163 3.1429
5 3.8779 3.8264 3.7714 3.7616 3.6883 3.6370 3.2332

In Fig. 7, the first three vibration modes for the transverse displacement w and trans-
verse shear rotation γ0 of the (1-1-1) SS beam are shown for two pairs of the grading
indexes, (nx, nz) = (0, 2) and (nx, nz) = (2, 2). When nx = 0, the beam becomes a unidi-
rectional FGSW beam formed from M1 and M3, and thus Fig. 7 illustrates the vibration
modes of the unidirectional FGSW beam. The effect of the variation of the material prop-
erties in the longitudinal direction can be seen by comparing Fig. 7(a) and Fig. 7(b). The
symmetrical shape with respect to the mid-line of the first mode of the transverse dis-
placement as seen in Fig. 7(a) is no longer seen for the 2D-FGSW beam in Fig. 7(a). The
difference in the vibration modes of the transverse shear rotation of the unidirectional
FGSW beam with that of the 2D-FGSW beam can also be seen from Fig. 7.
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6. CONCLUSIONS

A 2D-FGSW beam model formed from three constituent materials has been proposed
and its free vibration was studied. The beam consists of three layers, a homogeneous core
and two FGM skin layers with material properties varying in both the thickness and lon-
gitudinal directions by the power gradation laws. Based on a third-order shear deforma-
tion theory, a beam element was formulated and employed in computing the vibration
characteristics. It has been shown that the formulated element is accurate, and it is capa-
ble to model the effect of shear deformation on the frequencies of the beam. The obtained
numerical result reveals that the variation of the material properties in the longitudinal
direction plays an important role in the frequencies and vibration modes of the beam. A
parametric study has been carried out to highlight the effects of the material distribution
and the layer thickness ratio on the frequencies of the beam. The influence of the aspect
ratio on the vibration behaviour of the beam has also been examined and discussed. It
is necessary to note that the present beam model is new, and only free vibration of the
beam is considered so far. Investigations on forced vibration and nonlinear bending of
the beam should be carried out for understanding the mechanical behavior of the beam
in more detail.
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[13] M. Şimşek and M. Al-Shujairi. Static, free and forced vibration of functionally graded (FG)
sandwich beams excited by two successive moving harmonic loads. Composites Part B: Engi-
neering, 108, (2017), pp. 18–34. https://doi.org/10.1016/j.compositesb.2016.09.098.

[14] T. Vo-Duy, V. Ho-Huu, and T. Nguyen-Thoi. Free vibration analysis of laminated FG-CNT
reinforced composite beams using finite element method. Frontiers of Structural and Civil En-
gineering, 13, (2), (2019), pp. 324–336.

[15] M. Nemat-Alla and N. Noda. Edge crack problem in a semi-infinite FGM plate with a bi-
directional coefficient of thermal expansion under two-dimensional thermal loading. Acta
Mechanica, 144, (3-4), (2000), pp. 211–229. https://doi.org/10.1007/bf01170176.
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