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Abstract. Our major new results and the previous ones on the bounds for elastic ramdom
polycrystals, and most advanced 3D finite elemeni results for random 3D Voronoi poly-
crystals are resumed and analysed (together for the first time). Recently obtained numer-
ical Dirichlet and Neumann simulation results for the effective elastic moduli of a large
10000-grain-size random Voronoi polycrystal representative volume element (RVE) for a
number of triclinic and monoclinic base crystals (Mursheda and Ranganathan, 2017) are
compared critically with the bounds on the moduli. Though major parts within the sim-
ulation results fall within the bounds of Pham (2011), some Dirichlet upper estimates still
lie outside the bounds. Many more RVEs are needed to represent the Voronoi polycrystal
on the same RVE-size-level, and larger RVEs are needed for checking the convergence and
comparisons with the bounds.

Keywords: effective elastic moduli, random Voronoi polycrystal, triclinic crystal, scatter
measures of the estimates.

1. INTRODUCTION

Usual polycrystalline materials on the microscopic scale are composed from crys-
tals (grains) of irregular shapes and random crystalline and shape orientations (with-
out preferable relative directions) that they appear macroscopically isotropic and have
such definite macroscopic (effective) properties such that can be tabulated for engineer-
ing applications (but often with only very few significant digits). Still, because of the
microstructural irregularity, the exact macroscopic elastic moduli of the aggregates can
hardly be found, and may not be uniquely determinable. Hence the evaluation of the
possible scatter ranges for the macroscopic moduli of the random polycrystals should
have the methodological and practical values. From the minimum energy or special-
ized variational principles, various upper and lower bounds on the effective moduli of
random polycrystals have been constructed and calculated for particular crystalline ag-
gregates [1–14].

Voronoi random polycrystal model is widely recognized as the best model repre-
senting practical random polycrystalline materials, and methods have been developed
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to generate a Voronoi random polycrystal representative volume element (RVE), and to
solve the elastic homogenization problem on it [15–18]. Strong mathematical methods
and computer resources are required to generate and solve the problem on sufficiently
large Voronoi random polycrystal RVEs to get the results of sufficient accuracy. Recently
Mursheda and Ranganathan [18] have solved the problem on a large 10000-grain size
Voronoi random polycrystal RVE, and their solutions of the respective Dirichlet and Neu-
mann problems for a number of monoclinic and triclinic polycrystals have reached a
bench mark result to fall entirely within Hashin-Shtrikman bounds with significant mar-
gins. In this paper their numerical results are compared with tighter bounds, with critical
discussions and recommendations for further studies.

2. ESTIMATES

The general Voigt-Reuss-Hill bounds on the fourth-rank macroscopic (effective) elas-
tic tensor Ce f f of a polycrystalline aggregate derived from the minimum energy princi-
ples can be given in the form [10]

〈C−1〉−1 ≤ Ce f f ≤ 〈C〉, (1)

where 〈C〉 designates the volume average of the crystal fourth-rank elastic tensor C over
all space crystalline orientations of the grains within a representative volume element
(RVE). As the crystalline orientations of the constituent grains are distributed uniformly
over all directions in a random polycrystalline aggregate, the effective elastic tensor of the
random aggregate should be isotropic Ce f f = T(Ke f f , µe f f ), where T(K, µ) is the isotropic
fourth-rank tensor function with the components

Tijkl(K, µ) = Kδijδkl + µ(δikδjl + δilδjk −
2
3

δijδkl), (2)

while

〈C〉 = T(KV , µV), KV =
1
9

Ciijj ,

µV =
1
10

Cijij −
1

30
Ciijj ,

〈C−1〉−1 = T(KR, µR), KR = [(C−1)iijj]
−1,

µR = [
2
5
(C−1)ijij −

2
15

(C−1)iijj]
−1.

(3)

For random polycrystals, where the shape and crystalline orientations of the grains
are uncorrelated, tighter bounds have been constructed. The Hashin–Shtrikman bounds
can be presented in the form

PC(C−) ≤ Ce f f ≤ PC(C+), (4)
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where
PC(C0) = 〈(C + C∗)−1〉−1 −C∗ ,

C0 = T(K0, µ0) , C∗ = T(K∗, µ∗) ,

K∗ =
4
3

µ0 , µ∗ = µ0
9K0 + 8µ0

6K0 + 12µ0
,

(5)

and C0 = C+ is chosen to minimize the upper bound in (4) under the restriction C−
C0 ≤ 0 [i.e. ε : (C− C0) : ε ≤ 0, for all second order symmetric strain tensor ε, and
for all orientations of the elastic tensor C)]; while C0 = C− is chosen to maximize the
lower bound in (4) under the restriction C−1 − (C0)−1 ≤ 0. Numerical calculations of
Hashin–Shtrikman bounds are rather involved, especially for the low symmetry crystal
aggregates [12].

The bounds of Pham [10] also have the formal form (4)–(5), where C0 = C+ is cho-
sen to minimize the upper bound in (4) under certain restrictions, including C0 ≥ 〈C〉;
while C0 = C− is chosen to maximize the lower bound in (4) under certain restrictions,
including C0 ≤ 〈C−1〉−1. Numerical calculations of the bounds are also rather involved.
However the bounds and the slightly tighter ones [11, 14] can be well approximated by
the (tighter) simple bounds for the specific and idealistic spherical cell polycrystals

PC(〈C−1〉−1) ≤ Ce f f ≤ PC(〈C〉). (6)

Voigt–Reuss–Hill bounds can also formally obtained from (4)–(5) when C+ approaches
∞ (K0, µ0, K∗, µ∗ approach ∞), and C− approaches 0 (K0, µ0, K∗, µ∗ approach 0).

The self-consistent approximation for the effective elastic moduli of the random
polycrystal is the solution C0 = CSC of the self-consistent equation

C0 = PC(C0). (7)

There are 21 independent elastic constants for a (triclinic) crystal of general anisotropy,
which in the convenient Voigt two-index notations are given as C11, C12, C13, C14, C15, C16,
C22, C23, C24, C25, C26, C33, C34, C35, C36, C44, C45, C46, C55, C56, C66.

In the case of monoclinic symmetry, the number of independent elastic constants
reduces to 13, with C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0, and {x1, x2}
being the plane of symmetry.

From the stiffness 6×6-matrix {Cαβ}6
1 we construct the scaled inverse compliant ma-

trix {Sγδ}6
1 through the operation Fγδ as followed

Sγδ = Fγδ({Cαβ}6
1) = hF̄γδ({Cαβ}6

1) , γ, δ = 1, . . . , 6 ,

h =


1
2

if γ or δ = 4, 5, 6

1
4

if γ and δ = 4, 5, 6

1 otherwise

(8)

where {F̄γδ}6
1 is the inverse matrix of {Cαβ}6

1.
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Then, the Voigt-Reuss-Hill bounds (1)–(3) have particular expressions, in Voigt nota-
tions, for the triclinic crystal aggregate

KR ≤ Ke f f ≤ KV , µR ≤ µe f f ≤ µV , (9)

where

KV =
1
9
(C11 + C22 + C33 + 2C12 + 2C13 + 2C23) ,

µV =
1
15

(C11 + C22 + C33 − C12 − C13 − C23 + 3C44 + 3C55 + 3C66) ,
(10)

KR = K({Cαβ}6
1), µR =M({Cαβ}6

1) , (11)

K({Cαβ}6
1) = (S11 + S22 + S33 + 2S12 + 2S13 + 2S23)

−1,

M({Cαβ}6
1) =

15
4
(S11 + S22 + S33 − S12 − S13 − S23 + 3S44 + 3S55 + 3S66)

−1,

Sγδ = Fγδ({Cαβ}6
1), γ, δ = 1, . . . , 6 ,

(12)

and Fγδ has been defined in (8).
The tensor function PC(C0) from (5) would have the expanded expression

PC(C0) = T
(

PK(C, K0, µ0), Pµ(C, K0, µ0)
)

,

PK(C, K0, µ0) = [(C + C∗)−1
iijj ]
−1 − K∗

= K({C+∗
αβ }

6
1)− K∗ ,

Pµ(C, K0, µ0) = [
2
5
(C + C∗)−1

ijij −
2
15

(C + C∗)−1
iijj ]
−1 − µ∗

=M({C+∗
αβ }

6
1)− µ∗ ,

(13)

where

C+∗
αα = Cαα + K∗ +

4
3

µ∗ , α = 1, 2, 3;

C+∗
αβ = Cαβ + K∗ −

2
3

µ∗ , α, β = 1, 2, 3, α 6= β;

C+∗
αα = Cαα + µ∗ , α = 4, 5, 6;

other C+∗
αβ = Cαβ,

(14)

and functions K,M are defined in (12).
The bounds (6) for the subclass of spherical cell polycrystals, which approximate

practical equiaxial particulate aggregates, are especially simple

Kl
s ≤ Ke f f ≤ Ku

s , µl
s ≤ µe f f ≤ µu

s , (15)
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where
Kl

s = PK(C, KR, µR),

Ku
s = PK(C, KV , µV),

µl
s = Pµ(C, KR, µR),

µu
s = Pµ(C, KV , µV).

(16)

The self-consistent approximation for the effective moduli of the random polycrys-
tals are the solution K0 = KSC, µ0 = µSC of the systems of self-consistent equations

K0 = PK(C, K0, µ0),

µ0 = Pµ(C, K0, µ0).
(17)

3. COMPARISONS

A large random Voronoi polycrystalline aggregate (RVE) with up to 10000 grains has
been generated in [18]. Having solved numerically the elasticity problem on the RVE
and used the Dirichlet and Neumann boundary conditions, the authors obtained, respec-
tively, the upper and lower estimates for the elastic moduli of that RVE, in comparisons
with Voigt–Reuss–Hill and Hashin–Shtrikman bounds, and the self-consistent approxi-
mations taken from [12, 13] for certain triclinic and monoclinic polycrystals from [13, 19].

Those numerical upper Dirichlet and lower Neumann estimates (KD, µD and KN , µN)
of [18], Hashin–Shtrikman bounds (Ku

HS, µu
HS and Kl

HS, µl
HS) of [12,13], the bounds (Ku, µu

and Kl , µl) according to [10], the bounds for spherical cell polycrystals (Ku
s , µu

s and Kl
s, µl

s)
from (15)–(16), Voigt–Reuss–Hill bounds (KV , µV and KR, µR) from (8)–(12), and the self-
consistent approximations (KSC, µSC) from (17) are compared in Tabs. 1, 2. Though for-
mally can be represented through (4), (5), HS bounds are rather complicated, especially
for monoclinic and triclinic polycrystals and need special techniques for calculations
[12, 13].

Table 1. Dirichlet and Neumann estimates (µD and µN) of [18], Hashin-Shtrikman bounds (µu
HS,

µl
HS) of [12, 13], the bounds (µu, µl) according to [10], the bounds (µu

s , µl
s) from (15)–(16), Voigt–

Ress–Hill bounds (µV , µR) from (8)–(12), the self-consistent approximations (µSC) from (17) for
the effective shear moduli of triclinic (t) and monoclinic (m) polycrystals (in GPa)

Crystal µR µl
HS µl µl

s µN µSC µD µu
s µu µu

HS µV

An96(t) 35.70 38.2 38.70 38.73 38.95 38.85 39.33 38.97 39.03 39.7 42.45
T...(m) 10.34 11.6 11.89 12.01 12.12 12.13 12.39 12.22 12.22 12.4 13.79
E...(m) 6.21 7.0 7.01 7.01 7.13 7.09 7.31 7.23 7.45 7.7 9.08
O...(m) 4.18 4.9 5.19 5.25 5.44 5.39 5.59 5.53 5.60 5.8 6.91
L...(t) 11.53 14.0 14.48 14.51 15.17 15.03 15.73 15.60 15.86 16.9 20.13

T...(m): Tin difluoride (m)
E...(m): Ethylene diamine tartrate (m)
O...(m): Oxalic acid dihydrate (m)
L...(t): Lithium hydrogen oxalate monohydrate (t)



432 Duc-Chinh Pham

Table 2. Dirichlet and Neumann estimates (KD and KN) of [18], Hashin-Shtrikman bounds (Ku
HS,

Kl
HS) of [12, 13], the bounds (Ku, Kl) according to [10], the bounds (Ku

s , Kl
s) from (15)–(16), Voigt–

Ress–Hill bounds (KV , KR) from (8)–(12), the self-consistent approximations (KSC) from (17) for
the effective bulk moduli of some triclinic (t) and monoclinic (m) polycrystals (in GPa)

Crystal KR Kl
HS Kl Kl

s KN KSC KD Ku
s Ku Ku

HS KV

An96(t) 84.10 86.2 86.59 86.60 86.71 86.68 87.01 86.77 86.79 87.2 88.74
T...(m) 16.47 17.1 17.27 17.30 17.36 17.35 17.44 17.38 17.38 17.5 17.88
E...(m) 15.95 19.2 19.23 19.26 19.63 19.52 20.27 19.98 20.69 21.3 24.46
O...(m) 10.76 11.9 12.12 12.24 12.46 12.42 12.70 12.60 12.60 13.0 14.33
L...(t) 22.14 27.5 27.83 28.59 29.83 29.66 31.11 30.84 30.84 33.2 39.32

Note that the numerical self-consistent approximations (KSC, µSC) reported here have
the accuracy up to 4 significant digits and are more appropriate for comparison with
the respective up-to-4-significant-digit numerical upper Dirichlet and lower Neumann
estimates (KD, µD and KN , µN) of [18] than the up-to-3-significant-digit accuracy self-
consistent values of [13] taken for comparisons in [18].

The self-consistent approximations (KSC, µSC) fall in the middle of all bounds. Though
most of the self-consistent values lie slightly outside (smaller) the numerical lower esti-
mate KN , µN for the particular random Voronoi RVE of [18], except the case µSC > µN for
Tin difluoride, it does not mean that it should be always the case with other RVEs of the
same 10000-grain-size.

All the lower estimates KN , µN and about a half of the upper estimates KD, µD fall
within the bounds Ku, µu and Kl , µl of [10], but a half of the upper estimates KD, µD are
slightly larger than the upper bounds Ku, µu. Clearly larger random Voronoi RVEs are
needed for comparisons with the bounds.

The scatter range measures (in % ) for the bounds SK
VR =

KV − KR

KV + KR
, Sµ

VR =
µV − µR

µV + µR
,

SK
HS =

Ku
HS − Kl

HS

Ku
HS + Kl

HS
, SK =

Ku − Kl

Ku + Kl , SK
s =

Ku
s − Kl

s

Ku
s + Kl

s
, . . . , and for the estimates SK

DN =

KD − KN

KD + KN
, Sµ

DN =
µD − µN

µD + µN
, and the crystal anisotropy index AU of [20] are compared

in Tab. 3. We can see that SK, SK
s , SK

DN are comparable, while SK
DN appear predominantly

smaller; SK, SK
s , SK

DN are considerably smaller than SK
HS, and much smaller than SK

VR (the
same observations for the measures on µ).

Though the generation of a large random Voronoi elastic polycrystal RVE with 10000
grains, and the subsequent numerical solution of the elasticity problems on the RVE with
Dirichlet and Neumann boundary conditions in [18] are good steps, we need a number of
different generations of large random Voronoi elastic polycrystal RVEs with 10000 grains
to get more reliable information. The upper envelopes Ku

D, µu
D over the upper estimates

KD, µD, and the lower envelopes Kl
N , µl

N over the lower estimates KN , µN calculated with
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those RVEs would better represent the possible scatter ranges for the effective moduli of
the random Voronoi elastic polycrystals at the 10000-grain-size RVE level.

Table 3. The scatter range measures Sµ
VR =

µV − µR
µV + µR

, ... (in %) for the bounds in Tabs. 1, 2,

and the crystal anisotropy index AU of [20]

Crystal AU Sµ
VR Sµ

HS Sµ Sµ
s Sµ

DN SK
VR SK

HS SK SK
s SK

DN

An96 (t) 1.0 8.6 1.9 0.42 0.31 0.49 2.7 0.58 0.12 0.10 0.23
T...(m) 1.8 14 3.3 1.4 0.84 1.1 4.1 1.2 0.32 0.22 0.23
E...(m) 2.8 19 4.8 3.0 1.5 1.2 21 5.2 3.6 1.8 1.6
O...(m) 3.6 25 8.4 3.9 2.7 1.4 14 4.4 2.0 1.5 0.95
L...(t) 4.5 27 9.4 4.6 3.6 1.8 28 9.4 5.1 3.8 2.1

4. CONCLUSIONS

Available bounds on the effective moduli of random polycrystals are resumed and
compared against the numerical Dirichlet and Neumann estimates on a large 10000-
grain-size random Voronoi polycrystal RVE for a number of triclinic and monoclinic base
crystals reported in [18]. Though the major parts within the simulation results fall within
the bounds of [10], about a half of the numerical Dirichlet upper estimate results still
lie outside the bounds. Larger-size RVEs and possibly stronger numerical methods and
computer resources are needed to test against the bounds.

Even at the same 10000-grain-size level, more random Voronoi polycrystal RVE re-
alizations are needed to make the envelopes of the numerical Dirichlet and Neumann
estimate results to really represent the size level and for comparisons with the bounds,
starting with the Hashin-Shtrikman to the tighter ones.

Many more RVEs for the Voronoi polycrystal on the same RVE-size-level and larger
RVEs are needed for comparisons with the bounds, to see how small the scatter ranges
for the effective moduli of random Voronoi polycrystal really are, and could the bounds
still be improved significantly.
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