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Abstract. This research presents a continuous element model for solving vibration prob-
lems of FG stepped truncated conical shells having various material properties and sur-
rounded by Pasternak foundations. Based on the First Order Shear Deformation Theory
(FSDT) and the equations of the FGM conical shells, the dynamic stiffness matrix is ob-
tained for each segment of the shell having constant thickness. The interesting assembly
procedure of continuous element method (CEM) is employed for joining those segments
in order to analyze the dynamic behavior of the FG stepped truncated conical shells an as-
sembly procedure of continuous element method (CEM) is employed for joining those seg-
ments. Free vibrations of different configurations of FG stepped truncated conical shells
on elastic foundations are examined. Effects of structural parameters, stepped thickness
and elastic foundations on the free vibration of FG stepped truncated conical shells are
also presented.

Keywords: stepped shell, vibration of conical shell, functionally graded shell, continuous
element method, Winkler—Pasternak foundation.

1. INTRODUCTION

Conical shells are widely used in modern engineering structures such as tunnels,
storage tanks, pressure vessels, rockets, missiles, water ducts, pipelines and casing pipes
and in other applications. Therefore, static and dynamic analysis of shells in interac-
tion with elastic media is important for the safety and stability of those structures. Most
earthen soils can appropriately be represented by the Pasternak model, whereas sandy
soils and liquids can be represented by Winkler’s model [1,2]. The static and dynamic
analyses of conical shells on elastic foundations have been studied in recent years. For
FGM conical shells resting on elastic foundations, many significant results on the vibra-
tion and dynamic buckling of FGM conical shells are obtained. Sofiyev and Kuruoglu [3]
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studied vibrations of FGM truncated and complete conical shells resting on elastic foun-
dations under various boundary conditions by applying the Galerkin method. The con-
sidered elastic foundations include the Winkler- and Pasternak-type elastic foundations.
The FGMs are assumed to vary as power and exponential functions through the thick-
ness of the conical shells. Sofiyev and Schnack [4] presented solutions for the vibration
analysis of truncated conical shells made of FGM and resting on the Winkler—Pasternak
foundations. The governing equations according to the Donnell’s theory are solved by
Galerkin’s method and the fundamental frequencies with or without two-parameter elas-
tic foundation have been investigated. Dung et al. [5] presented an analytical approach
to investigate the mechanical buckling load of eccentrically stiffened functionally graded
truncated conical shells surrounded by elastic medium and subjected to axial compres-
sive load and external uniform pressure based on the classical shell theory and Galerkin
method.

The stepped conical shells (SCSs) structures offer challenging vibration problems not
only due to the degree of complexity of the governing shell equations, but also due to the
difficulty associated with matching the continuity conditions between the shell compo-
nents. Although finite element computer codes (NASTRAN, ANSYS, ABAQUS, etc.) can
analyze the vibrations of these SCSs and have been well developed and managed, the
disadvantage is that the computation cost is quite expensive. Xie et al. [6] presented a uni-
tied approach to determine natural frequencies and forced vibration responses of stepped
conical shells with arbitrary boundary conditions. The approach is involved in dividing
the stepped shells into narrow segments at the locations of discontinuities of thickness
and semi-vertex angle. Fliigge theory is used to describe equations of motions of conical
segments and displacement functions are expanded as power series. Qu et al. [7] devel-
oped an efficient domain decomposition algorithm for free and forced vibration analysis
of the uniform and stepped conical shells subjected to classical and nonclassical boundary
conditions. Vinh et al. [8] present a new Continuous Element for analyzing dynamic be-
havior of stepped composite conical shells. In this work, a powerful assembly procedure
has been presented for constructing new dynamic stiffness matrix of stepped composite
conical shells. The continuous element formulations here are established based on the
analytical solution of differential equations for composite conical shells giving high pre-
cision results. Nam et al. [9] presented a continuous element model for solving vibration
problems of stepped composite cylindrical shells surrounded by Pasternak foundations
with various boundary conditions. Based on the First Order Shear Deformation Theory
(FSDT), the equations of motion of the circular cylindrical shell are introduced and the
dynamic stiffness matrix is obtained for each segment of the uniform shell. The assem-
bly procedure of continuous element method (CEM) is adopted to analyze the dynamic
behavior of the stepped composite cylindrical shell surrounded by an elastic foundation.
Available vibration study results in the literature for SCSs are few and far between, as
it has not received much attention of the researchers, perhaps due to the complexity in-
volving in the modeling and solution procedure. Therefore, a unified method which can
be both accurate and efficient to determine the natural frequencies and forced vibration
responses of the SCSs would be highly desirable.



Dynamic analysis of FG stepped truncated conical shells surrounded by Pasternak elastic foundations 135

The main purpose of this paper is to present a new Continuous Element model to
analyze the dynamic behavior of the multi FG stepped truncated conical shells with var-
ious material characteristics and surrounded by Winkler-Pasternak foundations. Based
on the assembly procedure of single continuous elements, the dynamic stiffness matrix
of complex stepped conical shells surrounded by Pasternak foundation is established. In
this research, the influences of different parameters are studied in detail such as: stepped
thickness, geometrical ratios and elastic foundation stiffness. The achieved numerical
results are compared to those calculated by the finite element method and by other re-
searches in some singular cases. The efficiency and accuracy as well as the saving in data
storage and computed time of the CE method for complex shells in contact with elastic
foundations in medium and high frequencies have been investigated and confirmed in
this study.

2. THEORETICAL FORMULATION

2.1. Description of the model

Let’s investigate the FGM conical shell with (x, 6, z) coordinates, as shown in Fig. 1.
The coordinate x is measured along the cone generator with the origin placed at the
middle of the generators; 6 is the circumferential coordinate and z is the perpendicular
to the shell surfaces. Ry and R; are the small and large radiuses of cone cross sections,
respectively (see Fig. 1); h is the thickness, the cone length and cone semi-vertex angle of
the shell are represented by L and « and the radius coordinate R(x) of a point M inside
the shell is calculated as: R(x) = Ry + xsina.

Shear layer

Spring layer -

Fig. 1. Geometry parameters of a FG truncated conical shell surrounded
by Pasternak elastic foundation

This shell is surrounded by a Winkler elastic foundation having a foundation stiff-
ness ky, or by a Pasternak foundation with the foundation stiffness k;, and shear layer
stiffness k,. Such shell is the basic continuous shell element to contribute a FG truncated
conical shell surrounded by two above types of elastic foundations.

Typically, FGM shells are made from a mixture of two material phases. In this paper,
it is assumed that the FGM shells are made of a mixture of ceramic and metal. Young’s
modulus E(z), density p(z) and Poisson’s ratio y(z) are assumed to vary continuously
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through the shell thickness and can be expressed as a linear combination
E(z) = (Ec— En)Ve + Ep,
w(z) = (e = pm)Ve + Hm, 1)
p(z) = (pe = pm)Ve + pm,

where the subscripts ¢ and m represent the ceramic and metallic constituents, respec-
tively, and the volume fraction V. follows two general four-parameter power-law distri-

butions [3,6, 8]
1 z 1 2\’
FMimm Vo= [1-0 (3 47) +0(347) |
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FoManrom Vo= [1-0 (3 7) +o(3-5) |

in which the power-law exponent p is a positive real number (0 < p < o0) and the pa-
rameters 4, b, c represent the material variation profile through the functionally graded
shell thickness. It is assumed that the sum of the volume fractions of the two basic com-
ponents is equal to unity, i.e., V. + V;;, = 1. Therefore, according to the relations defined
in Eq. (2), when the power-law exponent p is set equal to zero (i.e., p = 0) or equal to
infinity (i.e., p = o0), the FGM material becomes the homogeneous isotropic material,

expressed as
p=0—-V. =1, V,=0—E(z) =E;, wu(z)=pu, pz)=np, 3
p=oc0 =V, =0, Viy=1—E(z)=Eu uz) =pm pz)=pn ©

Whereas the composition of ceramic (M;) and metal (M,) is linear for p = 1. The
variations of the volume fraction V. through the shell thickness for different values of the
power-law exponent p are illustrated in Fig. 2. In this figure, the classical volume fraction
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Fig. 2. Variation of the volume fraction V, through the thickness of a shell
for different values of power-law exponent p
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profiles, such as those reported in literature [?,?], are presented as special cases of the
general distribution laws by setting 2 = 1 and b = 0. As can be seen from Fig. 2(a), for
the first distribution FGMI (a = 1/b = 0/c¢/p) the material composition is continuously
varied such that the bottom surface (z/h = —0.5) of the shell is M; rich, whereas the top
surface (z/h = 0.5) is M, rich. The volume fraction V, decreased from 1 at z/h = —0.5
to zero at z/h = 0.5. Fig. 2(b) shows that for the second distribution FGMII (a = 1/b =
0/c/p) the top surface (z/h = 0.5) of the shell is M; rich, whereas the bottom surface
(z/h = —0.5) is M, rich, instead. When the volume fraction exponent is increased, the
content of M; in FG layer decreases.

So far, all the needed parts of the first-order shear deformation shell theory (FSDT)
are presented, and they may be combined to obtain the desired form of the equations of
motion.

2.2. Kinematic relations and stress resultants

On the basis of the assumptions of moderately thick shell theory, the displacement
components of an arbitrary point in the FG shell for the first-order shear deformation the-
ory are expressed in terms of the displacements and rotation components of the middle
surface as given below [9]

u(x,0,z,t) =uo(x,0,t) +z¢px (x,0,t),
v(x,0,z,t) =0 (x,0,t) +zpg (x,0,t), (4)
w(x,0,z,t) =wy(x,0,t),

where 1, v and w are the displacement components in the x, 0 and z directions, respec-
tively; ug, vo and wy are the middle surface displacements of the shell in the axial, circum-
ferential and radial directions, respectively; ¢, and @g represent the transverse normal
rotations of the reference surface about the 0- and x-axis, ¢ is the time variable. The linear
strain-displacement relations in the shell space are defined as

. dug _ Py
_ . : duo _ ¢x | dpp sina
gp = R() <uosmtx+ 30 —i—wocosa) , kxo R(x) 90 i R(x)%’
€ —%4——1 %——Sinav k S sinoc—i—% ©
0" 9x TR(x) 90 R(x)°’ ¢ T Ry \ P 0 )"
dwy —cos« 1 Jwy
')’xz - W + (Px 7 ,)/GZ = R(x> UO R(x) ag (P9

Based on Hooke’s law, the stress-strain relations of the shell are written as

Ox Qu(z) Qia(z) 0 0 0 £y
) Qu2(z) Qui(z) 0 0 0 €9
Teg = 0 0 Qe6(2) 0 0 Yx0 ¢, (6)
Txz 0 0 0 Q66 (Z) 0 Yxz

Ty, 0 0 0 0 Qes(2) Yoz
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where the elastic constant Q;j(z) are functions of thickness coordinate z and are defined
as

__E@ _ M=)E(z) ___E@
Qll (Z> 1= “142(2), QlZ(z) 1= IMZ(Z), Q66(Z) - 2[1 I ]/l(Z)] . (7)
The stress and moment resultants are given as

h/2

(NX/ NG/ Nx9/ QX/ QG) = / (O.XXI 000, Tx0, Txz, TGZ) dZ, (8)
~h/2
h/2

(Ms, Mo, Myo) = [ (e, 000, To) 242, ©)
~h/2

where Ny, Ny and N,y are the in-plane force resultants, My, My and M,y are moment
resultants, Qy, Qp are transverse shear force resultants. The shear correction factor f is
computed such that the strain energy due to transverse shear stresses in Eq. (10) are
equals to the strain energy due to the true transverse stresses predicted by the three-
dimensional elasticity theory [8]. In this paper, the shear correction factors f =5/6 [6,8].
Substituting Egs. (6)—(7) into Eqgs. (8)—(9) following constitutive equations relating the
force and moment resultants to strains and curvatures of the reference surface are given
in the matrix form

Ny [ Ay A 0 By B 0 0 0 | ( e
Ng A12 A11 0 B12 B11 0 0 0 Eg
ng 0 0 A66 0 0 B66 0 0 Exp
My \ _ | Bu B2 0 Dy D O 0 0 ks (10)
Mg 0 0 Bg O 0 D¢ O 0 ko
Qyx 0 0 0 0 0 0 fFu 0 Yz
Qg i 0 0 0 0 0 0 0 fFs 1L ez

The structure materials employed in the following study are assumed to be function-
ally graded and linearly elastic. So, the extensional stiffness A;;, the bending stiffness D;;,
and the extensional-bending coupling stiffness B;; are respectively expressed as

Ajj = / Qii(z)dz, Bij = /Z-Qij(z)dzr
—h/2 —h/2
" " (11)

Di]‘ = / ZzQi]‘(Z)dZ, i,j = 1,2,6, Fi]‘ = / Qi]‘(Z)dZ, i,j = 4,5.
—h/2 —h/2
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2.3. Equations of motion

The equilibrium equations of motion for FG truncated conical shell surrounded by
Pasternak foundation based on the first-order shear deformation shell theory (FSDT) in
terms of the force and moment resultants can be written as [8]

ON, sina 1 JdNy . N
ox TR@) (Ny — Np) + R(x) a0 otig + L1 Py ,
0N,y 2sina 1 aNg cos

ox WNXG_‘_ ( ) 20 R( )QG IOUO‘l’Il(PG ’

00y 1 BQ(; sina  cosa 82 sin(x ow 1 Fw\
oM,  sina 1 ang o ;
W—i_R( )(M M9)+WW_Q3(—I1M0+12§0X,
oM,y 2sina 1 JdMy o ..
ox + R(x) MxG + R(x) 20 - Q9 - IlUO + 124)9 s
(12)
where
h/2
o, I, ) = / o(z) [1.2),22]dz,
—h/2

p(z) is the density of the shell per unit middle surface area. Iy, I; and I, are the mass
inertias.

3. DYNAMIC STIFFNESS MATRIX FORMULATION FOR FG TRUNCATED
CONICAL SHELL

The chosen state-vector is y = g, vo, Wo, Px, P9, Nx, Nxg, Qx, My, MIG. Next, the Fourier
series expansion for state variables is written as

{uo(x,6,t),wo(x,6,t), po(x,0,t), Nx(x,0,t), Qx(x,6,1), Mc(x,6,1)}"

[ee]

= Z—:1 {um(x), wn(x), @g, (x), Nx,, (x), Qx,, (x), My, (x )} cos me't,
{v0(x,0,1), 9 (x,0,), Nug(x,6,1), Myg(x,6,£)} " =

Z {om(x), @x,,(x), Nxp,, (x), Mye,, (x )} sin me',

where m is the number of circumferential wave. Substituting (13) in equations (12) and

(10), a system of ordinary differential equations in the x-coordinate for the m'"
be expressed in the matrix form for each circumferential mode m as [9]

mode can
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d D B
% = C4 SIN Q.U + MC Uy + C4 COS . Wy + C5 SIN APy + MC5Pgyy, + C—HNxm — %Mxm ,
1 1
dUm m sinw D66 B66
— = —=N. — Myom ,
dx R(x) Um + R(x) Om — Cl x0m + ClQ x0m
dw
Txm = —Qxm t+ —— fF Qxm ,
d A
Zl):cm = Cp SiN&.Uy + MCVy + €2 COS K. Wy + €3 SINA. QP + MC3Pgy — Bu Nxm + —HMxm ,
Adeey sina Bes Ags
= — Nyom — — Myom ,

dx ( )(PXWI + R( )4’9;11 + 10 xOm 1 xOm
dN.

d;m = <c6 sin o — Iocoz) Uy, -+ MCg SIN K. Uy + Cg SIN & COS AWy, + <C7 sin o — Ilwz) Pxm

. . 1 m .
+ mcy sina.@g,, —sina | ¢4 + @ Nym — mem —cpsinaw. My,
dN. . Fyq cos?
ﬁgm = MCeSIN K. Uy + (m2c6 + % — Igw2> Um + M Cos & (c6 + 1{( 4;12) Wi+
. Fy4 cosa 2sina
+ mcey sinx. @y + (m2C7 — % — Ilwz) @om — McqgNyy — WNXQM — mcyMyy,,

d . A ) Fyiy Aq

g;m =c13 (c1 Slan+R(;1)2 cos a+kpcy smoc) Um+mey3 (1{(;)2 cos “+C11+R(xl) cos ochk,,cz) Um (14)

2 2
m=fF, m<k
+c13 <f§4 +c11cosa + kpcp cosw — Tow? + ke + xp) Wiy

R(x)

. sina
+ 13 | c1psina +

B
R(fc2)2 coswa + kp R( )+k C3sma> Pxm

fFaa By
+ mcy3 (—m + 1+ R(x)2 cosa +kpcs | Pom

A Dpy B2 By By _ sina
- —ky,— | N.
+ 13 (R(x) ) cos & R() o Ccos & P o xm R(x )Qrm
Arp Byg By, An An
- — —_— ky—— ) Mxm,
+C13( R(x) o COSDC+R(x) o cosw +ky o xm
d]l\;;m = (2::8 sin?a — Ilw2> Uy + 2mcg sin a0y, 4 2cg sin a cos w.wy;, + + (209 sin?a — 12w2> Pxm
1
+ 2mcy sin x.@g,,, — 25 sin &. Ny + Qx — {2 sinwa (C3 + m)] My — %ngm ,
d F
% =mcg sinw.uy, + (mZCg — f‘;&% — Ilwz) Um +m (c8 cosu — %) W
. 2sina
+ mcg sin a. @y, + (771269 + fFyq — Izwz) Qo — M5 Ny — me3Myy, — W O,
with

c1 = AnDi1 — B3y, ¢ = (ABi1 — A11Bp) /R(x)er,
c3 = (B11Bi2 — A11D12) /R(x)c1, ¢4 = (B11Bia — A1aD11) /R(x)cq,
¢s = (B11D12 — B12D11) /R(x)c1, ¢ = (Ar2cq + Biaca + A /R(x)) /R(x),
= (A1zcs + Biocz + Ba/R(x)) /R(x), g = (Biacs + Diaca + Bya/R(x)) /R(x),
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cg = (Biacs + Dipcs + Dan/R(x)) /R(x), c10 = B2 — AgsDes,

c11 = ﬂCzl cosa + &cz coswa, C1p = ﬂq; cos« + ﬁq cosw, C13 = ;k
R(x) R(x) R(x) R(x) 1+ 77ks
Eq. (14) can be expressed in the matrix form for each circumferential mode m
d
% = Amym ’ (15)

with A, is a 10 x 10 matrix (see Appendix). The dynamic transfer matrix T}, is evaluated
as

L
fortws [T Ta ). a0

T — e0 =
m(w) =e T Tx

Finally, the dynamic stiffness matrix K, (w) for FG truncated conical shell is deter-
mined by [8]
T,'T ~Ty,"
K (w) = e 12 ] : 17
n (@) [ To1 — TTR' T TooTp' 17
Natural frequencies will be extracted from the harmonic responses of the structure
by using the procedure developed in [8,9].

4. CONTINUOUS ELEMENT FOR FG STEPPED TRUNCATED CONICAL SHELLS

Let’s investigate a stepped conical shell (SCS) including n segments shown in Fig. 3.
The SCS consists of n lengths Ly, Lo, ..., L;,. .., L, and n step thicknesses hy, hy, ..., b, ...,
hy. Let the coordinate system be chosen as shown in Fig. 2; 8 is the circumferential co-
ordinate, R; and R; are the respectively small radius and large cone surface, the cone
semi-vertex angle («) of the steps are the same; u,v and w are the displacement compo-
nents in the x, 6 and normal directions, respectively.

Fig. 3. Geometry of a FG stepped truncated conical shells



142 Le Quang Vinh, Nguyen Manh Cuong

The dynamic stiffness matrix Ky, (w) for the above FG stepped truncated conical
shells surrounded by elastic foundation will be constructed by assembling the DSM of
various segments having different constant thickness and lengths. First, the shell is di-
vided into n elements. It is necessary to build n separate dynamic stiffness matrices
Kseg1, Ksega, « - - s Ksegis - - -, Ksegn for these segments. Then, Fig. 4 describes the assembly
procedure for constructing the DSM for the stepped conical shells. The natural frequen-
cies of the studied structure will be determined from this matrix by using the method
detailed in [8].

K:e'gl
(hy, ka)

=, 3
e

Km(ﬂ?j — l:h:, g(,r: K.

(h, )

K:rgn
G [ k{m)

Fig. 4. Construction of the dynamic stiffness matrix for FG stepped truncated conical shells

The procedure of combining the dynamic stiffness matrix K(w ), for stepped conical
shell is based on the continuous condition at the joints between segments of the shell. In
this study, we only investigated the conical shell with segments having the same coni-
cal angle. Thus, all shell segments have neutral faces overlapping and the continuous
condition at the position of the coupling between the segments of the shells as follows

Ui =uUjy1, Ui =041, W= Wiy1,

i a7it+1 i wgit+l i _ i+l

Nx - Nx s Nxo - Nxe ’ Qx - Xx 7 (18)
i i+1 i _ i+1
=My, M,=M"".

5. NUMERICAL RESULTS AND DISCUSSION

The present exact procedure may be applied to investigate the effects of various ge-
ometrical and material properties such as step thickness ratios, the power law index and
different boundary conditions. Four configuration of functionally graded material are
used with the material properties listed in Tab. 1.

Table 1. Material properties of functionally graded materials

FGM1 FGM2 FGM3 FGM4
Properties - - - -
Al Zirconia Al Alloy Al AlLO3z  Nickel Si3N4
E (GPa) 70 168 70 211 70 380 205.098 322.27
U 0.3 0.3 0.3 0.3 0.3 0.3 0.31 0.24

o (kg/ m3) 2707 5700 2707 7800 2707 3800 8900 2370
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5.1. Validation of the present model

The proposed continuous element model will be validated by comparison with so-
lutions available in the literature with finite element results and other methods. First,
to check the accuracy of the present method on the vibration analysis of FGM conical
shells, Tabs. 2 and 3 show the first frequencies for FGM (Si3N4/Ni) conical shells with
different values of ky, k,. The geometrical parameters of the FGM conical shells are
Ri1/h =100;h = 0.01; L = 2Rq; &« = 30°.

Table 2. Comparison dimensionless frequency parameter for FGM conical shells resting on the
Winkler-Pasternak foundations with moduli k;, and kj, different and F-C boundary conditions

k. ko FGM41(um1/he0/ees/peco FGMA4,(—1 /b—0/er /o FGM4,(1—1 /bt /e
w , p 1(a=1/b=0/c=2/p=00) Difference 1(a=1/b=0/c=2/p=1) Difference 1(a=1/b=0/c=2/p=2) Difference
(N/m?)  (N/M)  gofivev [4]  CEM Sofiyev[4]  CEM Sofiyev[4]  CEM
0 0 0.0723 0.0699 335 0.0997 0.0970 271 0.0887 0.0855 358
0 0.0813 0.0782 3.78 0.1103 0.1085 1.66 0.0988 0.0970 1.82
5. q06 1X10° 00845 0.0814 372 0.1146 0.1116 2.62 0.1024 0.1001 222
25x10°  0.0888 0.0866 251 0.1198 0.1179 1.62 0.1072 0.1053 1.73
5x10°  0.0956 0.0939 1.81 0.1279 0.1262 133 0.1148 0.1137 097
0 0.0894 0.0876 2.00 0.1200 0.1189 091 0.1078 0.1064 131
L1 X100 00923 0.0897 2.82 0.1240 0.1220 1.59 0.1112 0.1095 1.52
25x10°  0.0963 0.0949 144 0.1287 0.1272 113 0.1156 0.1147 0.75
5x10°  0.1025 0.1012 1.30 0.1363 0.1356 0.52 0.1227 0.1220 0.55
0 0.1380 0.1398 1.28 0.1797 0.1815 0.99 0.1631 0.1648 1.04
syq@ 1X10° 0139 0.1418 1.39 0.1823 0.1836 0.70 0.1653 0.1669 096
25x10°  0.1426 0.1439 0.94 0.1856 0.1867 0.59 0.1684 0.1700 0.96
5x10°  0.1469 0.1491 153 0.1910 0.1930 1.02 0.1733 0.1752 111

Tabs. 2 and 3 presented the variations of the dimensionless fundamental natural
frequency for the FG truncated conical shells with different ky, k,, coefficients. It is ob-
served that dimensionless frequency parameter of FG truncated conical shells increases
gradually with the increasing of k;, or k,. We see that for their small to intermediate
values, both Winkler and shearing layer elastic coefficients have significant effects on
the dimensionless fundamental natural frequency. However, for the large values of the
Winkler elastic coefficient, the shearing layer elastic coefficient has negligible effect on
dimensionless frequency.

Natural frequencies computed by CEM are compared with those of Sofiyev and
Schnack [4] and obtained differences vary from 0.37% to 4.67%. Therefore, this con-
tinuous element model is reliable and effective to study FGM truncated conical shells
surrounded by Pasternak elastic foundations.

Next, the frequency parameters of a four-stepped conical shell are listed in Tab. 4.
The dimensional parameters are: semi-vertex angles a1 = a, = a3 = ag = 18°, thickness
ratios hy : hp = 1/2,hy : h3 = 1/3, hy : hy = 1/4, length ratios L1 : L, = 1,L1 : Lz =
1,L; : Ly = 1, thickness of the first segment /1; = 0.01 m, radii of two ends R; = 0.5 m,
R; = 1 m. For all modes presented in this table, the discrepancy of frequency param-
eters of presented model and those from literature is negligible. In addition, frequency
parameters of a finite element model developed in ANSYS are also tabulated. SHELL181
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Table 3. Comparison of the lowest dimensionless frequency parameter for FGM conical shells
resting on the Winkler-Pasternak foundations with moduli ky, and k, different and F-C boundary

conditions
k FGMA4 ;1171 /p e FGM4;( 1 /10 /e /o
vy kp 1a=1/b=0/¢=2/p=2)  pyifgarence a=1/b=0/=2/p=0)  pyitference
(N/m”)  (N/m) Sofiyev [4] CEM Sofiyev [4] CEM

0 0 0.1139 0.1116 2.02 0.1763 0.1690 4.16
0 0.1255 0.1241 1.10 0.1910 0.1825 4.44
5% 10° 1x10° 0.1306 0.1283 1.77 0.1974 0.1877 4.89
2.5 x 10° 0.1362 0.1335 1.98 0.2046 0.1950 4.67
5% 10° 0.1451 0.1429 1.52 0.2162 0.2076 4.00
0 0.1361 0.1356 0.37 0.2047 0.1971 3.70
1 % 107 1% 10° 0.1408 0.1387 1.48 0.2106 0.2023 3.92
25 % 10° 0.1460 0.1450 0.70 0.2175 0.2086 4.09
5 x 10° 0.1543 0.1533 0.63 0.2284 0.2211 3.19
0 0.2017 0.2044 1.35 0.2918 0.2889 0.99
5% 107 1x10° 0.2049 0.2065 0.79 0.2960 0.2920 1.34
25 x 10° 0.2085 0.2107 1.05 0.3009 0.2973 1.21
5 x 10° 0.2144 0.2159 0.70 0.3089 0.3056 1.07

Difference (%) = |(CEM — Sofiyev) /Sofiyev| x 100.

Table 4. Comparisons of frequency parameters for a four-stepped conical shell with different
thickness and F-C boundary conditions (FGMZ 1(a=1/b=0/c=2 /p:O))

n m Quetal. [7] Xie et al. [6] Ansys CEM Differences (%)
1 1.0560 1.0561 1.0540 1.0281 2.64
2 1.0876 1.0873 1.0851 1.1385 4.68
3 1.2156 1.2151 1.2123 1.2535 3.12
4 1.3493 1.3490 1.3458 1.3547 0.40
5 1.3796 1.3792 1.3756 1.4686 6.45
6 1.4990 1.4986 1.4946 1.5525 3.57

1 1 0.6240 0.6240 0.6226 0.6808 9.10
2 0.9848 0.9845 0.9823 0.9361 4.95
3 1.1397 1.1391 1.1367 1.1075 2.83
4 1.3050 1.3044 1.3012 1.2524 4.03
5 1.4203 1.4196 1.4158 1.3685 3.65
6 1.5529 1.5528 1.5487 1.4847 4.40

2 1 0.3372 0.3369 0.3361 0.3542 5.04
2 0.6610 0.6606 0.6591 0.6590 0.31
3 0.9483 0.9477 0.9457 0.9269 2.26
4 1.1456 1.1447 1.1423 1.1098 3.13
5 1.3554 1.3543 1.3511 1.2972 429
6 1.5261 1.5251 1.5211 1.4571 4.52

Difference (%) = [(CEM — Qu [7]) /Qu [7]| x 100.



Dynamic analysis of FG stepped truncated conical shells surrounded by Pasternak elastic foundations 145

elements are employed for the finite element model and the shell is uniformly meshed
into 160 and 80 elements in circumferential and meridional direction, which satisfies the
equirement of convergence. It can be observed that frequency parameters of ANSYS
model show well agreement with those of literature and with the present method. This
demonstrates the validity of the CEM model.

5.2. Effect of parameters on the natural frequency

In this section, the influences of various shell parameters and elastic foundations
on the dynamic behavior of the stepped conical shells will be studied such as stepped
thickness configurations, boundary conditions. Different stiffness values of ky, k, are
also taken into account.

5.2.1. Effect of geometric parameters

First, Tab. 5 has shown the first eight natural frequencies of the Clamped-Clamped
(C-C) of a four-stepped conical shell with Ry = 0.5, Ry =1m, hy :hp th3 thy =1:2:
3:4L1:Ly:Lg: Ly =1:1:1:1h = 0.01 m, FGMy(,—1/p—05/c=1/p=2)- In Tab. 5, the
increase of the semi-vertex angle augments the stiffness of the structure, resulting in an
increasing of natural frequencies. The variation of material properties of each segment
also changes the natural frequency of the shell.

Next, the effect of stepped thickness on free vibration of FG stepped truncated coni-
cal shells will be analyzed in detail. The considered stepped conical shell is subjected to
the clamped-clamped boundary condition and has the following dimensions: Ly : L, :
L3 . L4 =1:1:1: 1,R1 == 05, R2 = 1,]’[1 = 0.01 m, & = 180, FGMlI(u:]/b:O/c:Z/p:O)/

Table 5. Effect of a semi-vertex angle and variation of FGM material at steppeds of the shell

Fre(ql_lllj)n <y Change of FGM materials at steppeds ?gzm Vertle; angle ;gz
fi FGM1/FGM2/FGM3/FGM4 188 324 507
J2  rovz TR 201 352 517
fa i - 266 383 562
s - 281 430 608
s £ 330 535 661
fo 2 350 557 780
7 5 368 584 788
fs . 380 604 906
fi FGM4/FGM3/FGM2/FGM1 183 316 494
f Fe 206 357 503
73 261 360 560
f1 288 458 576
fs 306 493 692
fe 349 538 6%
fr 353 557 840
fs 397 588 849
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Material 1 is used and the elastic foundation stiffness is k;, k, = 0. Here, four different
configurations of stepped thickness are examined: hy : hp :hg :hy =1:2:3:4/2:2:3:
4/3:2:3:4/4:2:3:4/4:3:2:1and results are summarized in Fig. 5. It can be seen
that except the first three modes, the augmentation of the stepped thickness leads to the
raise of natural frequencies of all other circumferential modes (). In addition, the effect
of the thickness of segments on the first mode is minimal.

600

=p=h1:h2:h3:h4=1:2:3:4 =l=h1:h2:h3:h4=2:2:3:4
hi:h2:h3:h4=3:2:3:4 wimmh1:h2 3 hd=4:2:3:4
500 - =s=h1:h2:h3:h4=4:3:2:1

e
Q
L=

300 -

Frequency{Hz)
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L=}
il

100 o,
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Fig. 5. Effect of stepped thickness on the vibration of four-FG stepped truncated conical shells

5.2.2. Influences of elastic foundations

It is necessary to examine the effects of different types of elastic foundations on the
free vibration of the FG stepped truncated conical shells. Consider now the above men-
tioned four-stepped conical shell surrounded by a Winkler foundation with various val-
ues of foundation stiffness k. The parameters of the shell are as follows: hy : hy : h3 :
h4:122:122,h1:0.011’1’1,L1ZL22L3:L4:121:1:1,R1:0.51’1’1,‘R2:1
m, « = 20°, material properties at steps 1, 2, 3, 4 are FGM1, FGM2, FGM4 and FGM3,
respectively.

Six different values of k;, (0,2.5 x 10%,5 x 10°,2.5 x 107,5 x 108,10 N/m?) are taken
for the study and results are illustrated in Fig. 6. It is easy to remark that when k;, <
2.5 x 107 N/m? the effects of Winkler foundation stiffness on natural frequency are very
small. When the stiffness of the Winkler foundation k,, > 5 x 108 N/m3, the natural
frequency of the shell increases as k; increases and then the effect of k;, on the natural
frequency is obvious.

The effect of Pasternak foundations has been investigated in the next test case. The
same structure resting on a Pasternak foundation with k,, = 5 x 10° N/m? and various
values of shear stiffness are chosen: k, = 10%,2.5 x 10*,5 x 10°,2.5 x 107,108 (N/m).
Fig. 7 presents the variation of natural frequencies of the studied structure with respect
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to different values of the shear stiffness k,. It is observed from this figure that natural
frequencies increase rapidly as k, > 5 x 10° N/m. When m increases, the influence of

Pasternak foundation on natural frequency becomes larger. With k, < 2.5 x 10* N/m,
Pasternak foundations have almost no effects on the natural frequencies of the shell.
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—= =0 —B—Kw=2.5e4 —k— Kw=5e6
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Fig. 6. Influence of Winkler founda- Fig. 7. Influence of Pasternak founda-
tions on natural frequencies of four- tions on natural frequencies of four-
FGMI(azl/bZO.S/C:MPﬁ) stepped truncated FGMI(Fl /b=05/c=4/p=2) stepped  truncated

conical shell with F-C boundary conditions conical shell with F-C boundary conditions
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Fig. 8. nfluences of both Winkler stiffness and Pasternak stiffness to natural frequencies of four-

FGM|(4=1/p=05/c=1/p=4) stepped truncated conical shell with S-5 boundary conditions

Next, effects of both Winkler stiffness and Pasternak stiffness on natural frequencies
of four-FG stepped truncated conical shells will be studied and illustrated in Fig. 8. The
parameters of the shell are as follows: hy : hy : h3 : hy =1 :2:3 :4,h; = 0.01 m,
Liy:Lp:Lg:Ly=1:1:1:1,R; =05m; Ry = 1m, «a = 20°, material properties at
steps 1, 2, 3, 4 are FGM1, FGM2, FGM4 and FGM3, respectively. The values of Winkler
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stiffness and Pasternak stiffness are k,, = 1072,10%,10%,10°%,107,5 x 107,10%,2.5 x 108,5 x
10%,10%,2.5 x 10%,5 x 10,10",5 x 10'°,10",5 x 10",10"* N/m® and k, = 0,10°2.5 x
106, 5 x 106, 10" N/ m, respectively. From Fig. 8, it can be seen that the effect of Winkler
stiffness and Pasternak stiffness on natural frequencies is important only on a certain
range (k, from 107 to 10" N/m?5, kp from 5 x 10° to 108 N/m). When ky, reaches to
the limit value k;, = 10'> N/m?, Pasternak stiffness values have less effect on natural
frequencies.

5.2.3. Influence of the power-law p and various values of the parameter b

In Fig. 9 the variation of first four frequencies of four-step functionally graded con-
ical shell (F-C) versus the power-law index p for two power-law distributions and for
various values of the parameter b (b is contained in the interval [0, 1]) are presented. The
parameters of the shell are as follows: hy : hy : h3 : hy =1 :2:3 :4,h; = 0.01 m,
Li:Ly:L3:Lyg=1:1:1:1,Ry =05m; Ry =1m,a = 30° FGM(4=1/0<p<1/c=3/p)-
material properties at steps 1, 2, 3, 4 are FGM1, FGM2, FGM4 and FGM3, respectively. As
can be seen from Fig. 9, natural frequencies of FGM shells often present an intermediate

400 -

—s—b=0.3 b=0.6
330 4 —#=h=09 —k—b=1

300 &

480 7

b=0.6 ——=0.3 b=0.6

= —+—b=0.9 —#—b=1 —#—b=1

T T T T T T T T T
o 10 220 30 40 50 60 7O 80 90 100
P

Fig. 9. First four frequencies of four-FG stepped truncated conical shell (F-C) versus the power-
law exponent p for various values of the parameter b
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value between the natural frequencies of the limit cases of homogeneous shells of zirco-
nia p = 0 and of aluminum p = oo, as expected. However, natural frequencies sometimes
exceed limit cases, this fact can depend on various parameters, such as the geometry of
the shell, the boundary conditions, the power-law distribution profile, etc.

6. CONCLUSIONS

This research has succeed in constructing a Continuous Element model for Func-
tional Graded stepped truncated conical shells made of various materials and surrounded
by Winkler and Pasternak elastic foundations. The effect of the Pasternak elastic foun-
dation and of Function Graded Material have been well integrated into the presented
element. Good agreements are noticed between the results obtained by our approach
and those of other methods. Numerical results have confirmed that Continuous Element
model is accurate and economies the storage capacity of computers by using a minimum
meshing. The effects of various parameters on vibration behavior of the stepped shell are
also investigated. From the above results, it can be concluded that:

1. The ratio thickness-to-radius has a larger effect on natural frequencies when m
increases (m > 1).

2. The stiffness parameters of the elastic foundation have a significant effect on the vi-
bration of the FG stepped truncated conical shells. As the stiffness parameters are greater,
the frequencies are higher.

3. For the FG stepped truncated conical shells surrounded by elastic foundation, the
effect of Winkler stiffness and Pasternak stiffness on natural frequency is noticeable in a
certain range. When the Winkler stiffness reaches a limited value (as k, = 10'2 N/md),
the influence of shearing layer elastic stiffness parameter in natural frequency is hardly
recognized.

The developed continuous element model with its powerful assembling procedure
can be expanded to study more complex shell structures such as: joined cylindrical-
conical shells, combined cylindrical-conical shell and annular plates, ring-stiffened shells
and those structures surrounded by elastic foundations and fluid.
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APPENDIX
Matrix [A (w)]yg,1p:

An A Az A Ais A Ay Asg
Ay Axn Az Ay Ay Ay Ay  Ax
Az Az Az A Ass Az Azr Asg
Apn Ap Ay Ax Ap Ak Ay Ag
As1 Asa Ass Asy Ass  Ase  Asy Asg
Aer Aex Asz Aes Aes  Ass  Asz  Ags
An An A An A A Ay Ap
Ag1  Agp Ass  Ags  Ags  Ase  Asy Ass
Agr A9y A9z Aoy Ags Ags Agy  Agg
A1 Az Az Ais Awos Ais Atz Atos

A1l =cgsina, Ay =mcy, A1z =c4cosa, Ay = cssing,
D1y By

A15:THC5, A16:7, A7 =0, A18:O A19:_ 7
C1 C1

m sin

Ay =——, Apn=——-, A =0, Ayu=0, Ayx=0,

21 R(x) 22 R(x) 23 24 25

D B

Ay =—=2, Ap=0, Ap=0, Ap=--2,
C10 €10

A9 A
Az Ao
Aszg Az
Agp  Agpo
Asg  Asio
Ago  As10
A79  A710
Ago  Asgio
Agg  Aogip
A109  A1o10
A110 =0,

Az =0,

Az1 =0, A =0, Ay =0, Axu=-1 A3=0, Az =0,

1
Ao =0 A= fFs5 Azg =0, Azpp=0,
Ay =cpsina, Agp =mcy, Ay =cycosx, Ay =cssina, Ay =mcs,
B A
Agg=——, Ap=0, Ag=0, Ag="", Ay=0,
C1 €1
m sin «
As1 = A5 =0,A53 =0,A54 = ——, Ass5=——, As =0,
51=0, Asp=0,As3=0,A5 R(x) 55 R(x) 56
B A
As; =%, Ass=0, As=0, Asp=--2,
C10 €10

Ag1 = cosina — pw?, Ag = mcgsina, Ag = cgsinacosa,

Ags = cysin®a — [Lw?, Ags = meysine, Ag = — <c4 + R(1x)> sina,
A= ——1—, A =0, Ag =—cysina, Agpg=0,
R(x)
Az = mcgsine, Ay = mPce + W — Ihw?, Ay =mcosu <c6 +
2 fFacosa _

A74 = mcysina A75 = m-Ccy —
’ R(x)?

2
Lhw=, Az = —mcy,

fFu

R(x)?
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).
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A7 =0, Ay =—mcy, Az0=0,

Ag1 = 13 (cl sina + cos & + kpcp sin oc) ,

An
R(x)?

fFu A
A82 = mc13 <1{2 cosa +c11 + WCOSDC—FICPCZ ,
2fF, m2k
Agz = c13 (W + c1pcosa + kpcz cos i — Iow2 + ko + Tx)pz ,

. By sina
Agy = C13 (clz sina + ——= cosa + kPR

R(x)? W +kyc3 sin (x) ,

fFu By
Ags = mcia <_R(x) +c1p + R(x)? cosa + kycs | ,
A1x D1q Bz Byq By
Ags = ons [ 2 P o — D2 P oon 0,21 A — 0,
86 C13 (R(x) o COos R(x) Cl COSs & p o1 87
sin «

App B B, A A
Agg = — , A89:c13<—1211cosoc—|—12“cosoc+kp11>, Agio =0,

R(x) R(x) 1 R(x) o
A91 = 2C8 sin2 0x — IlaJZ ’ A92 = 2mc8 sina ’ A93 = 268 sin cos & ’
Agy = 2c9sin® &« — hhw?, Ags = 2mcosina, Agg = —2cssinw, A9y =0,
1 m
Agg =1, Agg = — —— | 2sina, Agp=-—5—,
98 ’ 99 <C3 + R(x)> sin 910 R(x)
F E
Aqpg1 = mcgsina, Aqp = m2c8 — fg(cxo)sa — Ilwz, A3 = m (Cg cosm — 1€(ch1)> ,
Ajgs = mcosina,  Aqgs = m*co + fFuu — hw?, Ay = —mecs, Ay =0,
2sin«

As =0, A1 = —mc3, Aio=— R()
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