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Abstract. The problem of using the modal curvature for crack detection is discussed in
this paper based on an exact expression of mode shape and its curvature. Using the ob-
tained herein exact expression for the mode shape and its curvature, it is demonstrated
that the mode shape curvature is really more sensitive to crack than mode shape itself.
Nevertheless, crack-induced change in the approximate curvature calculated from the ex-
act mode shape by the central finite difference technique (Laplacian) is much greater in
comparison with both the mode shape and curvature. It is produced by the fact, shown
in this study, that miscalculation of the approximate curvature is straightforwardly de-
pendent upon crack magnitude and resolution step of the finite difference approximation.
Therefore, it can be confidently recommended to use the approximate curvature for multi-
ple crack detection in beam by properly choosing the approximation mesh. The theoretical
development has been illustrated by numerical results.

Keywords: multiple-cracked beams, crack detection, mode shape curvature, Laplacian ap-
proximation.

1. INTRODUCTION

Structural damage identification problem has attached enormous interest of either
researchers or engineers for several decades. Among a large number of techniques pro-
posed to solve the problem, vibration-based method has proved to be the most efficient
approach [1–4]. This is because a damage occurred in a structure alters straightforwardly
the structure’s dynamical characteristics that can be measured by the well-developed
modal testing technique. Natural frequencies and mode shapes of a structure are the
essential characteristics for structural damage detection. The frequencies are early used
for the structural damage detection [5] because they can be most easily and accurately
measured by the dynamic testing technique. However, as a global feature of a structure,
natural frequencies are slightly sensitive to local damages that should be appropriately
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detected by using the spatial feature of structures such as the mode shapes [6, 7]. Nev-
ertheless, mode shapes are more difficult to be accurately determined, so that change
in mode shape due to damage might be confused with measurement noise or model-
ing erroneousness [8]. To overcome the drawbacks of the frequency-based and mode
shape-based methods, numerous procedures have been proposed to use mutually both
the modal parameters (frequency and mode shape) and their derivatives such as flexibil-
ity, strain energy for the damage detection problem. Most of the developments focused
on engaging more refined behavior of spatial characteristics in damaged structures such
as mode shape curvature [9–14]. Pandey et al. [15] first revealed that change in mode
shape curvature due to damage is greater than that of mode shape itself and stated that
the curvature is a good indicator for damage detection in beams. In the study, curva-
ture was calculated from mode shape by using the central finite difference approxima-
tion acknowledged as Laplacian operator. Then, Wahab [16] expanded the modal cur-
vature technique and applied for damage detection in a real bridge. Ratcliffe [17, 18] im-
proved the curvature-based technique of damage detection by using the so-called gapped
smoothing procedure to detect small damage that could not be identified by the proposed
curvature technique. Cao and Qiao [19] proposed a modification of the Laplacian scheme
in combination with the Gaussian filter to ignore measurement noise, so that much en-
hanced the curvature-based technique. Chandrashekhar and Ganguli [20] applied the
fuzzy logic system that allows the curvature-based technique to detect small damage
with noisy measured mode shape. The wavelet transform is a useful tool for reveal-
ing small localized change in a signal [21] and was employed for crack detection in beam
structures using mode shape [22] and curvature [23]. However, it requires a large amount
of input data and is strongly sensitive to noise or miscalculation of input data. Most of
the studies mentioned above employed the finite element method for modeling damaged
structures that usually proposes rather distributed damage than the local one such as
crack. The error in finite element modeling damaged structures may affect results of the
damage identification, especially, in detecting local damage like crack. So, the present pa-
per deals with discussion on the use of the curvature-based technique for multiple crack
detection based on an explicit expression established for exact mode shape and its curva-
ture of multiple cracked beams [24]. The established expression allows one to investigate
sensitivity of exact mode shape and its curvature to crack and obtain miscalculation of
the Laplacian operator applied for multiple cracked beam. There is demonstrated that
the miscalculation increases sensitivity of the approximate curvature compared to the
exact one and it is straightforwardly dependent not only on crack location and depth but
also on the step of resolution mesh.

2. AN EXPRESSION FOR EXACT CURVATURE OF MULTIPLE CRACKED BEAM

Let’s consider an Euler–Bernoulli beam with elasticity module E, mass density ρ,
length L, cross section area F and moment of inertia I. Assume that the beam is cracked
at positions ej, j = 1, . . . , n and the equivalent spring model of crack is adopted with the
crack magnitude γj calculated from the crack depth aj as [25]
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γj =
EI
LKj

= (5.346H/L)I
(
δj
)

,

I(δ) = 1.8624δ2 − 3.95δ3 + 16.375δ4 − 37.226δ5 + 76.81δ6

− 126.9δ7 + 172δ8 − 143.97δ9 + 66.56δ10, δj = aj/h,

(1)

where h is the beam thickness. As well known that modal parameters of the beam such
as natural frequency and mode shape satisfy the equation

φ(IV)(x)− λ4φ(x) = 0, x ∈ (0, 1), λ4 = L4ρFω2/EI, (2)

and compatibility conditions at the crack positions

φ
(
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)
= φ

(
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)
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(
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)
= φ′′

(
ej − 0

)
, φ′′′

(
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)
= φ′′′

(
ej − 0

)
,

φ′
(
ej + 0

)
= φ′

(
ej − 0

)
+ γjφ

′′
j
(
ej − 0

)
.

(3)

The conventional boundary conditions for solution of Eq. (2) can be expressed in
general form

φ(p0)(0) = φ(q0)(0) = φ(p1)(1) = φ(q1)(1) = 0. (4)
In the paper [24], it was shown that solution of Eqs. (2), (3) can be represented as

φ(x, λ) = CL1(x, λ) + DL2(x, λ), (5)

where

L1(x, λ) = L01(x, λ) +
n

∑
j=1

µ1jK(x− ej), L2(x, λ) = L20(x, λ) +
n

∑
j=1

µ2jK(x− ej), (6)

K(r)(x) =
{

S(r)(x), for x ≥ 0
0, for x ≤ 0

r = 0, 1, 2, 3 (7)

S(x) = (sinh λx + sin λx)/2λ, (8)

µkj = γj

[
L′′k0
(
ej
)
+

j−1

∑
i=1

µkiS′′
(
ej − ei

)]
, k = 1, 2, j = 1, . . . , n (9)

and functions L10(x), L20(x) are two independent particular solutions of Eq. (2) contin-
uous inside the beam and satisfying boundary conditions L(p0,q0)

10 (0) = L(p0,q0)
20 (0) = 0.

Obviously, the solution (5) satisfies also first two conditions at x = 0 in (4), so that the
remained two conditions (4) at x = 1 for the solution become

CL(p1)
1 (1, λ) + DL(p1)

2 (1, λ) = 0, CL(q1)
1 (1, λ) + DL(q1)

2 (1, λ) = 0. (10)

The later equations have non-trivial constants C, D if

L(p1)
1 (1, λ)L(q1)

2 (1, λ)− L(q1)
1 (1, λ)L(p1)

2 (1, λ) = 0. (11)

Substitution of expressions (6) into Eq. (11) leads to

F0(λ) +
n

∑
j=1

µ1jF1j
(
λ, ej

)
+

n

∑
j=1

µ2jF2j
(
λ, ej

)
+

n

∑
j,k=1

µ1jµ2kSpq
(
λ, ej, ek

)
= 0 (12)
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where
F1j = L(q1)

20 (1)S(p1)(1− ej)− L(p1)
20 (1)S(q1)(1− ej),

F2j = L(p1)
10 (1)S(q1)(1− ej)− L(q1)

10 (1)S(p1)(1− ej),

F0(λ) = L(p1)
10 (1)L(q1)

20 (1)− L(q1)
10 (1)L(p1)

20 (1),

Spq = S(p1)(1− ej)S(q1)(1− ek)− S(q1)(1− ej)S(p1)(1− ek).

(13)

Eq. (12) gives an explicit form of the so-called characteristic equation for multiple
cracked beam that could be solved straightforwardly with regard to λ under given crack
positions and magnitudes ej, γj, j = 1, . . . , n. Indeed, the recurrent relationships (9) for
the parameters µ1j, µ2j, j = 1, . . . , n can be rewritten as

[A] {µk} = {bk} , (14)

where the following matrix and vectors are used

[A] =
[
aji : ajj = 1, aji = −γjS′′

(
ej − ei

)
, i ≺ j, aji = 0, i � j, j = 1, . . . , n

]
,

{bk} =
{

γ1L′′k0 (e1) , . . . , γnL′′k0 (en)
}T , {µk} = {µk1, . . . , µkn}T .

Since det[A] = 1 it is easily to obtain {µk} = [A]−1{bk}, k = 1, 2 that allow com-
pletely calculating the parameters µ1j, µ2j, j = 1, . . . , n with given the crack parameters.
Solution of Eq. (12) in combination with Eq. (14) gives rise the so-called eigenvalues
λk, k = 1, 2, 3, . . . of the multiple cracked beam that are simply related to natural fre-
quencies of the beam by

ωk = (λk/L)2√EI/ρF, k = 1, 2, 3, . . . (15)

Every eigenvalue or natural frequency associates with a mode shape determined as

Φk(x) = φ (x, λk) = Ck

[
L(p1,q1)

2 (1, λk) L1 (x, λk)− L(p1,q1)
1 (1, λk) L2 (x, λk)

]
. (16)

where Ck is arbitrary constant that can be calculated from a chosen normalization condi-
tion, for example,

Ck =
[
max

{
L(p1,q1)

2 (1, λk) L1 (x, λk)− L(p1,q1)
1 (1, λk) L2 (x, λk) , x ∈ (0, 1)

}]−1
(17)

Hence, a close form solution for exact curvature is easily calculated as

Φ′′k (x) = φ′′ (x, λk) = Ck

[
L(p1,q1)

2 (1, λk) L′′1 (x, λk)− L(p1,q1)
1 (1, λk) L′′2 (x, λk)

]
. (18)

The above modal parameters have been obtained for general boundary conditions
(4) represented through the functions L10(x), L20(x) that can be easily found for the con-
ventional boundary conditions as following:

(1) Simply supported beam: L10(x) = sinh λx, L20(x) = sin λx;
(2) Clamped end beam: L10(x) = cosh λx− cos λx; L20(x) = sinh λx− sin λx;
(3) Free ends beam: L10(x) = cosh λx + cos λx; L20(x) = (sinh λx + sin λx).
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3. SENSITIVITY OF EXACT MODE SHAPE CURVATURE TO CRACK

The expressions (16) and (18) are used herein to examine deviation of mode shape
and modal curvature caused by multiple cracks in beam. Namely, the deviations are
calculated as

∆Φk(x) = φ (x, λk)− φ0
(
x, λ0

k
)

, ∆Φ′′k (x) = φ′′ (x, λk)− φ′′0
(
x, λ0

k
)

, (19)

where λ0
k is k-th eigenvalue of uncracked beam determined as solution of the equation
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.

The deviations (19) calculated for first three modes of a cantilever beam with 9
cracks (from 0.1 to 0.9) along the normalized beam length (horizontal axis) are shown

(2) Clamped end beam: xxxLxxxL  sinsinh)(;coscosh)( 2010 −=−= ;  

(3) Free ends beam: )sin(sinh)(;coscosh)( 2010 xxxLxxxL  +=+= . 

III. SENSITIVITY OF EXACT MODE SHAPE CURVATURE TO CRACK 

The expressions (16) and (18) are used herein to examine deviation of mode shape and modal curvature 

caused by multiple cracks in beam. Namely, the deviations are calculated as 

𝛥𝛷𝑘(𝑥) = 𝜙(𝑥, 𝜆𝑘) − 𝜙0(𝑥, 𝜆𝑘
0); 𝛥𝛷𝑘

″ (𝑥) = 𝜙″(𝑥, 𝜆𝑘) − 𝜙0
″(𝑥, 𝜆𝑘

0 ),                        (19) 

where 𝜆𝑘
0  is k-th eigenvalue of uncracked beam determined as solution of the equation 𝐹0(𝜆𝑘

0) = 0 (see Eq. 

(12)), 𝜙0(𝑥, 𝜆𝑘
0), 𝜙0

″(𝑥, 𝜆𝑘
0 ) are mode shape and curvature of intact beam determined as 

𝜙0(𝑥, 𝜆𝑘
0 ) = 𝐶𝑘

0[𝐿20
(𝑝1,𝑞1)

(1, 𝜆𝑘
0)𝐿10(𝑥, 𝜆𝑘

0) − 𝐿10
(𝑝1,𝑞1)

(1, 𝜆𝑘
0)𝐿20(𝑥, 𝜆𝑘

0)]; 

𝜙0
″(𝑥, 𝜆𝑘

0) = 𝐶𝑘
0[𝐿20

(𝑝1,𝑞1)
(1, 𝜆𝑘

0 )𝐿10
″ (𝑥, 𝜆𝑘

0 ) − 𝐿10
(𝑝1,𝑞1)

(1, 𝜆𝑘
0)𝐿20

″ (𝑥, 𝜆𝑘
0)]. 

  

 

    (a)                                            (b)                                                        (c) 

Fig. 1. Deviation of three mode shapes (a- first, b- second, c- third mode) due to 9 cracks at 0.1-0.9 of 

depths 10%; 30%; 50%; 60%. 
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Fig. 2. Deviation of exact curvature of three modes (a- first, b- second, c- third mode) due to 9 cracks at 

0.1-0.9 with depth 10%;30%;50%;60%. 

 

The deviations (19) calculated for first three modes of a cantilever beam with 9 cracks (from 0.1 to 0.9) 

along the normalized beam length (horizontal axis) are shown in Fig. 1 and Fig. 2 for mode shapes and 

curvatures respectively. Every box in the Figures demonstrates four curves corresponding to various depth 

of the cracks from 10% to 60% beam thickness that show monotony increasing of the deviation magnitude 

with the crack depth. 
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Fig. 2. Deviation of exact curvature of three modes (a- first, b- second, c- third mode) due to 9 cracks at 
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Fig. 2. Deviation of exact curvature of three modes (a- first, b- second, c- third mode) due to 9 cracks at 
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Fig. 1. Deviation of three mode shapes due to 9 cracks at 0.1–0.9 of depths 10%, 30%, 50%, 60%
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in Figs. 1 and 2 for mode shapes and curvatures respectively. Every box in the Fig-
ures demonstrates four curves corresponding to various depth of the cracks from 10%
to 60% beam thickness that show monotony increasing of the deviation magnitude with
the crack depth.
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(3) Free ends beam: )sin(sinh)(;coscosh)( 2010 xxxLxxxL  +=+= . 
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Fig. 1. Deviation of three mode shapes (a- first, b- second, c- third mode) due to 9 cracks at 0.1-0.9 of 

depths 10%; 30%; 50%; 60%. 
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Fig. 2. Deviation of exact curvature of three modes (a- first, b- second, c- third mode) due to 9 cracks at 

0.1-0.9 with depth 10%;30%;50%;60%. 

 

The deviations (19) calculated for first three modes of a cantilever beam with 9 cracks (from 0.1 to 0.9) 

along the normalized beam length (horizontal axis) are shown in Fig. 1 and Fig. 2 for mode shapes and 

curvatures respectively. Every box in the Figures demonstrates four curves corresponding to various depth 

of the cracks from 10% to 60% beam thickness that show monotony increasing of the deviation magnitude 

with the crack depth. 
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(c) Third mode

Fig. 2. Deviation of exact curvature of three modes due to 9 cracks at 0.1–0.9
with depth 10%, 30%, 50%, 60%

Note that variation of mode shape due to cracks is visibly observed at the crack
positions (see Fig. 1), but magnitude of the variation is very small (within 10%). So that
cracks would be difficult to detect by mode shape measured with error of 10%. Deviation
of exact curvature caused by cracks is significantly magnified (see Fig. 2) in comparison
with mode shape variation. Nevertheless, the change in modal curvature is rather dis-
tributed than localized at the cracks positions so that cracks are also not easily localized
from measurement of curvature even if base-line data are available. This encourages us
to find another more efficient indicator for the crack detection, one of that is considered
in subsequent section.
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4. SENSITIVITY OF LAPLACIAN APPROXIMATE CURVATURE DUE TO CRACK

Assume that mode shape and curvature of a beam have been measured at the mesh
(x0, x1, . . . , xn+1) with resolution h and x0 = 0, xn+1 = 1, i.e. there are given two sets of
data: φ

(
xj
)

, φ′′
(

xj
)

, j = 0, . . . , n+ 1. Let’s consider three subsequent points (xj−1, xj, xj+1)
of the mesh and suppose that each of the segments (xj−1, xj), (xj, xj+1)may contains only
one crack at position ej−1 ∈ (xj−1, xj), ej ∈ (xj, xj+1), respectively.

Taylor’s expansion of the function φ(x) at the points ej−1, ej yields

φ
(
xj+1 − 0

)
= φ

(
ej + 0

)
+ φ′

(
ej + 0

) (
xj+1 − ej

)
+ (1/2)φ′′

(
ej + 0

) (
xj+1 − ej

)2
+ . . . ,

φ(xj + 0) = φ(ej − 0) + φ′(ej − 0)(xj − ej) + (1/2)φ′′(ej − 0)(xj − ej)
2 + . . . ,

φ(xj − 0) = φ(ej−1 + 0) + φ′(ej−1 + 0)(xj − ej−1) + (1/2)φ′′(ej−1 + 0)(xj − ej−1)
2 + . . . ,

φ(xj−1 + 0) = φ(ej−1 − 0) + φ′(ej−1 − 0)(xj−1 − ej) + (1/2)φ′′(ej−1 − 0)(xj−1 − ej)
2 + . . .

(20)

Using the expressions (20) with neglected terms of order higher 2 gives

φ
(

xj+1
)
− 2φ

(
xj
)
+ φ

(
xj−1

)
= φ′′

(
xj
)

h2 + φ′′
(
ej
)

αj + φ′′
(
ej−1

)
αj−1,

with
αj = γj

(
xj+1 − ej

)
+ h

(
x̄j − ej

)
, αj−1 = γj−1

(
ej−1 − xj−1

)
+ h

(
ej−1 − x̄j−1

)
,

x̄j = (xj+1 + xj)/2, x̄j−1 = (xj + xj−1)/2.
(21)

Recalling the notations introduced for approximate curvature one gets finally

φ̂′′
(

xj
)
− φ′′

(
xj
)
= β jφ

′′ (xj
)

, (22)

where

β j =
φ̂′′
(

xj
)

φ′′
(

xj
) − 1 =

φ′′
(
ej
)

αj + φ′′
(
ej−1

)
αj−1

φ′′
(

xj
)

h2
'

φ′′
(
ej
)

γj + φ′′
(
ej−1

)
γj−1

2φ′′
(
xj
)

h
+ O

(
h2) .

(23)
In case of no crack surrounding the mesh point xj, one has got φ̂′′

(
xj
)
− φ′′

(
xj
)
=

O
(
h2), that implies negligible difference between approximate and exact curvatures at

an intact section, i.e.,
φ̂′′0
(
xj
)
− φ′′0

(
xj
)
= O

(
h2) . (24)

On the other hand, if both the crack locations coincide with xj, i.e., ej−1 = ej = xj,
γj−1 = γj, Eq. (22) gives

φ̂′′
(
xj
)
− φ′′

(
xj
)
= γjφ

′′ (xj
)

/h. (25)

The latter equation shows that miscalculation of the Laplacian curvature at a crack
position depends on the crack magnitude, value of curvature at the crack and resolu-
tion step. Namely, the miscalculation gets to be increasing with reduction of the step h
and grow with the crack magnitude γj. Also, crack appeared at the node of curvature
(where curvature vanishes) makes no effect on the mode shape, curvature including the
approximate one.

In general, Eqs. (22), (24) allow one to obtain

∆φ̂′′
(
xj
)
= φ̂′′

(
xj
)
− φ̂′′0

(
xj
)
= ∆φ′′

(
xj
)
+ β jφ

′′ (xj
)

, (26)
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where
∆φ′′

(
xj
)
= φ′′

(
xj
)
− φ′′0

(
xj
)

. (27)

It can be seen from Eq. (26) that the miscalculation of the approximate curvature
increases its sensitivity to crack in comparison with exact curvature. For illustration of
the fact, deviation of the Laplacian curvature due to multiple cracks is calculated by using
expression (16) for three lowest modes of cantilever beam and results are demonstrated
in Fig. 3.
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Fig. 3. Deviation of approximate curvature of first three modes due to 9 cracks at 0.1-0.9 with equal 

depth 10%; 30%; 50%; 60% 

Graphs shown in Fig. 3 demonstrate strong sensitivity of approximate curvature to either magnitude or 

position of cracks that confirms theoretically once more the usefulness of the approximate curvature in 

crack localization for beam that was only numerically acknowledged in a number of previous studies.  

V. CONCLUDING REMARKS 

The main results of this study can be summarized as follow: 

1. An expression for exact mode shapes and mode shape curvatures have been obtained for multiple 

cracked beams that provides an efficient tool for analysis and identification of the beam structures. 

2. Using the obtained expression, it was shown that mode shape curvature is really more sensitive to 

cracks than the mode shape itself, however, the exact curvature sensitivity to crack is much less than 

that of approximate curvature calculated by the finite difference approximation. 

3. The paradox can be explained by the fact that sensitivity of the approximate curvature to crack is 

magnified by its miscalculation, that is also strongly depended upon crack magnitude and resolution 

step. 

4. Finally, the approximate Laplacian curvature would be a useful indicator for multiple-crack detection, 

if the base-line mode shape has been measured with sufficient accuracy.  

5. The effect of noise in measurement of mode shape on the sensitivity of the approximate curvature to 

crack is not yet considered in the present paper, it would be a topic for further study of the author. 
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Fig. 3. Deviation of approximate curvature of first three modes due to 9 cracks at 0.1–0.9
with equal depth 10%, 30%, 50%, 60%

Graphs shown in Fig. 3 demonstrate strong sensitivity of approximate curvature to
either magnitude or position of cracks that confirms theoretically once more the useful-
ness of the approximate curvature in crack localization for beam that was only numeri-
cally acknowledged in a number of previous studies.

5. CONCLUDING REMARKS

The main results of this study can be summarized as follow:
- An expression for exact mode shapes and mode shape curvatures have been ob-

tained for multiple cracked beams that provides an efficient tool for analysis and identi-
fication of the beam structures.

- Using the obtained expression, it was shown that mode shape curvature is really
more sensitive to cracks than the mode shape itself, however, the exact curvature sen-
sitivity to crack is much less than that of approximate curvature calculated by the finite
difference approximation.

- The paradox can be explained by the fact that sensitivity of the approximate cur-
vature to crack is magnified by its miscalculation, that is also strongly depended upon
crack magnitude and resolution step.

- Finally, the approximate Laplacian curvature would be a useful indicator for
multiple-crack detection, if the base-line mode shape has been measured with sufficient
accuracy.
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- The effect of noise in measurement of mode shape on the sensitivity of the approxi-
mate curvature to crack is not yet considered in the present paper, it would be a topic for
further study of the author.
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