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Abstract. The large displacements of functionally graded sandwich (FGSW) beams in
thermal environment are studied using a finite element formulation. The beams are com-
posed of three layers, a homogeneous core and two functionally graded face sheets with
volume fraction of constituents following a power gradation law. The material proper-
ties of the beams are considered to be temperature-dependent. Based on Antman beam
model and the total Lagrange formulation, a two-node nonlinear beam element taking the
effect of temperature rise into account is formulated and employed in the study. The ele-
ment with explicit expressions for the internal force vector and tangent stiffness matrix is
derived using linear interpolations and reduced integration technique to avoid the shear
locking. Newton-Raphson based iterative algorithm is employed in combination with
the arc-length control method to compute the large displacement response of a cantilever
FGSW beam subjected to end forces. The accuracy of the formulated element is confirmed
through a comparison study. The effects of the material inhomogeneity, temperature rise
and layer thickness ratio on the large deflection response of the beam are examined and
highlighted.

Keywords: FGSW beam, total Lagrange formulation, reduced integration, thermal environ-
ment, large deflection analysis.

1. INTRODUCTION

Large displacement analysis of structures has drawn much attention from researchers
since the recent invention of new materials allows structures to undergo large deforma-
tion during their service. The finite element method, a powerful tool in solving nonlinear
problems, is a preferable choice in dealing with this problem. In the context of finite
element analysis, two types of nonlinear formulation for analyzing beams undergoing
large displacement, namely the co-rotational formulation [1, 2] and the total Lagrange
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one [3, 4], are the most often used. The main difference between these two formulations
is the choice of reference frames, which leads to different expressions of the element for-
mulation.

Functionally graded materials (FGMs), a new type of composites initiated by Japan-
ese scientists in mid-1980 [5], are increasing used to fabricate structural elements for use
in severe environment. Investigations on nonlinear behaviour of FGM beam structure
have been extensively reported in the last two decades. In this line of works, Kang and
Li [6, 7] derived the large displacement solutions for cantilever FGM beams subjected to
a transverse tip load or a tip moment. The position of the neutral axis has been taken into
account in the derivation, which eliminates the axial deformation and bending coupling
effect. Kocatürk et al. [8] formulated a total Lagrange formulation for studying large
displacement behaviour of FGM beams due to distributed load. Also using the total La-
grange formulation, Almeida et al. [9] investigated geometrically nonlinear behaviour of
FGM beams under mechanical loads. Levyakov [10, 11] adopted the neutral surface as
reference plane to derive the elastic solutions for FGM beams under the thermal loading.
Based on the third-order shear deformation beam theory, Zhang [12] derived the consti-
tutive equations for studying the nonlinear bending of FGM beams. Nguyen et al. [13–17]
derived the co-rotational beam elements for large displacement analysis of FGM beams
and frames. The effect of plastic deformation on buckling and nonlinear bending of FGM
beams is considered using the finite element method [18,19]. A geometrically exact beam
model with fully intrinsic formulation is employed by Masjedi et al. [20] to study the
large deflection behaviour of functionally graded beams under conservative and non-
conservative loading.

With the development of advanced manufacturing methods [21], FGMs can now be
incorporated into sandwich construction to improve the performance of structures. Func-
tionally graded sandwich (FGSW) structures can be designed to have a smooth variation
of material properties, and this helps to avoid the interface delaminating problem as often
seen in the conventional sandwich structures. Several investigations, mainly the vibra-
tion and buckling analyses of FGSW beams, have been reported in recent years [22, 23].
Nguyen and Tran [24] are the authors who made the first effort in formulating a co-
rotational beam element for large displacement analysis of FGSW beams and frames.
The element using the solution of homogeneous nonlinear equilibrium equations to in-
terpolate displacements is accurate and fast convergence.

In the present work, the large displacement behaviour of FGSW beams in thermal
environment is studied by a finite element formulation. The beams considered herein
consist of three layers, a homogeneous core and two FGM skin layers. The material prop-
erties are assumed to be temperature dependent, and they are graded in the thickness
direction by a power gradation law. Based on Antman beam model, a nonlinear beam
element using linear interpolation is formulated in the context of the total Lagrange for-
mulation. In order to avoid the shear locking, reduced integration technique is employed
to evaluate the strain energy. Numerical investigations are carried to show the accuracy
of the formulated element and highlight the influence of the material inhomogeneity,
temperature rise and layer thickness ratio on the large displacement behaviour of the
beams.
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2. FGSW BEAM

An FGSW beam with length L, rectangular cross section (b× h) in a Cartesian coor-
dinate system (x, z) as depicted in Fig. 1 is considered. The beam consists of three layers,
a homogeneous isotropic core and two FGM skin layers. The system (x, z) is chosen such
that the x-axis is on the mid-plane, while the z-axis directs upward. Denoting z0, z1, z2
and z3 are, respectively, the vertical coordinates of the bottom surface, two interfaces
between the layers, and the top surface.

Fig. 1. Geometry and coordinates of an FGSW beam

The beam is assumed forming from two constituent materials, M1 and M2, in which
the volume fraction V(k)

2 (k = 1, . . . , 3) of M2 in the kth layer varies in the thickness direc-
tion according to 

V(1)
2 =

(
z1 − z
z1 − z0

)n

, for z ∈ [z0, z1]

V(2)
2 = 0, for z ∈ [z1, z2]

V(3)
2 =

(
z2 − z
z2 − z3

)n

, for z ∈ [z2, z3]

(1)

and V(k)
1 = 1−V(k)

2 is the volume fraction of M1, and n is a non-negative material grading
index.

The beam is considered in thermal environment, where significant change in me-
chanical properties of the constituents is expected. A typical material property (P) de-
pends on the environmental temperature according to [25]

P = P0

(
P−1T−1 + 1 + P1T + P2T2 + P3T3

)
, (2)

where P0, P−1, P1, P2 and P3 are the coefficients of temperature T (K), and they are unique
to the constituent materials.

The effective material properties P(k)
f , like Young’s modulus E f , thermal expansion

coefficient α f , and thermal conductivity κ f , of the kth layer evaluated by Voigt’s model
are of the form

P(k)
f = P1V(k)

1 + P2V(k)
2 , (3)

where P1 and P2 represent the temperature-dependent properties of the M1 and M2, re-
spectively.
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From Eqs. (1) and (3), the effective Young’s modulus, thermal expansion coefficient
and thermal conductivity can be written in the forms

E(k)
f (z, T) = [E1(T)− E2(T)]V(k)

1 + E2(T),

α
(k)
f (z, T) =

[
α
(
1T)− α2(T)

]
V(k)

1 + α2(T),

κ
(k)
f (z, T) = [κ1(T)− κ2(T)]V(k)

1 + κ2(T),

(4)

Noting that Poisson’s ratio is hardly changed with temperature, and its effective property
is simply estimated from values of the constituents by Voigt’s model.

3. FINITE ELEMENT FORMULATION

A simple two-node beam element for large deflection analysis of FGSW beams in
thermal environment is derived in the context the total Lagrange formulation in this sec-
tion. The element vector of degrees of freedom (d) contains six components as

d = {u1 w1 θ1 u2 w2 θ2}T, (5)

where ui, wi and θi (i = 1, 2) are, respectively, the axial, transverse displacements and ro-
tation at node i; the superscript ‘T’ in Eq. (5) and hereafter, is used to denote the transpose
of a vector or a matrix.

The beam element based on Antman beam model [26], originally derived by Pacoste
and Eriksson [27], has been employed by Nguyen [4], Almeida et al. [9] in nonlinear
analysis of beams. Fig. 2 shows the initial and deformed configurations of a two-node
beam element with length of l in a Cartesian coordinate system (x, z). The deformation
at a point with initial abscissa x, measured from the left node, can be defined by mean
of the angle θ(x) - the rotation of the cross section S associated with the point, and the
position vector r(x) defined as [28]

r(x) = [x + u(x)]i + w(x)j, (6)

where i and j are, respectively, the base unit vectors of the x- and z-axes; 0 ≤ x ≤ l is
measured on the initial configuration; u(x) and w(x) are the axial and transverse dis-
placements of the point on the x-axis.

The cross section S associated with the point, as depicted in Fig. 2, may undergo large
displacement and rotation according to displacements u(x), w(x) and rotation θ(x). The
vector r′(x) tangent to the deformed beam can be expressed in terms of strain measures
as

r′(x) =
∂r(x)

∂x
= [1 + ε(x)]e1 + γ(x)e2 , κ(x) =

∂θ(x)
∂x

, (7)

where

e1 = cos θi + sin θj , e2 = − sin θi + cos θj , (8)



Large displacements of FGSW beams in thermal environment using a finite element formulation 47

are, respectively, the unit vectors, orthogonal and parallel to the current cross section;
ε(x) and γ(x) are, respectively, the axial and shear strains, which with the help of Eqs. (6)–
(8) can be written in the forms

ε(x) =
(

1 +
∂u
∂x

)
cos θ +

∂w
∂x

sin θ − 1,

γ(x) =
∂w
∂x

cos θ −
(

1 +
∂u
∂x

)
sin θ.

(9)

Noting that the above axial strain ε(x), shear strain γ(x) and curvature κ(x), as empha-
sized in [27], although parameterized for convenience by the reference abscissa x ∈ [0, l]
take the values on the current deformed configuration.

Fig. 2. Configurations and kinematics of beam element

The strain energy for the shear deformable beam element is of the form

UB =
1
2

l∫
0

[
A11ε(x)2 + 2A12ε(x)κ(x) + A22κ(x)2 + ψA33γ(x)2]dx, (10)

where ψ is the shear correction factor, chosen by 5/6 for the rectangular cross section;
A11, A12, A22 and A33 are, respectively, the axial, axial-bending coupling, bending and
shear rigidities, which are defined as

(A11, A12, A22) =
∫
A

E(k)
f (1, z, z2)dA =

3

∑
k=1

zk∫
zk−1

bE(k)
f (1, z, z2)dz,

A33 =
∫
A

G(k)
f dA =

3

∑
k=1

zk∫
zk−1

bG(k)
f dz,

(11)
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with A is the cross-sectional area. Noting that both E(k)
f and G(k)

f in Eq. (11) are the
temperature-dependent effective moduli.

Suppose the beam is initially stress free at temperature T0. The beam is initially
stressed by the temperature rise. The initial stress due to temperature rise is

σ
(k)
xT = −E(k)

f (z, T)α(k)
f (z, T)∆T, (12)

where the effective Young’s modulus E(k)
f (z, T) and thermal expansion coefficient α

(k)
f (z, T)

are given by Eq. (4); ∆T = T − T0 is the temperature rise, assume to be uniform for the
present work.

The strain energy resulted from the temperature rise is of the form [29]

UT =
1
2

l∫
0

NT

(
∂w(x)

∂x

)2

dx, (13)

with NT is the axial force caused by the elevated temperature, defined as

NT =
∫
A

σ
(k)
xT dA = −

3

∑
k=1

b
zk∫

zk−1

E(k)
f (z, T)α(k)

f (z, T)∆Tdz. (14)

As the shear deformation is taken into account, the transverse displacement w(x) is in-
dependent of the rotation θ(x), and linear functions can be employed to interpolate the
displacements and rotation as

u =
l − x

l
u1 +

x
l

u2 , w =
l − x

l
w1 +

x
l

w2 , θ =
l − x

l
θ1 +

x
l

θ2. (15)

The beam element based on the above linear interpolation functions, however en-
counters the shear locking problem [30]. To overcome this problem, one-point Gauss
quadrature is used herewith to evaluate the strain energy of the beam element. In this
regards and using Eq. (15), one can write the strain energy due to the beam deformation,
Eq. (10), in the form

UB =
l
2
(

A11 ε̄2 + 2A12 ε̄κ̄ + A22κ̄2 + ψA33γ̄2) , (16)

and also the strain energy (13) due to the temperature rise as

UT =
l
2

NT

(
w2 − w1

l

)2

. (17)

In Eq. (16), ε̄, γ̄ and κ̄ are given by

ε̄ =

(
1 +

u2 − u1

l

)
cos θ̄ +

w2 − w1

l
sin θ̄ − 1,

γ̄ = −
(

1 +
u2 − u1

l

)
sin θ̄ +

w2 − w1

l
cos θ̄,

κ̄ =
θ2 − θ1

l
, with θ̄ =

θ1 + θ2

2
.

(18)
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The internal force vector fin and tangent stiffness matrix kt for the element are obtained
by one and twice differentiating the total strain energy, U = UB + UT, resulted from the
beam deformation and the temperature rise with respect to the nodal degrees of freedom
as

fin =
∂U
∂d

= fa + fc + fb + fs + fT,

kt =
∂2U
∂d2 = ka + kc + kb + ks + kT,

(19)

where the subscripts a, c, b, s, T denote the terms stemming from the axial stretching,
axial-bending coupling, bending, shear deformation of the beam and the temperature
rise, respectively.

Noting that for the nonlinear analysis considered herein, both the internal force vec-
tor fin and the tangent stiffness matrix kt depend on the current nodal displacements
d. The detailed expressions for the internal force vector and tangent stiffness matrix in
Eq. (19) are given by Eqs. (23)–(29) in the Appendix.

4. EQUILIBRIUM EQUATION

The equilibrium equation for large deflection analysis of the beam can be written in
the form [31]

g (p, λ) = qin (p)− λfex = 0, (20)
where the residual force vector g is a function of the current structural nodal displace-
ments p and the load level parameter λ; qin is the structural nodal force vector, assembled
from the formulated vector fin; fex is the fixed external loading vector.

The system of Eq. (20) can be solved by an incremental/iterative procedure. The
procedure results in a predictor-corrector algorithm, in which a new solution is firstly
predicted from a previous converged solution, and then successive corrections are added
until a chosen convergence criterion is satisfied. A convergence criterion based on Eu-
clidean norm of the residual force vector is used herein as

‖g‖ =< ε‖λfex‖, (21)

where ε is the tolerance, chosen by 10−4 for all numerical examples reported in Section 5.
Newton–Raphson based method is used in combination with the spherical arc-length

control technique herein to solve Eq. (20). Detail implementation of the spherical arc-
length control method is given in [31].

5. NUMERICAL INVESTIGATION

Numerical investigation is carried out in this section to show the accuracy of the
derived beam formulation and to illustrate the effects of the beam parameters and tem-
perature rise on the large displacement behaviour of the FGSW beam. To this end, a
cantilever beam made of stainless steel (SUS304 - M1) and Silicon Nitride (Si3N4 - M2)
with the core is pure M1, under a tip load P and a tip moment M is considered. The
temperature-dependent coefficients for the constituent materials of the beam are listed in
Tab. 1. A Poison’s ratio ν = 0.3 is chosen for both the constituent materials. Otherwise
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stated, an aspect ratio L/h = 10 is chosen for the analysis. Three numbers in the brackets
are used to denote the layer thickness ratio, e.g. (2-1-1) means that the thickness ratios
of the bottom layer, the core and the top layer is (2:1:1). The following dimensionless
parameters are introduced for the external loads and displacements

P∗ =
PL2

Es I
, M∗ =

ML
Es I

, u∗ =
uL

L
, w∗ =

wL

L
, (22)

where I is the inertia moment of the cross section; Es is Young’s modulus of steel; uL and
wL are the tip axial and transverse displacements, respectively.

Table 1. Temperature-dependent coefficients for constituent materials [32]

Material Property P0 P−1 P1 P2 P3

E (Pa) 348.43× 109 0.0 −3.07× 10−4 2.16× 10−7 −8.946× 10−11

Si3N4 α (1/K) 5.8723× 10−6 0.0 9.095× 10−4 0.0 0.0
κ (W/mK) 13.723 0.0 −1.032× 10−3 5.466× 10−7 −7.876× 10−11

E (Pa) 201.04× 109 0.0 3.079× 10−4 −6.534× 10−7 0.0
SUS304 α (1/K) 12.33× 10−6 0.0 8.086× 10−4 0.0 0.0

κ (W/mK) 15.379 0.0 −1.264× 10−3 2.092× 10−6 −7.223× 10−10

5.1. Accuracy and convergence studies
Firstly , the accuracy and convergence of the derived beam element are necessary to

verify. To this end, Fig. 3 compares the tip response of a cantilever FGSW beam under a
transverse tip load of the present work with the result of Ref. [24] using a co-rotational
formulation. The result in Fig. 3 is obtained for the beam formed from Aluminum and
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Fig. 3. Comparison of tip response of cantilever FGSW beam under a transverse tip load
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Zirconia with the material and geometric data given in [24]. Very good agreement be-
tween the result of the present work and that of Ref. [24] is noted from Fig. 3, regardless
of the material grading index and the layer thickness ratio.

The convergence of the element is shown in Tab. 2, where the dimensionless de-
flections of the (2-1-2) and (2-2-1) cantilever beams under a tip transverse load P∗ = 10
obtained by different number of the elements are given for ∆T = 40 K and various values
of the grading index. As seen from Tab. 2, the convergence of the element can be achieved
by using twenty elements, regardless of the material grading indexes and the thickness
ratio. In this regard, a mesh of twenty elements is used in all the computations reported
below.

Table 2. Convergence of the element in evaluating dimensionless deflection w∗ of cantilever
FMSW beam under a tip transverse load (P∗ = 10, ∆T = 40 K)

nELE
(2-1-2) (2-2-1)

n = 0.3 n = 0.5 n = 1 n = 5 n = 0.3 n = 0.5 n = 1 n = 5

6 0.7805 0.7841 0.7911 0.8115 0.7892 0.7928 0.7993 0.8162
8 0.7810 0.7846 0.7916 0.8121 0.7897 0.7933 0.7998 0.8167

10 0.7812 0.7849 0.7918 0.8123 0.7899 0.7935 0.8000 0.8170
12 0.7813 0.7850 0.7919 0.8124 0.7901 0.7937 0.8001 0.8171
14 0.7814 0.7851 0.7920 0.8125 0.7901 0.7938 0.8002 0.8172
16 0.7815 0.7851 0.7921 0.8126 0.7902 0.7938 0.8003 0.8173
18 0.7815 0.7852 0.7921 0.8126 0.7902 0.7938 0.8003 0.8173
20 0.7815 0.7852 0.7921 0.8126 0.7902 0.7938 0.8003 0.8173

5.2. Cantilever FGSW beam under a transverse tip load
A cantilever FGSW beam in thermal environment under a transverse tip load P is

considered in this subsection. The dimensionless tip deflections of the beam correspond-
ing to a transverse tip load P∗ = 10 are listed in Tab. 3 for different values of the index
n, the layer thickness ratio and the temperature rise. The effect of the material distribu-
tion and the temperature rise is clearly seen from Tab. 3, where the deflection is seen to
be increased by the increase of the grading index and the temperature rise, regardless of
the layer thickness ratio. The increase of the deflection by increasing the index n can be
explained by the higher content of SUS304 for the beam associated with a higher index n,
as seen from Eq. (1). Since Young’s modulus of SUS304 is lower than that of Si3N4, and
thus the rigidities of the beam with a higher index n are lower, and this leads to a higher
deflection. The increase of the deflection for the beam subjected to the higher temper-
ature rise is resulted from the decrease of the Young’s modulus and the increase of the
axial force NT. The effect of the force NT is similar to that of an axial compressive force,
which causes the decrease of the bending rigidity. The influence of the layer thickness
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ratio on the tip deflection in Tab. 3 can also be explained by the change in the rigidities of
the beam.

Table 3. Tip deflection w∗ of cantilever beam in thermal environment corresponding to
a tip load P∗ = 10

∆T (K) n (1-0-1) (2-1-2) (2-1-1) (2-2-1) (1-3-1) (1-8-1)

0

0.3 0.7708 0.7732 0.7780 0.7821 0.7868 0.8013
0.5 0.7739 0.7769 0.7816 0.7867 0.7906 0.8039
1 0.7802 0.7823 0.7965 0.7923 0.7973 0.8084
5 0.8018 0.8051 0.8074 0.8100 0.8132 0.8181

30

0.3 0.7769 0.7795 0.7842 0.7882 0.7930 0.8070
0.5 0.7801 0.7813 0.7878 0.7919 0.7967 0.8096
1 0.7864 0.7901 0.7944 0.7984 0.8032 0.8139
5 0.8076 0.8108 0.8130 0.8155 0.8186 0.8233

50

0.3 0.7809 0.7835 0.7882 0.7922 0.7969 0.8108
0.5 0.7841 0.7872 0.7918 0.7958 0.8006 0.8133
1 0.7904 0.7941 0.7984 0.8023 0.8070 0.8175
5 0.8114 0.8145 0.8167 0.8191 0.8221 0.8267

90

0.3 0.7885 0.7913 0.7959 0.7999 0.8046 0.8181
0.5 0.7918 0.7950 0.7995 0.8035 0.8082 0.8205
1 0.7982 0.8019 0.8061 0.8099 0.8144 0.8246
5 0.8186 0.8217 0.8238 0.8262 0.8290 0.8334

The effect of the temperature rise and the layer thickness ratio on the large displace-
ment response of the FGSW beam can also be seen from Figs. 4 and 5, where the load-
displacement curves of the FGSW beam are shown for various values of the temperature
rise and the layer thickness ratio. At a given value of the applied load, the tip displace-
ments increase as the temperature rise ∆T increases. The tip displacements of the beam,
as seen from Fig. 5, are also increased by the increase of the core thickness, regardless of
the load level and the temperature rise. The increase of the displacements, as explained
above, is resulted from the lower rigidities of the beam associated with a larger core thick-
ness. The deformed configurations of the beam corresponding to an applied transverse
tip load P∗ = 5 as depicted in Fig. 6 also confirm the effects of the temperature rise and
the layer thickness ratio on the large displacement response of the FGSW beam.

In Figs. 7 and 8, the thickness distribution of the axial stress on the clamped end
section of the FGSW cantilever beam under the transverse tip load is depicted for a trans-
verse load P∗ = 3 and various values of the temperature rise and the layer thickness ratio.
Different from homogeneous and functionally graded beams, the curves for stress distri-
bution of the FGSW beam consist of three distinct parts, in which the stress distribution
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in the two functionally graded layers is not linear due to the power-law variation of the
effective modulus. The temperature rise, as seen from Fig. 7, alters the axial stress, and
the maximum stress increases by the increase of the temperature rise. The influence of the
core thickness to the axial stress, as seen from Fig. 8 is similar to that of the temperature
rise, and the maximum stress is higher for the beam with a larger core thickness.
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5.3. Roll-up of cantilever beam due to a tip moment
The roll-up of a cantilever FGSW beam subjected to a tip moment M is studied in this

sub-section. In Figs. 9 and 10, the equilibrium paths of the beam are respectively depicted
for different values of the temperature rise and the layer thickness ratio. The temperature
rise and the layer thickness ratio, as seen from the figures, play an important role on the
large displacement behaviour of the beam. The effect of the layer thickness ratio on the
response of the beam is more significant in the large displacement region than that of
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Fig. 9. Equilibrium paths of cantilever FGSW beam under a tip moment
for different temperature rise
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Fig. 10. Equilibrium paths of cantilever FGSW beam under a tip moment
for different layer thickness ratio
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Fig. 11. Deformed configurations of FGSW beam subjected to a tip moment

the temperature rise. The significant influence of the layer thickness ratio on the large
displacement behaviour of the FGSW beam can be seen more clearly from Fig. 11, where
the deformed configurations of the beam are displayed for M∗ = 7 and different values
of the temperature rise and layer thickness ratio. At the applied moment M∗ = 7, the
(1-8-1) beam has already rolled up to a circle while the (1-0-1) beam has not yet. Noting
that due to the snap-back of the equilibrium paths, the arc-length control method must
be employed to trace the paths in Figs. 9 and 10.
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6. CONCLUSIONS

The large displacement behaviour of FGSW beams in thermal environment has been
investigated by a finite element formulation. The beams are considered to be composed
of three layers, a homogeneous core and two functionally graded skin layers with the
temperature-dependent material properties. Based on the Antman beam model, a first-
order shear deformable nonlinear beam element taking the effect of temperature rise into
account was formulated in the context of the total Lagrange formulation. The element
with explicit expressions for the internal force vector and tangent stiffness matrix has
been derived using the reduced integration technique to avoid the shear locking. Using
the derived beam element, the large displacement response of a cantilever FGSW beam
under the end forces has been computed, and the effects of the material inhomogeneity,
temperature rise and layer thickness ratio have been examined. The obtained numerical
results reveal that, in addition to the material inhomogeneity, the temperature rise and
the layer thickness ratio also play an important role on the large displacement behaviour
of the beam. It has been shown that the effect of the layer thickness ratio on the behaviour
of the FGSW beams in the large displacement region is more significant than that of the
temperature rise. It is necessary to note that though the numerical investigation in the
present paper has been carried out for the cantilever beam only, the element formulation
formulated herein can be used to analyze the FGSW beams with other boundary con-
ditions as well. Additionally, the present beam formulation is simple, and its extension
to the large displacement analysis of beams made of other materials, e.g., functionally
graded carbon nanotube reinforced composite beams, is straightforward.
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APPENDIX

This Appendix presents detail expressions for the nodal forces and the tangent stiff-
ness matrices in Eq. (19). The following notations are used

s = sin θ̄ , c = cos θ̄,

a1 = (sε̄− cγ̄) , a2 = (cε̄ + sγ̄) , a3 = γ̄2 − ε̄ (1 + ε̄) ,

a4 = cγ̄− s (1 + ε̄) , a5 = sγ̄ + c (1 + ε̄) , a6 = (1 + ε̄)2 − γ̄2.

(23)

The internal force vector

fa = A11 ε̄

{
−c − s

l
2

γ̄ c s
l
2

γ̄

}T

, fb = A22κ̄{0 0 1 0 0 − 1}T,

fc = A12 ε̄{0 0 1 0 0 − 1}T + A12κ̄

{
−c − s

l
2

γ̄ c s
l
2

γ̄

}T

,

fs = ψA33γ̄

{
s − c − l

2
(1 + ε̄) − s c − l

2
(1 + ε̄)

}T

,

fT =

{
0 − (w2 − w1)

l
NT 0 0

(w2 − w1)

l
NT 0

}T

,

(24)

ka =
1
l

A11



c2

sc s2 sym.
l
2

a1 − l
2

a2
l2

4
a3

−c2 −sc − l
2

a1 c2

−sc −s2 l
2

a5 sc s2
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2
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2
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4
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2
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, (25)

kb =
1
l

A22



0
0 0 sym.
0 0 1

0 0 0 0
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0 0 −1 0 0 1


, (26)
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kc = A12κ̄
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