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Abstract. Free vibration of functionally graded (FG) sandwich plates partially supported
by a Pasternak elastic foundation is studied. The plates consist of three layers, namely
a pure ceramic hardcore and two functionally graded skin layers. The effective material
properties of the skin layers are considered to vary in the plate thickness by a power grada-
tion law, and they are estimated by Mori–Tanaka scheme. The quasi-3D shear deformation
theory, which takes the thickness stretching effect into account, is adopted to formulate a
finite element formulation for computing vibration characteristics. The accuracy of the de-
rived formulation is confirmed through a comparison study. The numerical result reveals
that the foundation supporting area plays an important role on the vibration behavior of
the plates, and the effect of the layer thickness ratio on the frequencies is governed by
the supporting area. A parametric study is carried out to highlight the effects of material
distribution, layer thickness ratio, foundation stiffness and area of the foundation support
on the frequencies and mode shapes of the plates. The influence of the side-to-thickness
ratio on the frequencies of the plates is also examined and discussed.

Keywords: FG sandwich plate, Pasternak foundation, Mori–Tanaka scheme, quasi-3D the-
ory, free vibration, finite element formulation.

1. INTRODUCTION

Sandwich structures with high rigidity, low specific weight, excellent vibration char-
acteristics and good fatigue properties have great potential for use in aerospace industry.
These structures, usually consist of a core bonded to two skin layers, however encounter
the delamination due to the sudden change in the material properties from one layer to
another. Thanks to the advanced manufacturing methods [1], functionally graded mate-
rials initiated by Japanese scientists in mid-1980 can now be incorporated into sandwich

c© 2020 Vietnam Academy of Science and Technology

https://doi.org/10.15625/0866-7136/14701
mailto: ichlecong@gmail.com


64 Le Cong Ich, Pham Vu Nam, Nguyen Dinh Kien

construction to improve performance of the structures. Functionally graded (FG) sand-
wich structures can be designed to have a smooth variation of the properties, and this
helps to avoid the delaminating problem. Many investigations on the mechanical behav-
ior of FG and FG sandwich plates, the structures considered in this paper, are summa-
rized in the review papers [2, 3], the contributions that are most relevant to the present
work are briefly discussed below.

Praveen and Reddy [4] took the effect of temperature rise into consideration in their
derivation of a first-order shear deformable four-node quadrilateral (Q4) element for non-
linear transient analysis of FG plates. Zenkour [5, 6] presented a sinusoidal shear defor-
mation plate theory for bending, buckling and vibration analyses of FG sandwich plates.
The effect of the material distribution, side-to-thickness ratio, core thickness on the fre-
quencies are illustrated by the author through a simply supported plate. The theory was
then employed by Zenkour and Sobhy [7] to study the thermal buckling of FG sandwich
plates with temperature-dependent material properties. A n-order shear deformation
theory was proposed by Xiang et al. [8] for free vibration analysis of FG sandwich plates.
Zero transverse shear stresses at the top and bottom surfaces of plates are satisfied in the
theory, and the Reddy’s third-order shear deformation theory can be obtained as a spe-
cial case. The n-order shear deformation theory was then used in combination with the
meshless global collocation method by Xiang et al. [9] to compute the frequencies of FG
sandwich plates. Neves et al. [10] derived a quasi-3D shear deformation theory for ana-
lyzing isotropic and FG sandwich plates by taking the extensibility in the thickness direc-
tion into account. The collocation with radial basis functions was adopted by the authors
to obtain the static and free vibration characteristics of the plates. Various higher-order
shear deformation theories for analysis of FG plates were proposed by Thai and his co-
workers in [11–13]. In the theories, the transverse displacement is split into two parts, the
bending and shear parts. In [14], Thai et al. proposed a new first-order shear deformation
theory for analysis of sandwich plates with an isotropic homogeneous core and two FG
face layers. The shear stresses in the theory are directly computed from transverse shear
forces, and shear correction factors are not necessary to use. Iurlaro et al. [15] adopted the
refined zigzag theory to formulate finite element formulations for bending and free vibra-
tion analysis of FG sandwich plates. The numerical investigations by the authors showed
that the zigzag theory is superior in predicting the mechanical behavior of the plates to
the first-order and third-order shear deformation theories. Pandey and Pradyumna [16]
employed the higher-order layerwise theory to derive an eight-node isoparametric el-
ement for static and dynamic analyses of FG sandwich plates. The numerical results
obtained in the work showed the efficiency and accuracy of the derived element in eval-
uating the bending and dynamic chracteristices of the plates. Belabed et al. [17] pro-
posed a three-unknown hyperbolic shear deformation theory for free vibration study of
FG sandwich plates with a homogeneous or FG core. Recently, Daikh and Zenkour [18]
considered the effect of porosities in bending behavior of FG sandwich plates. Power
law and sigmoid functions are adopted by the authors to describe the variation of the
material properties of the FG skin layers.

The effect of elastic foundation support on mechanical behavior of FG and FG sand-
wich plates has been reported by several authors. In this line of works, Lü et al. [19]
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considered the interaction between plate surface and foundation as the traction bound-
ary conditions of the plate in their free vibration analysis of an FG plate resting on a
Pasternak foundation. By expanding the state variables in trigonometric dual series and
with the aid of the state space method, the authors obtained an exact solution for a sim-
ply supported plate. Also adopting the Pasternak foundation model, Benyoucef et al. [20]
studied reponse of a simply supported FG plate on foundation to distributed loads. Equi-
librium equations were derived using the hyperbolic shear deformation theory and the
Navier solution was employed to obtain the displacements. Various shear deformation
theories were employed by Sobhy [21] to study buckling and free vibration of FG sand-
wich plates resting on a Pasternak foundation. The effects of Winkler and Pasternak
foundation parameters on bending of FG plates were considered by Al Khateeb and
Zenkour [22], taking the influence of temperature and moisture into account. The influ-
ence of tangential edge constraints and foundation support on buckling and postbuck-
ling behaviour of FG sandwich plates and FG sandwich spherical shells was respectively
considered by Tung [23], Khoa and Tung [24] using the Galerkin method. Based on a
hyperbolic shear and normal deformation plate theory, Akavci [25] carried out static
bending, buckling and free vibration analyses of FG sandwich plates supported by a
Pasternak foundation. In [26], the effect of neutral surface position was taken into ac-
count in studying vibration of a rectangular FG plate resting on an elastic foundation.
Bending and vibration analyses of FG plates on an elastic foundation were performed by
Benahmed et al. [27] using a quasi-3D hyperbolic shear deformation theory. Free vibra-
tion of FG plates on a Pasternak foundation was recently investigated through 2D and
quasi-3D shear deformation theories [28].

It has been shown that the frequencies and mode shapes of structures partially sup-
ported by an elastic foundation are much different from that of the ones fully supported
by the foundation [29, 30]. The vibration modes of plates, as shown by Motaghian et al.
in [31], are governed by the area and position of the foundation support as well. To the
authors’ best knowledge, the free vibration of FG sandwich plates partially supported by
an elastic foundation has not been reported in the literature and it is considered in the
present paper. The plates considered herein are composed of three layers, a ceramic core
and two FG skin layers. The material properties of the skin layers are assumed to vary
in the thickness direction by a simple power gradation law, and they are estimated by
Morri–Tanaka scheme. Pasternak foundation model is adopted herein for describing the
foundation. Based on a quasi-3D shear deformation theory, a finite element formulation
is derived and employed to compute frequencies and mode shapes of the plates. The ef-
fects of the material distribution, layer thickness ratio and foundation parameters on the
vibration characteristics are investigated in detail. The influence of the side-to-thickness
ratio on the frequencies is also examined and discussed.

2. MATHEMATICAL MODEL

Fig. 1 shows a rectangular FG sandwich plate with length a, width b and thickness h,
partially supported by an elastic foundation. The Cartersian coordinate system (x, y, z)
in the figure is chosen such that the (x, y) plane is coincident with the mid-plane, and
z-axis directs upward.
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vary in the thickness direction according to 
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Fig. 1. FG sandwich plate partially supported by a Pasternak elastic foundation

The plate consists of three layers, a homogeneous ceramic core and two FG metal-
ceramic skin layers. Denoting z0, z1, z2 and z3 are, respectively, the vertical ordinates of
the bottom surface, the two layer interfaces and the top surface, in which z0 = −h/2
and z3 = h/2. The foundation considered herein is a Pasternak model, which consists of
elastic springs with stiffness k0 and a shear layer with stiffness k1. The foundation area
is assumed to be rectangular with length a f and width b f , supported the plate at its left
corner as shown in Fig. 1(b). The volume fraction of the constituents of the skin layers is
supposed to vary in the thickness direction according to
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where k = 1, 2, 3; Vm and Vc are, respectively, the volume fraction of the metal and ce-
ramic; n is the power-law material index, defining the variation of constituents through
the plate thickness. Mori–Tanaka scheme is employed herewith to estimate the effec-
tive material properties. According to the Mori–Tanaka scheme, the effective local bulk
modulus K(k)

f and shear modulus G(k)
f of the kth layer of the sandwich plate can be given

by [32]
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are the local bulk and the shear moduli of the ceramic and metal at the kth layer, respec-
tively.

Noting that the effective mass density ρ
(k)
f is defined by Voigt model as
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The effective Young’s modulus E(k)
f and Poisson’s ratio υ
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tive bulk modulus and shear modulus as
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Based on the quasi-3D shear deformation theory [12,13], the displacements in the x-,
y- and z-directions, u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t), are, respectively, given by

u (x, y, z, t) = u0(x, y, t)− zwb,x(x, y, t)− f (z)ws,x(x, y, t),

v (x, y, z, t) = v0(x, y, t)− zwb,y(x, y, t)− f (z)ws,y(x, y, t),

w (x, y, z, t) = wb(x, y, t) + ws(x, y, t) + g (z)wz(x, y, t),
(7)

where u0(x, y, t) and v0(x, y, t) are, respectively, the displacements in x- and y-directions
of a point on the mid-plane; wb(x, y, t), ws(x, y, t) and wz(x, y, t) are, respectively, bending
and shear components of the transverse displacement, and
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4
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h2 z2. (8)

In the above equation and hereafter, a subscript comma is used to denote the deriv-
ative with respect to the followed variable, e.g. f,z = ∂ f /∂z.
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where
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(10)

The constitutive equations based on linear behaviour of the plate material are of the forms
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The strain energy stemming from the plate deformation is given by
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with V is the volume of the plate. Substituting Eqs. (9)–(11) into Eq. (13), one gets

UP =
1
2

a∫
0

b∫
0

{
A11

(
u2

0,x + v2
0,y

)
− 2A12

(
u0,xwb,xx + v0,ywb,yy

)
+ A22

(
w2

b,xx + w2
b,yy +

64
h4 w2

z

)

− 8
3h2 A23

(
u0,xws,xx + v0,yws,yy

)
+

8
3h2 A44

(
wb,xxws,xx + wb,yyws,yy

)
+

16
9h4 A66

(
w2

s,xx + w2
s,yy

)
+ 2B11u0,xv0,y − 2B12

[
u0,xwb,yy + v0,ywb,xx +

8
h2

(
u0,x + v0,y

)
wz

]
− 8

3h2 B23
(
u0,xws,yy + v0,yws,xx

)
+ 2B22

[
wb,xxwb,yy +

8
h2

(
wb,xx + wb,yy

)
wz

]
− 8

3h2 B23
(
u0,xws,yy + y0,yws,xx

)
+ B44

[
8

3h2

(
wb,xxws,yy + wb,yyws,xx

)
+

64
3h4

(
ws,xx + ws,yy

)
wz

]
+

32
9h4 B66ws,xxws,yy

+ C11

[(
u0,y + v0,x

)2
+ w2

z,x + w2
z,y + w2

s,x + w2
s,y + 2

(
ws,xwz,x + ws,ywz,y

)]
− 4C12

(
u0,y + v0,x

)
wb,xy

+ 4C22

[
w2

b,xy −
2
h2

(
w2

s,x + w2
s,y

)
− 4

h2

(
ws,xwz,x + ws,ywz,y

)
− 2

h2

(
w2

z,x + w2
z,y

)]
+

16
h4 C44

[
w2

s,x + w2
s,y + w2

z,x + w2
z,y + 2

(
ws,xwz,x + ws,ywz,y

)
+

2
3

h2wb,xyws,xy

]
− 16

3h2 C23
(
u0,y + v0,x

)
ws,xy +

64
9h4 C66w2

s,xy

}
dxdy.

(14)



Free vibration of FG sandwich plates partially supported by elastic foundation using a quasi-3D finite element formulation 69

In the above equation, A11, A12, . . . , C44, C66 are the plate rigidities, defined as
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The strain energy resulted from the foundation deformation is of the form

UF =
∫∫
SF

[
k0w2

0 + k1

(
w2

0,x0,x + w2
0,y

)]
dS

=

a f∫
0

b f∫
0

{
k0(wb + ws + wz)

2 + k1

[
(wb,x + ws,x + wz,x)

2 + (wb,y + ws,y + wz,y)
2
]}

dxdy,

(16)
where SF is the area of the foundation support, and w0 = w(z = 0).

The total energy U of the plate with the foundation support is

U = UP + UF. (17)

The kinetic energy of the plate resulted from Eq. (7) is of the form

T =
1
2

a∫
0

b∫
0

{
I11

[
u̇2

0 + v̇2
0 + (ẇb + ẇs)

2
]
+ 2I12

(
u̇0ẇb,x + v̇0ẇb,y

)
+ I12

[
ẇ2

b,x + ẇ2
b,y −

8
h2 (ẇb + ẇs + ẇz) ẇz

]
− 8

3h2 I23
(
u̇0ẇs,x + v̇0ẇs,y

)
− 8

3h2 I44

(
ẇb,xẇs,x + ẇb,yẇs,y +

2
h2 ẇ2

z

)
+

16
9h4

(
ẇ2

s,x + ẇ2
s,y

)}
dxdy,

(18)

where the mass moments I11, I12, . . . , I66 are defined as

(I11, I12, I22, I23, I44, I66) =
3

∑
k=1

zk∫
zk−1

ρ
(k)
f

[
1, z, z2, z3, z4, z6

]
dz, (19)

where the effective mass density ρ
(k)
f is defined by Eq. (5).

Equations of motion for the plate can be obtained by applying Hamilton’s princi-
ple to Eqs. (17) and (18). However, a closed-form solution for such equations is hardly
obtained for the plate partially supported by the elastic foundation. A finite element for-
mulation is derived in the next section for obtaining frequencies and vibration modes of
the plate.
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3. FINITE ELEMENT FORMULATION

A Q4 plate element with size of (xe, ye) is derived in this section. In addition to the
values of the displacements at the nodes, their derivatives are also taken as degrees of
freedom, and the vector of nodal displacements is given by

d
(44×1)

=
{

du0 dv0 dwb
dws

dwz

}T, (20)

where and hereafter, a superscript ‘T’ denotes the transpose of a vector or a matrix;
du0 , dv0 , dwb , dws and dwz are defined as

du0 =
{

u1
0 u2

0 u3
0 u4

0
}T, dv0 =

{
v1

0 v2
0 v3

0 v4
0
}T, dwz =

{
w1

z w2
z w3

z w4
z
}T,
(21)

and

dwb
=
{

d1
wb

d2
wb

d3
wb

d4
wb

}
T, dws

=
{

d1
ws

d2
ws

d3
ws

d4
ws

}
T, (22)

with

dj
wb =

{
wj

b wj
b,x wj

b,y wj
b,xy

}T
, dj

ws =
{

wj
s wj

s,x wj
s,y wj

s,xy

}T
, j = 1, . . . , 4.

(23)
The stiffness and mass matrices for the element are better to derived in term of the

natural coordinates ξ and η: ξ = 2(x − xC)/xe, η = 2(y − yC)/ye, with (xC, yC) is the
centroid coordinates of the element. For −xe/2 ≤ (x− xC) ≤ xe/2 ⇒ −1 ≤ ξ ≤ 1 and
−ye/2 ≤ (y− yC) ≤ ye/2 ⇒ −1 ≤ η ≤ 1 [33]. In this regard, the relation between the
derivatives in the two coordinate systems are given by

∂(.)
∂ξ

=
∂(.)
∂x

∂x
∂ξ

+
∂(.)
∂y

∂y
∂ξ

∂(.)
∂η

=
∂(.)
∂x

∂x
∂η

+
∂(.)
∂y

∂y
∂η

or
{

(.),ξ
(.),η

}
= J

{
(.),x
(.),y

}
and

{
(.),x
(.),y

}
= J−1

{
(.),ξ
(.),η

}
,

(24)
with the Jacobian matrix J is of the form

J =
[

x,ξ y,ξ
x,η y,η

]
. (25)

The displacements u0, v0 and wz are interpolated from their nodal values as

u0 = Ndu0 =
4

∑
i=1

Niui
0 , v0 = Ndv0 =

4

∑
i=1

Nivi
0 , wz = Ndwz =

4

∑
i=1

Niwi
z , (26)

where Ni are the Lagrangian functions with the following form

Ni =
1
4
(1 + ξiξ) (1 + ηiη) (i = 1, . . . , 4) and N =

[
N1 N2 N3 N4

]
, (27)
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As seen from Eqs. (9) and (10), the transverse bending and shear displacements
should be twice differentiable, and Hermite polynomials are employed herein to inter-
polate these displacements as

wb =
4

∑
i=1

Hidi
wb

=
4

∑
i=1

[
H1

i H2
i H3

i H4
i

] {
wi

b wi
b,x wi

b,y wi
b,xy

}T
,

ws =
4

∑
i=1

Hidi
ws

=
4

∑
i=1

[
H1

i H2
i H3

i H4
i

] {
wi

s wi
s,x wi

s,y wi
s,xy

}T
,

(28)

where the interpolation functions H j
i have the following forms [34]

H1
i =

1
16

(ξ + ξi)
2 (ξξi − 2) (η + ηi)

2 (ηηi − 2) ,

H2
i =

1
16

ξi(ξ + ξi)
2 (1− ξξi) (η + ηi)

2 (ηηi − 2) ,

H3
i = − 1

16
(ξ + ξi)

2 (ξξi − 2) ηi(η + ηi)
2 (ηηi − 1) ,

H4
i =

1
16

ξ1(ξ + ξi)
2 (ξξi − 1) ηi(η + ηi)

2 (ηηi − 1) ,

Hi =
[

H1
i H2

i H3
i H4

i
]

, i = (1, . . . , 4), H
1×16

=
[

H1 H2 H3 H4
]

.

(29)

Using the above interpolation scheme, one can write the strain energy Ue of the ele-
ment in terms of the nodal displacement vector (d) as

Ue =
1
2

NEP

∑
i=1

dT
i kP

i di +
1
2

NEF

∑
i=1

dT
i kF

i di, (30)

where ‘NEP’ and ‘NEF’ are, respectively, the total numbers of elements used to discrete
the plate and the foundation; kP and kF are, respectively, the element stiffness matrices
resulted from the plate and the foundation deformation. The stiffness matrix kP can be
written in sub-matrices as

kP =



kP
uu kP

uv kP
uwb

kP
uws

kP
uwz(

kP
uv

)T
kP

vv kP
vwb

kP
vws

kP
vwz(

kP
uwb

)T (
kP

vwb

)T
kP

wbwb
kP

wbws
kP

wbwz(
kP

uws

)T (
kP

vws

)T (
kP

wbws

)T
kP

wsws
kP

wswz(
kP

uwz

)T (
kP

vwz

)T (
kP

wbwz

)T (
kP

wswz

)T
kP

wzwz


, (31)

where the sub-matrices have the following forms

kP
uu

4×4
=

1∫
−1

1∫
−1

(
NT

,xA11N,x + NT
,yC11N,y

)
|J|dξdη, (32a)
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kP
vv

4×4
=

1∫
−1

1∫
−1

(
NT

,yA11N,y + NT
,xC11N,x

)
|J|dξdη, (32b)

kP
wbwb

16×16
=

1∫
−1

1∫
−1

[(
HT

,xxA22H,xx + HT
,yyA22H,yy ++2HT

,xxB22H,yy + 4HT
,xyC22H,xy

)]
|J|dξdη, (32c)

kP
wsws

16×16
=

1
9h4

1∫
−1

1∫
−1

[16
(

HT
,xxA66H,xx + HT

,yyA66Hj,yy

)
+ 32HT

,xxB66H,yy + 64HT
,xyC66H,xy

+ 144C44

(
HT

,xH,x + HT
,yH,y

)
+
(

9h4C11 − 72h2C22

) (
HT

,xH,x + HT
,yH,y

)
] |J|dξdη,

(32d)

kP
wzwz
4×4

=
1
h4

1∫
−1

1∫
−1

[(
16C44 − 8h2C22 + h4C11

) (
NT

,x A11N,x + NT
,y A11N,y

)
+ 64NTA22N

]
|J|dξdη, (32e)

kP
uv

4×4
=

1∫
−1

1∫
−1

(
NT

,xB11N,y + NT
,yC11N,y

)
|J|dξdη, (32f)

kP
uwb

4×16
= −

1∫
−1

1∫
−1

(
NT

,xA12H,xx + NT
,xB12H,yy + 2NT

,yC12H,xy

)
|J|dξdη, (32g)

kP
uws

4×16
= − 4

3h2

1∫
−1

1∫
−1

(
NT

,xA23H,xx + NT
,xB23H,yy + 2NT

,yC23H,xy

)
|J|dξdη, (32h)

kP
uwz

4×4
= − 8

h2

1∫
−1

1∫
−1

(
NTB12N,x

)
|J|dξdη, (32i)

kP
vwb

4×16
= −

1∫
−1

1∫
−1

(
NT

,yA12H,yy + NT
,yB12H,xx + 2NT

,xC12H,xy

)
|J|dξdη, (32j)

kP
vws

4×16
= − 4

3h2

1∫
−1

1∫
−1

(
NT

,yA23H,yy + NT
,yB23H,xx + 2NT

,xC23H,xy

)
|J|dξdη, (32k)

kP
vwz

4×4
= − 8

h2

1∫
−1

1∫
−1

(
NTB12N,y

)
|J|dξdη, (32l)

kP
wbws

16×16
=

4
3h2

1∫
−1

1∫
−1

(
HT

,xxA44H,xx + HT
,yyA44H,yy + 2HT

,xxB44H,yy + 4HT
,xyC44H,yy

)
|J|dξdη, (32m)

kP
wbwz

16×4
=

8
h2

1∫
−1

1∫
−1

(
HT

,xxB22N + HT
,yyB22N

)
|J|dξdη, (32n)

kP
wbwz

16×4
=

1
3h4

1∫
−1

1∫
−1

[32
(

HT
,xxB44N + HT

,yyB44N
)
− 24h2

(
HT

,xC22N,x + HT
,yC22N,y

)

+

1∫
−1

1∫
−1

kP
wbwz

16×4
=

1
3h4 [+

(
3h4C11 + 48B44

) (
HT

,xN,x + HT
,yN,y

)
] |J|dξdη,

(32o)
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with |J| = det(J).
The element stiffness matrix stemming from the foundation deformation is of the form

kF =



0 0 0 0 0
0 0 0 0 0
0 0 kF

wbwb
kF

wbws
kF

wbwz

0 0
(

kF
wbws

)T
kF

wsws
kF

wswz

0 0
(

kF
wbwz

)T (
kF

wswz

)T
kF

wzwz


, (33)

where

kF
wbwb

16×16
= kF

wsws
16×16

= kF
wbws

16×16
=

1∫
−1

1∫
−1

(
HTk0H + HT

,xk1H,x + HT
,yk1H,y

)
|J|dξdη, (34a)

kF
wzwz
4×4

=

1∫
−1

1∫
−1

(
NTk0N + NT

,xk1N,x + NT
,yk1N,y

)
|J|dξdη, (34b)

kF
wbwz

16×4
= kF

wswz
16×4

=

1∫
−1

1∫
−1

(
HTk0N + HT

,xk1N,x + HT
,yk1N,y

)
|J|dξdη. (34c)

Similarly, the kinetic energy can be written in the following form

T =
1
2

NEp

∑
i

ḋT
i miḋi, (35)

where ḋ = d,t, and the element mass matrix m is defined as

m =


muu 0 muwb

muws
0

0 mvv mvwb
mvws

0
mT

uwb
mT

vwb
mwbwb

mwbws
mwbwz

mT
uws

mT
vws

mT
wbws

mwsws
mwswz

0 0 mT
wbwz

mT
wswz

mwzwz

 , (36)

where the sub-matrices have the following forms

muu
4×4

= mvv
4×4

=

1∫
−1

1∫
−1

NTI11N |J|dξdη, (37a)

mwbwb
16×16

=

1∫
−1

1∫
−1

((
HTI11H + HT

,xI22H,x + HT
,yI22H,y

))
|J|dξdη, (37b)
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mwsws
16×16

=

1∫
−1

1∫
−1

(
HTI11H +

16
9h4

(
HT

,xI66H,x + HT
,yI66H,y

))
|J|dξdη, (37c)

mwzwz
16×16

=

1∫
−1

1∫
−1

(
NTI11N− 8

h2 NTI22N +
16
h4 NTI44N

)
|J|dξdη, (37d)

muwb
4×16

= −
1∫
−1

1∫
−1

(
NTI12H,x

)
|J|dξdη, (37e)

muws
4×16

= − 4
3h2

1∫
−1

1∫
−1

(
NTI23H,x

)
|J|dξdη, (37f)

mvwb
4×16

= −
1∫
−1

1∫
−1

(
NTI12H,y

)
|J|dξdη, (37g)

mvws
4×16

= − 4
3h2

1∫
−1

1∫
−1

(
NTI23H,y

)
|J|dξdη, (37h)

mwbws
16×16

=

1∫
−1

1∫
−1

(
HTI11H +

4
3h2

(
HT

,xI44H,x + HT
,yI44H,y

))
|J|dξdη. (37i)

Since the highest order of the polynomials under the integrals in Eqs. (33) and (36)
is six, and thus 4-Gauss point along the ξ and η directions is enough to evaluate the
integrals.

Having the derived element stiffness and mass matrices, the equation of motion for
free vibration analysis of the plate can be written in the following form

MD̈ + KD = 0, (38)

where D and D̈ are, respectively, the structural vectors of nodal displacements and ac-
celerations; M and K are the structural mass and stiffness matrices of the plate-elastic
foundation system, obtained by assembling the above derived element mass and stiff-
ness matrices, respectively.

For free vibration problems, Eq. (38) can be expressed as the following eigenvalue
problem, which can be solved in the standard way to obtain natural frequencies and
mode shapes of the plate (

[K]−ω2 [M]
)
{X} = 0, (39)

where ω is the eigenfrequency, {X} is the generalized eigenvector.
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4. NUMERICAL RESULTS AND DISCUSSION

The vibration characteristics of the FGSW plate partially supported by the elastic
foundation are reported in this section. Otherwise stated, the plate formed from Alu-
mina (Al2O3) and Aluminum (Al) with the following properties [25] is employed in the
analysis

- Alumina Al2O3 (ceramic): Ec = 380 GPa; νc = 0.3; ρc = 3800 kg/m3.
- Aluminum (Al) (metal): Em = 70 GPa; νm = 0.3; ρm = 2707 kg/m3.
For convenience of discussion, the following non-dimensional frequency parameter

and foundation stiffness parameters are used [25]

ω̄ =
(
ωa2/h

)√
ρ0/E0, Kw = k0a4/DC, Ks = k1a2/DC, (40)

where ω is the fundamental frequency, and DC = Ech3/[12(1− v2)], E0 = 1 GPa, ρ0 =
1 kg/m3. Three number in brackets are used herein to denote the layer thickness ratio,
e.g. (1-2-1) means that the thickness ratio of the bottom layer, the core layer and the top
layer is 1:2:1. Three types of boundary conditions, namely simply supported at all edges
(SSSS), simply supported at two opposite edges and clamped at the others (SCSC) and
clamped at all edges (CCCC), are considered herein. The constraints for these boundaries
are as follows:

- For simply supported edge:
+ u0 = wb = ws = wz = wb,y = ws,y = wb,xy = ws,xy = 0 at x = 0, a.
+ v0 = wb = ws = wz = wb,x = ws,x = wb,xy = ws,xy = 0 at y = 0, b.

- Clamped egde: u0 = v0 = wb = ws = wz = wb,x = wb,y = ws,x = ws,y = wb,xy =
ws,xy = 0.

4.1. Formulation verification
Since the data for the FGSW plate partially supported by the elastic foundation are

not available in the literature, the verification is carried out herewith by comparing the
frequency parameters obtained in the present work with the published data as shown in
Tab. 1 for a simply supported FGSW plate fully supported by the elastic foundation. For
both the side-to-thickness ratios, Tab. 1 shows a good agreement between the result of
the present work with that of Ref. [25], regardless of the material grading indexes, the
foundation stiffness parameters and the layer thickness ratio. Noting that the plate used
to obtain the result in Tab. 1 is formed from Aluminum and Zirconia as employed in [25].
In addition, the convergence of the present formulation in evaluating the frequencies in
Tab. 1 has been achieved by using 20 elements, and this number of elements is used in
all computations reported below.

4.2. Simply supported plate
The frequency parameters of the SSSS square FGSW plate partially resting on the

elastic foundation are respectively listed in Tabs. 2, 3 and 4 for different values of the foun-
dation stiffness parameters, the layer thickness ratio, and different foundation support-
ing areas, namely (a f , b f ) = (a/4, b/4), (a f , b f ) = (a/2, b/2) and (a f , b f ) = (3a/4, 3b/4).
As in case of the plate without or fully foundation support, the frequency parameter in
the table shows a decrease by the increase of the material grading indexes, regardless
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Table 1. Comparison of frequency parameter of simply SSSS square plate fully
supported by elastic foundation

a/h N Kw Ks Theory (2-1-2) (1-1-1) (2-2-1) (1-2-1) (1-0-1)

5

0

0 0 Akavci [25] 1.1912 1.1912 1.1912 1.1912 1.1912
Present work 1.1985 1.1985 1.1985 1.1985 1.1985

10 10 Akavci [25] 1.5135 1.5135 1.5135 1.5135 1.5135
Present work 1.5400 1.5400 1.5400 1.5400 1.5400

100 100 Akavci [25] 3.0908 3.0908 3.0908 3.0908 3.0908
Present work 3.0980 3.0980 3.0980 3.0980 3.0980

2

0 0 Akavci [25] 0.9318 0.9541 0.9755 0.9927 0.9088
Present work 0.9211 0.9433 0.9682 0.9832 0.8993

10 10 Akavci [25] 1.3341 1.3469 1.3611 1.3713 1.3231
Present work 1.3531 1.3650 1.3809 1.3892 1.3437

100 100 Akavci [25] 2.6823 2.7579 2.7937 2.8476 2.5621
Present work 2.6425 2.7274 2.7667 2.8278 2.5068

10

0 0 Akavci [25] 0.8791 0.8969 0.9215 0.9356 0.8633
Present work 0.8818 0.8992 0.9270 0.9379 0.8659

10 10 Akavci [25] 1.3045 1.3119 1.3274 1.3339 1.3022
Present work 1.3343 1.3410 1.3576 1.3617 1.3320

100 100 Akavci [25] 2.5044 2.6178 2.6707 2.7495 2.3176
Present work 2.4944 2.6115 2.6647 2.7471 2.3013

100

0

0 0 Akavci [25] 1.3404 1.3404 1.3404 1.3404 1.3404
Present work 1.3512 1.3512 1.3512 1.3512 1.3512

10 10 Akavci [25] 1.6590 1.6590 1.6590 1.6590 1.6590
Present work 1.6678 1.6678 1.6678 1.6678 1.6678

100 100 Akavci [25] 3.3694 3.3694 3.3694 3.3694 3.3694
Present work 3.3740 3.3740 3.3740 3.3740 3.3740

2

0 0 Akavci [25] 1.0182 1.0428 1.0694 1.0885 0.9971
Present work 1.0076 1.0311 1.0620 1.0778 0.9898

10 10 Akavci [25] 1.43 1.4444 1.4623 1.4740 1.4200
Present work 1.4225 1.4361 1.4569 1.4662 1.4149

100 100 Akavci [25] 3.3344 3.3283 3.3300 3.3261 3.3491
Present work 3.3315 3.3250 3.3279 3.3229 3.3472

10

0 0 Akavci [25] 0.9602 0.9758 1.0062 1.0191 0.9580
Present work 0.9657 0.9802 1.0143 1.0228 0.9651

10 10 Akavci [25] 1.3967 1.4029 1.4219 1.4278 1.4023
Present work 1.4005 1.4060 1.4277 1.4305 1.4073

100 100 Akavci [25] 3.3480 3.3332 3.3327 3.3225 3.3772
Present work 3.3499 3.3348 3.3354 3.3240 3.3795
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Table 2. Frequency parameter of SSSS square plates partially supported by elastic foundation
with (a f , b f ) = (a/4, b/4)

a/h N Kw Ks (2-1-2) (1-1-1) (2-2-1) (1-2-1) (1-0-1) (1-8-1)

5

0.5
0 0 1.1886 1.2389 1.2867 1.3208 1.1343 1.5215
10 10 1.2349 1.2833 1.3294 1.3625 1.1830 1.5577

100 100 1.3905 1.4408 1.4865 1.5211 1.3344 1.7146

2
0 0 0.9637 1.0241 1.1006 1.1400 0.9159 1.4431
10 10 1.0211 1.0782 1.1510 1.1888 0.9766 1.4816

100 100 1.1660 1.2294 1.3030 1.3461 1.1095 1.6404

10
0 0 0.8934 0.9396 1.0267 1.0562 0.8678 1.4033
10 10 0.9565 0.9993 1.0814 1.1094 0.9330 1.4432

100 100 1.0930 1.1444 1.2287 1.2643 1.0481 1.6031

10

0.5
0 0 1.2590 1.3139 1.3688 1.4061 1.2033 1.6405
10 10 1.3054 1.3581 1.4112 1.4473 1.2521 1.6757

100 100 1.4936 1.5470 1.5992 1.6361 1.4388 1.8601

2
0 0 1.0096 1.0731 1.1586 1.1999 0.9666 1.5471
10 10 1.0682 1.1280 1.2094 1.2489 1.0290 1.5849

100 100 1.2472 1.3115 1.3936 1.4375 1.2021 1.7724

10
0 0 0.9351 0.9808 1.0773 1.1061 0.9295 1.4998
10 10 1.0000 1.0418 1.1328 1.1600 0.9976 1.5391

100 100 1.1727 1.2198 1.3128 1.3464 1.1625 1.7284

100

0.5
0 0 1.2861 1.3428 1.4007 1.4393 1.2298 1.6882
10 10 1.3325 1.3870 1.4430 1.4804 1.2787 1.7230

100 100 1.5345 1.5890 1.6439 1.6816 1.4808 1.9186

2
0 0 1.0268 1.0915 1.1806 1.2225 0.9860 1.5882
10 10 1.0858 1.1466 1.2315 1.2716 1.0489 1.6257

100 100 1.2797 1.3439 1.4294 1.4734 1.2410 1.8251

10
0 0 0.9507 0.9961 1.0963 1.1248 0.9538 1.5377
10 10 1.0163 1.0576 1.1521 1.1789 1.0230 1.5767

100 100 1.2053 1.2498 1.3463 1.3786 1.2147 1.7781

of the layer thickness ratio and the foundation stiffness. The decrease of the frequency
parameter can be explained by the lower content of ceramic for the plate associated with
a higher index n, as can be seen from Eq. (1). The tables also show an important role
of the layer thickness ratio and the area of the foundation support on the frequency pa-
rameter. A larger core thickness the plate has a higher frequency is, irrespective of the
foundation supporting area and the foundation stiffness parameters. The effect of the
layer thickness ratio, however influenced by the foundation support also. For example,
with a/h = 5, n = 2, (Kw, Ks) = (10, 10), the frequency parameter increases 31.08% when
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Table 3. Frequency parameter of SSSS square plates partially supported by elastic foundation
with (a f , b f ) = (a/2, b/2)

a/h N Kw Ks (2-1-2) (1-1-1) (2-2-1) (1-2-1) (1-0-1) (1-8-1)

5

0.5
0 0 1.1886 1.2389 1.2867 1.3208 1.1343 1.5215
10 10 1.3976 1.4397 1.4810 1.5099 1.3536 1.6870

100 100 2.1598 2.2051 2.2451 2.2754 2.1064 2.4391

2
0 0 0.9637 1.0241 1.1006 1.1400 0.9159 1.4431
10 10 1.2200 1.2659 1.3286 1.3593 1.1878 1.6186

100 100 1.9519 2.0172 2.0863 2.1278 1.8823 2.3813

10
0 0 0.8934 0.9396 1.0267 1.0562 0.8678 1.4033
10 10 1.1745 1.2050 1.2741 1.2943 1.1638 1.5850

100 100 1.8799 1.9384 2.0210 2.0585 1.7962 2.3541

10

0.5
0 0 1.2590 1.3139 1.3688 1.4061 1.2033 1.6405
10 10 1.4659 1.5121 1.5599 1.5917 1.4206 1.8004

100 100 2.3095 2.3529 2.3967 2.4257 2.2658 2.6079

2
0 0 1.0096 1.0731 1.1586 1.1999 0.9666 1.5471
10 10 1.2669 1.3151 1.3857 1.4179 1.2399 1.7179

100 100 2.1021 2.1585 2.2322 2.2674 2.0648 2.5415

10
0 0 0.9351 0.9808 1.0773 1.1061 0.9295 1.4998
10 10 1.2185 1.2478 1.3249 1.3442 1.2277 1.6772

100 100 2.0432 2.0832 2.1704 2.1959 2.0384 2.5101

100

0.5
0 0 1.2861 1.3428 1.4007 1.4393 1.2298 1.6882
10 10 1.4924 1.5402 1.5908 1.6238 1.4466 1.8462

100 100 2.3656 2.4083 2.4539 2.4824 2.3261 2.6736

2
0 0 1.0268 1.0915 1.1806 1.2225 0.9860 1.5882
10 10 1.2845 1.3336 1.4074 1.4402 1.2598 1.7574

100 100 2.1593 2.2114 2.2868 2.3192 2.1376 2.6028

10
0 0 0.9507 0.9961 1.0963 1.1248 0.9538 1.5377
10 10 1.2350 1.2638 1.3441 1.3629 1.2531 1.7136

100 100 2.1073 2.1383 2.2267 2.2470 2.1442 2.5694

the core thickness changes from (2-1-2) to (1-8-1) for the plate supported by the founda-
tion with (a f , b f ) = (a/4, b/4), while this value decreases to 24.63 and 19.06 for the plate
supported by the foundation with (a f , b f ) = (a/2, b/2) and (a f , b f ) = (3a/4, 3b/4), re-
spectively. By comparing the frequency parameters in the three tables, one can see that
the frequency parameter remarkably increases by increasing the foundation supporting
area, regardless of the material grading index n and the foundation stiffness parame-
ters. The effect of the shear deformation on the frequencies of the FGSW plate partially
supported by the elastic foundation can also be seen from the tables, and the frequency
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Table 4. Frequency parameter of SSSS square plates partially supported by elastic foundation
with (a f , b f ) = (3a/4, 3b/4)

a/h N Kw Ks (2-1-2) (1-1-1) (2-2-1) (1-2-1) (1-0-1) (1-8-1)

5

0.5
0 0 1.1886 1.2389 1.2867 1.3208 1.1343 1.5215
10 10 1.5946 1.6307 1.6672 1.6919 1.5578 1.8501

100 100 3.0190 3.0446 3.0713 3.0890 2.9940 3.0190

2
0 0 0.9637 1.0241 1.1006 1.1400 0.9159 1.4431
10 10 1.4497 1.4862 1.5404 1.5641 1.4269 1.7901

100 100 2.9412 2.9604 2.9974 3.0119 2.8567 3.1692

10
0 0 0.8934 0.9396 1.0267 1.0562 0.8678 1.4033
10 10 1.4204 1.4413 1.5001 1.5127 1.4176 1.7615

100 100 2.9568 2.9544 2.9904 2.9924 2.4105 3.1564

10

0.5
0 0 1.2590 1.3139 1.3688 1.4061 1.2033 1.2590
10 10 1.6646 1.7040 1.7465 1.7736 1.6273 1.6646

100 100 3.1780 3.2066 3.2402 3.2593 3.1541 3.1780

2
0 0 1.0096 1.0731 1.1586 1.1999 0.9666 1.5471
10 10 1.5022 1.5397 1.6009 1.6253 1.4862 1.8876

100 100 3.0758 3.0963 3.1445 3.1581 3.0847 3.3547

10
0 0 0.9351 0.9808 1.0773 1.1061 0.9295 1.4998
10 10 1.4720 1.4902 1.5558 1.5664 1.4914 1.8525

100 100 3.0900 3.0827 3.1318 3.1281 3.1446 3.3356

100

0.5
0 0 1.2861 1.3428 1.4007 1.4393 1.2298 1.6882
10 10 1.6916 1.7325 1.7775 1.8056 1.6542 2.0056

100 100 3.2514 3.2807 3.3175 3.3368 3.2300 3.4920

2
0 0 1.0268 1.0915 1.1806 1.2225 0.9860 1.5882
10 10 1.5219 1.5598 1.6238 1.6485 1.5090 1.9265

100 100 3.1377 3.1579 3.2116 3.2242 3.1563 3.4392

10
0 0 0.9507 0.9961 1.0963 1.1248 0.9538 1.5377
10 10 1.4914 1.5083 1.5768 1.5865 1.5212 1.8885

100 100 3.1517 3.1405 3.1960 3.1892 3.2354 3.4172

parameter increases by the increase of the side-to-thickness ratio. The numerical result
in the tables shows the ability of the derived finite element formulation on modeling the
shear deformation effect of the FGSW plate partially supported by the elastic foundation.

The effect of the foundation support on the free vibration of the SSSS plate can be
also seen from Fig. 2 where the first vibration mode for the transverse displacement w
of the plate is shown for various values of the foundation supporting areas. The first
mode shape of the plate partially supported by the foundation, as seen from the figure
is asymmetrical while that of the plate fully supported by the foundation is symmetrical.
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The foundation supporting area is also plays an important role on the vibration mode
of the plate, and the position at which the transverse bending displacement attains the
maximum value depends on the foundation supporting area.

15 

a) (af, bf) = (a/4, b/4) b) (af, bf) = (a/2, b/2)

c) (af, bf) = (3a/4, 3b/4) d) (af, bf) = (a, b)
Figure  2. The first mode shapes for transverse displacement of SSSS (2-1-2) square plate for 

a/h=10, n=2, (Kw, Ks) = (50, 50) and different foundation supporting areas 

4.3 Plate with other boundary conditions 

The free vibration characteristics of the FGSW square plate with other boundary conditions (B.C.), 
namely clamped at two opposite edges and simply supported at the two others (CSCS) and clamped at all 
edges (CCCC), are reported in this subsection. In Table 5, the frequency parameters of the CSCS and 
CCCC plates with a/h=10 are listed for (af, bf) = (a/2, b/2) and various values of the foundation stiffness 
parameters and the layer thickness ratio. As expected, the frequency parameters of the CCCC plate are 
higher than the corresponding parameters of the CSCS and SSSS plates, regardless of the foundation 
stiffness and the layer thickness ratio. The dependence of the frequency parameter of the CSCS and CCCC 
plates upon the material grading index and the layer thickness ratio is similar to that of the SSSS plate.   

Figs. 3 and 4 respectively illustrate the first four vibration modes for the transverse displacement w 
of the CSCS and CCCC plates having a/h=10, n=2, partially supported by the elastic foundation with (af, 
bf) = (a/4, b/4) and (Kw, Ks) = (50, 50). The influence of the foundation support on the vibration modes of 
the plates can be clearly seen from the figures. The symmetry of the vibration modes as seen for the plate 
fully supported by the foundation is destroyed by the partial foundation support.   
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(d) (a f , b f ) = (a, b)

Fig. 2. The first mode shapes for transverse displacement of SSSS (2-1-2) square plate
for a/h = 10, n = 2, (Kw, Ks) = (50, 50) and different foundation supporting areas

4.3. Plate with other boundary conditions
The free vibration characteristics of the FGSW square plate with other boundary

conditions (B.C.), namely clamped at two opposite edges and simply supported at the
two others (CSCS) and clamped at all edges (CCCC), are reported in this subsection. In
Tab. 5, the frequency parameters of the CSCS and CCCC plates with a/h = 10 are listed
for (a f , b f ) = (a/2, b/2) and various values of the foundation stiffness parameters and
the layer thickness ratio. As expected, the frequency parameters of the CCCC plate are
higher than the corresponding parameters of the CSCS and SSSS plates, regardless of
the foundation stiffness and the layer thickness ratio. The dependence of the frequency
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parameter of the CSCS and CCCC plates upon the material grading index and the layer
thickness ratio is similar to that of the SSSS plate.

Table 5. Frequency parameter of CSCS and CCCC square plates with a/h = 10, partially sup-
ported by the foundation of (a f , b f ) = (a/2, b/2)

B.C. N Kw Ks (2-1-2) (1-1-1) (2-2-1) (1-2-1) (1-0-1) (1-8-1)

CSCS

0.5
0 0 1.8227 1.9012 1.9701 2.0315 1.7409 2.3579
10 10 1.9922 2.0630 2.1262 2.1823 1.9199 2.4868
100 100 2.7998 2.8619 2.9177 2.9655 2.7356 3.2263

1
0 0 1.6163 1.7075 1.7947 1.8692 1.5332 2.2859
10 10 1.8098 1.8896 1.9681 2.0347 1.7399 2.4196
100 100 2.6359 2.7096 2.7818 2.8397 2.5691 3.1711

2
0 0 1.4693 1.5614 1.6621 1.7422 1.4025 2.2289
10 10 1.6850 1.7627 1.8516 1.9216 1.6333 2.3669
100 100 2.5173 2.5939 2.6799 2.7422 2.4623 3.1287

10
0 0 1.3622 1.4302 1.5398 1.6101 1.3405 2.1636
10 10 1.6026 1.6550 1.7491 1.8076 1.5951 2.3072
100 100 2.4376 2.4929 2.5903 2.6434 2.4172 3.0820

CCCC

0.5
0 0 2.2328 2.3278 2.4078 2.4839 2.1315 2.8698
10 10 2.3906 2.4781 2.5526 2.6234 2.2986 2.9884
100 100 3.2398 3.3118 3.3735 3.4313 3.1639 3.7334

1
0 0 1.9850 2.0960 2.1970 2.2907 1.8806 2.7851
10 10 2.1666 2.2663 2.3587 2.4445 2.0754 2.9082
100 100 3.0572 3.1404 3.2179 3.2878 2.9796 3.6690

2
0 0 1.8076 1.9205 2.0365 2.1389 1.7208 2.7180
10 10 2.0117 2.1101 2.2143 2.3065 1.9403 2.8452
100 100 2.9295 3.0138 3.1032 3.1785 2.8649 3.6197

10
0 0 1.6769 1.7621 1.8873 1.9807 1.6362 2.6412
10 10 1.9064 1.9756 2.0852 2.1663 1.8796 2.7737
100 100 2.8478 2.9078 3.0052 3.0707 2.8090 3.5658

Figs. 3 and 4 respectively illustrate the first four vibration modes for the transverse
displacement w of the CSCS and CCCC plates having a/h = 10, n = 2, partially sup-
ported by the elastic foundation with (a f , b f ) = (a/4, b/4) and (Kw, Ks) = (50, 50). The
influence of the foundation support on the vibration modes of the plates can be clearly
seen from the figures. The symmetry of the vibration modes as seen for the plate fully
supported by the foundation is destroyed by the partial foundation support.
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Figure  3. The first four mode shapes for transverse displacement of CSCS (2-1-2) square plate 
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Figure  4. The first four mode shapes for transverse displacement of CCCC (2-1-2) square plate 

with ah=10, n=2, (af, bf) = (a/4, b/4) and (Kw, Ks) = (50, 50) 

4.4 Plate with different side-to-thickness ratios  

The effect of the side-to-thickness ratio a/h on the frequency parameter of the FGSW plate is illustrated 
in Fig. 5 for the (1-1-1) SSSS and CCCC square plates with n=2, partially supported by the elastic 
foundation (af, bf) = (a/2, b/2). The frequency parameter, as seen from the figure, steadily increases by 
increasing the aspect ratio, and the increase is the most significant for a/h between 5 and 20. The foundation 
stiffness also plays an important role on the dependence of the frequency parameter on the aspect ratio, the  
increase of frequency parameter by increasing the aspect ratio is more significant when the plates are 
supported by the foundation with higher stiffness. The result in Fig. 5 shows again the ability of the finite 
element formulation derived in the present work in modeling the shear deformation effect of the FGSW 
plate. 

  

Figure 5. Frequency parameter versus side-to-thickness ratio of (1-1-1) SSSS and CCCC square 
FGSW plates partially supported by elastic foundation with (af, bf) = (a/2, b/2), (n=2) 

Fig. 4. The first four mode shapes for transverse displacement of CCCC (2-1-2) square plate with
a/h = 10, n = 2, (a f , b f ) = (a/4, b/4) and (Kw, Ks) = (50, 50)
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4.4. Plate with different side-to-thickness ratios
The effect of the side-to-thickness ratio a/h on the frequency parameter of the FGSW

plate is illustrated in Fig. 5 for the (1-1-1) SSSS and CCCC square plates with n = 2,
partially supported by the elastic foundation (a f , b f ) = (a/2, b/2). The frequency pa-
rameter, as seen from the figure, steadily increases by increasing the aspect ratio, and the
increase is the most significant for a/h between 5 and 20. The foundation stiffness also
plays an important role on the dependence of the frequency parameter on the aspect ra-
tio, the increase of frequency parameter by increasing the aspect ratio is more significant
when the plates are supported by the foundation with higher stiffness. The result in Fig. 5
shows again the ability of the finite element formulation derived in the present work in
modeling the shear deformation effect of the FGSW plate.
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increase of frequency parameter by increasing the aspect ratio is more significant when the plates are 
supported by the foundation with higher stiffness. The result in Fig. 5 shows again the ability of the finite 
element formulation derived in the present work in modeling the shear deformation effect of the FGSW 
plate. 

  

Figure 5. Frequency parameter versus side-to-thickness ratio of (1-1-1) SSSS and CCCC square 
FGSW plates partially supported by elastic foundation with (af, bf) = (a/2, b/2), (n=2) 

Fig. 5. Frequency parameter versus side-to-thickness ratio of (1-1-1) SSSS and CCCC square
FGSW plates partially supported by elastic foundation with (a f , b f ) = (a/2, b/2), (n = 2)

5. CONCLUSIONS

The free vibration of FGSW plates partially supported by a Pasternak foundation has
been studied using a quasi-3D finite element formulation. The plates are considered to be
composed of three layers, a homogeneous ceramic core and two functionally graded skin
layers. Mori–Tanaka scheme was employed to estimate the effective material properties
of the plates. The frequency parameters and vibration modes have been evaluated for the
FGSW plates with various boundary conditions, supported by the foundation of different
areas. The numerical results obtained in the present paper reveal that the foundation
supporting area plays an important role on both the frequencies and mode shapes of the
plates. A parametric study has been carried out to highlight the influence of the material
grading index, the layer thickness ratio and the foundation stiffness on the vibration
characteristics of the plates. The effect of the side-to-thickness ratio on the frequencies of
the FGSW plates has also been examined and discussed.
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