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Abstract. This paper reviews key ideas of the researches on the dual approach to the
vibration analysis. Three types of dual techniques, namely, forward - return dual tech-
nique, global-local dual technique, weighted averaging dual technique, for the problem
of equivalent replacement are summarized. Different implements and realizations of dual
techniques to nonlinear vibration analysis and design of dynamic absorbers are reviewed.
Finally, the challenging issues based on the dual techniques are discussed. A number of
possibilities for developing analytical techniques related to dual techniques are proposed.
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1. INTRODUCTION

Oscillation plays an important role in our daily lives and nature. This reflects the fact
that life and nature are extremely diverse sets of motions. Fidlin wrote “Any motion is
deeply connected with one of the most fundamental properties of nature – its ability to
react with oscillations at any internal change or external influence” [1]. In all areas of hu-
man activities vibrational systems are increasingly abundant and varied and the study of
those systems is always required. Most phenomena in our world are essentially nonlinear
and described by nonlinear equations. We might simplify nonlinear phenomena as lin-
ear ones to make them easier to understand; however, for further investigation nonlinear
phenomena should be treated as nonlinear problems. Thus, the study of nonlinear prob-
lems is of crucial importance not only in all areas of physics but also in engineering and
in other disciplines. In particular, it appears that the analysis of vibration based on non-
linear mathematical models requires appropriate methods. Therefore, new methods for
analysis of nonlinear oscillations always cause concern of scientists and technicians. Re-
cently, a dual approach has been proposed to study the response of nonlinear systems [2]
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and some dual techniques have been developed, e.g. [3–27], based on the concept of du-
ality. Nature and life always contain dual inclinations. Those are perspectives that are
contradictory, or complementary to each other. Natural phenomena and human activ-
ities exhibit often dual characters which reflect two side processes or/and the relative
balance of two opposite sides. For illustration we may say attack – defense in a football
match, one way and return in an excursion, day and night. When a problem is consid-
ered it is quite often that one its side is given too much attention while another side is
almost or completely forgotten. This usual approach doesn’t reflect the real essence of
the problem in question and hence doesn’t yield an expected solution in many cases. The
main issue of a dual approach to a scientific problem is to always consider two different
(dual) aspects of the problem. This allows the study to become more harmonious and
reflects the essence of the problem. In the dual approach a dual technique is one that can
introduce two dual perspectives for the same problem in consideration. Let one needs
to investigate a problem. The use of the dual approach to this problem means that one
should introduce a dual technique that can reflect the essence of the problem.

This paper reviews key ideas of the reported researches on the dual approaches to
the vibration analysis [3–27]. Various types of dual techniques, different implements and
realizations of dual approaches to vibration analysis and control are reviewed. Finally,
the challenging issues on the dual techniques are discussed.

2. DUAL EQUIVALENT REPLACEMENT

The first introduction of the dual approach to the nonlinear vibrations was suggested
in [2] for the problem of equivalent linearization. In science we usually needs to replace
approximately an object A described by the function A(x) with the object B described by
the function B(x). Thus, we will replace A(x) approximately with kB(x) where k is an
equivalent replacement coefficient to be found from an equivalent replacement criterion,
for example, by the mean-square error criterion〈

e2〉 = 〈(A(x)− kB(x))2
〉
→ min

k
, (1)

where e = A(x) − kB(x) is the error of replacement, 〈·〉 is the deterministic averaging
operator or expectation operator for the case of random functions A(x), B(x). If B(x) is a
linear function of x, B(x) = x, the equivalent replacement is called equivalent lineariza-
tion and k is called equivalent linearization coefficient.

2.1. Forward - return dual technique
It was observed in [2] that the conventional equivalent replacement has the one-way

sense. Indeed the conventional replace of A(x) by kB(x) can be considered as the forward
replacement from the original function A(x) to its counterpart B(x) and the equivalent
replacement coefficient k is found from criterion (1) which is rewritten as follows〈

e2
f

〉
≡
〈
(A(x)− kB(x))2

〉
→ min

k
. (2)

Hereinafter the indexes “ f ”, “r” are introduced to denote the forward and return
replacements, respectively. The criterion (2) gives the forward equivalent replacement
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coefficient

k f =
〈A(x)B(x)〉
〈B2(x)〉 . (3)

In order to propose a dual technique to the problem of equivalent replacement one
should look for another replacement which is complementary to the forward replace-
ment. The first leg and second leg in a Champions League tie may be a good suggestion
and the adding up the scores and away goals rule are interesting illustrations of how two
replacements can be combined. One of natural solutions was suggested in [2] as the re-
turn replacement. Thus supposing now k f B(x) is found one gets back to A(x) using the
return replacement

k f B(x)→ λA(x), (4)

where the return coefficient λ is determined from the mean-square error criterion〈
e2

r
〉
≡
〈
(kB(x)− λA(x))2

〉
→ min

λ
, (5)

where k = k f . Using (5), (3) and (2), one obtains

λr = k f
〈A(x)B(x)〉
〈A2(x)〉 = r2, (6)

where it is denoted

r =
〈A(x)B(x)〉√
〈A2(x)〉 〈B2(x)〉

. (7)

The parameter r is precisely the correlation coefficient that is used as a measure of
the linear dependence between two functions A(x), B(x) [28]. The minimal mean-square
errors of forward and return replacements can be calculated, respectively,〈

e2
f

〉
min

=
〈
(A(x)− k f B(x))2

〉
=
〈

A2(x)
〉
− 2k f 〈A(x)B(x)〉+ k2

f

〈
B2(x)

〉
= (1− r2)

〈
A2(x)

〉
, (8)

〈
e2

r

〉
min

=

〈(
k f B(x)− λr A(x)

)2
〉

= k2
f

〈
B2(x)

〉
− 2k f λr 〈A(x)B(x)〉+ λ2

r

〈
A2(x)

〉
= r2(1− r2)

〈
A2(x)

〉
. (9)

Application of the dual approach to the problem of replacement proposes this prob-
lem should combine two forward and return replacements (1) and (5) in a weighted dual
replacement characterized by a weighted dual mean-square error criterion [2, 10, 23]〈

e2
w

〉
≡ (1− p)

〈
e2

f

〉
+ p

〈
e2

r

〉
= (1− p)

〈
(A(x)− kB(x))2

〉
+ p

〈
(kB(x)− λA(x))2

〉
→ min

k,λ
, (10)

where the index “w” denotes the weighted dual replacement, p is a non-dimensional
weight parameter, 0 ≤ p ≤ 1, which adjusts the contributions of forward and return
replacements in order to obtain the best replacement of A(x) by kB(x). The minimum
necessary and sufficient conditions of (10) give kw and λw, respectively [23]

kw = (1− p + pλw)
〈A(x)B(x)〉
〈B2(x)〉 , λw = kw

〈A(x)B(x)〉
〈A2(x)〉 . (11)
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It is seen from (11) that the return replacement contributes to the equivalent replace-
ment coefficient kw through the return coefficient λw that plays a complementary role.
From (11) one gets

kw =
1− p

1− pr2
〈A(x)B(x)〉
〈B2(x)〉 , λw =

1− p
1− pr2 r2. (12)

The problem is now reduced to how the weight parameter p can be chosen. It is ob-
served in [23] that the return replacement er is introduced in (10) due to that the minimal
mean-square forward error e f min differs from zero. Hence, it is assumed that the weight
parameter p can be a linear function of e f min as follows

p = ηe f min, (13)

where η is a dimensional coefficient which can be taken as an effect sum of square mean
of the original function A(x) and its counterpart k f B(x)

η =
1

〈A2〉+
〈
(k f B)2

〉 =
1

〈A2〉+
(
〈AB〉
〈B2〉

)2

〈B2〉
=

1
(1 + r2) 〈A2〉 . (14)

Substituting (14), (8) into (13) yields the following expression for the non-dimensional
weight parameter p [23]

p =
1− r2

1 + r2 . (15)

Substituting (15) into (12) yields the following weighted dual equivalent replacement
coefficient

kw =
2r2

1 + r4
〈AB〉
〈B2〉 . (16)

Thus, using the weighted dual mean-square error criterion (10) with the weight pa-
rameter (15) the original random function A(x) can be replaced by the equivalent ran-
dom function kwB(x) where the weighted dual equivalent replacement coefficient kw is
found from (16) and r is determined by (7). When p = 0 the criterion (10) leads to the
conventional mean-square error criterion [29]; and when p = 1/2 it leads to the dual
mean-square error criterion investigated in [4, 5].

2.2. Global-local dual technique
In this subsection another dual technique is reviewed to show how the dual ap-

proach could be applied to the problem of equivalent replacement. In 1995, based on the
assumption that the global integration domain taken in the mean square error criterion
should be reduced to a local one where the response would be concentrated Anh and
Di Paola [30] proposed a local mean square error criterion (LOMSEC). Further investi-
gations [31, 32] have shown an improved accuracy of this criterion; however, the local
domain in question was unknown and it has resulted in the main disadvantage of LOM-
SEC. Using the dual approach to LOMSEC, one may suggest a consideration with respect
to two aspects, namely to local and global levels. According to this concept new values of
replacement coefficients were obtained as global averaged values of all local replacement
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coefficients. The technique obtaining new replacement coefficients is called global-local
dual technique that is reviewed in details as follows. Let we replace A(x) approximately
with kB(x) where k is an equivalent replacement coefficient to be found from the mean-
square error criterion (1). Suppose that A(x) and B(x) are random functions. Rewriting
(1) in explicit form gives

+∞∫
−∞

(A(x)− kB(x))2P(x)dx → min
k

, (17)

where P(x) is the probabilistic density function (PDF) of x. Since the integrations are
taken over the entire coordinate space (−∞ + ∞), criterion (1) may be called as a global
mean square error criterion. The question is how two dual aspects can be suggested to
(17). For that purpose one replaces the global value +∞ in (17) by a local positive value
x0 and that leads to the following local mean square error criterion (LOMSEC)

x0∫
−x0

(A(x)− kB(x))2P(x)dx → min
k

. (18)

The expected integrations in (18) can be transformed to non-dimensional variables
by x0 = rσx where ris a positive value, σx is the normal deviation of the random variable
x. Thus, criterion (18) leads to

[(A(x)− kB(x))2] ≡
+rσx∫
−rσx

(A(x)− kB(x))2P(x)dx → min
k

, (19)

where [.] denotes the local mean value of random variable which is introduced [9, 14] as
follows

[.] =
+rσx∫
−rσx

(.)P(x)dx. (20)

Criterion (19) gives the following replacement coefficient similar to the case of the
classical mean square error criterion

k(r) =
[A(x)B(x)]
[B2(x)]

. (21)

It is seen from (21) that the replacement coefficient obtained by LOMSEC is function
depending on r. In this sense, the replacement coefficient k(r) is called as local replace-
ment coefficient. The most advantage of LOMSEC is that by changing values of r, LOM-
SEC can create a series of various approximate solutions and as r = ∞ LOMSEC gives
the same solution as the classical mean square error criterion does. Thus, LOMSEC can
enable to obtain different accurate solutions whereas this is impossible for the classical
criterion [31, 32]. The main disadvantage of LOMSEC, however, is that the local domain
of integration determined by the value of r is unknown. To solve this problem the global-
local dual technique suggests that instead of finding a special value of r one considers its
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varying in the global domain of integration. Thus, the constant replacement coefficient k
can be suggested as global mean value of all local replacement coefficients as follows

k = 〈k(r)〉 = lim
s→∞

1
s

s∫
0

k(r)dr

 , (22)

where 〈·〉 is used as the conventional notation for averaging operator of deterministic
functions. Thus the use of the global-local dual technique for LOMSEC leads to a new
criterion called global-local mean square error criterion (GLOMSEC) [9, 14].

2.3. Weighted averaging dual technique
In this subsection we consider again the problem of equivalent replacement and an-

other dual technique is reviewed to show how the dual approach can be realized and
new equivalent replacement coefficient can be obtained. Let we replace A approximately
with kB where k is found from the mean-square error criterion (1). Suppose that A and B
are described by periodic functions A(t) and B(t) of t belonging to the interval [0,+∞).
Rewriting (1) in explicit form gives

lim
T→∞

1
T

T∫
0

(A(t)− kB(t))2dt→ min
k

. (23)

Averaged values play major roles in the study of dynamic processes. The use of those
values allows transforming varying processes to some constant characteristics that are
much easier to be investigated. The conventional definition of averaged values, however,
has some deficiencies, for example, if (A(t)− kB(t))2 has terms whose integration in (23)
are equal zero, the information contained in those terms is lost. For all terms that are
harmonic functions cos(nt) and sin(nt) this observation is true. The dual approach to
averaged values is an effective way to suggest an alternative choice for the conventional
average value, namely the constant coefficient 1/T in (23) can be extended to a weighting
coefficient as function h(t). Thus one gets so-called weighted mean square error criterion

W(x(t)) =
∞∫

0

h(t) (A(t)− kB(t))2 dt→ min
k

, (24)

where the condition of normalization is satisfied
∞∫

0

h(t)dt = 1. (25)

There isn’t a general theory about weighting functions h(t). The weighted dual tech-
nique is a possible way to construct weighting functions h(t). First one introduces basic
weighting coefficients as follows [15]:

A) Basic optimistic weighting coefficients
Basic optimistic weighting coefficients are increasing functions of t and denoted as O(t).

B) Basic pessimistic weighting coefficients
Basic pessimistic weighting coefficients are decreasing functions of t and denoted as P(t).
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C) Neutral weighting coefficients
Basic neutral weighting coefficients, denoted as N(t), are constants.

A dual weighting coefficient h(t) is obtained as summation and/or product of basic
weighting coefficients. Example is

h(t) =
n

∑
i=1

(αiOi(t) + βiPi(t) + γiOi(t)Pi(t)) + N(t), (26)

where αi, βi, γi are constants. The dual characteristics considered in (26) are the increas-
ing and decreasing properties of basic weighting coefficients. These dual properties al-
low adjusting in dual weighted average values which can keep information about all the
data of a given ω-periodic function. The following particular dual weighting function is
considered [15]

h(t) = s2ω2te−sωt, s > 0. (27)
It is seen that the weighting coefficient (27), obtained as a product of the optimistic

weighting coefficient t and the pessimistic weighting coefficient e−sωt (see Fig. 1). It is
worth mentioning that the dual weight function (27) is one-parameter function and it con-
tains the conventional arithmetic weight as a particular case. In fact the dual weight func-
tion (27) equaling zero at only t = 0 and t = ∞, has one maximal value at t∗ = 1/(sω),
and then decreases to zero as t→ ∞. The dual weighting function (27) has maximal value
at infinity when s→ 0. It means in this case the dual weighting function (27) approaches
to the conventional arithmetic weight.
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Fig. 1. Plot of dual weight function

Based on the weighting coefficient (27) a new weighted average value is proposed
for a ω-periodic function f (ωt)

W( f (ωt)) =
∞∫

0

s2ω2te−sωt f (ωt)dt =
∞∫

0

s2φe−sφ f (φ)dφ. (28)
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Using Laplace transformation Table one gets

W(cos nωt) =
∞∫

0

s2ω2te−sωt cos(nωt)dt =
∞∫

0

s2φe−sφ cos(nφ)dφ = s2 s2 − n2

(s2 + n2)2 , (29)

W(sin nωt) =
∞∫

0

s2ω2te−sωt sin(nωt)dt =
∞∫

0

s2φe−sφ sin(nφ)dφ = s2 2sn
(s2 + n2)2 . (30)

As ω-periodic functions f (ωt) can be expended into Fourier series and the dual
weighted averaging operator (28) is linear one hence one can easy calculate (28) for any
ω-periodic functions f (ωt) by using (29) and (30). Indeed let f (ωt) be expended into a
Fourier series

f (ωt) = f0 + ∑
i=1

( fic cos iωt + fis sin iωt). (31)

Substituting (31) into (27) using (9) and (10) one gets

W( f (ωt)) = W

(
f0 + ∑

i=1
( fic cos iωt + fis sin iωt)

)
= f0 + ∑

i=1
( ficW(cos iωt) + fisW(sin iωt))

= f0 + s2 ∑
i=1

(
fic

s2 − i2

(s2 + i2)2 + fis
2is

(s2 + i2)2

)
.

(32)

In particular, putting s = 0 in (32) leads to the conventional average value of f (ωt)

〈 f (ωt)〉 = W( f (ωt))|s=0 = f0. (33)

The first advantage of the weighted dual average value (32) is clearly seen from (31)–
(33) that all the data { fic, fis} of the function f (ωt) contained in (31) are preserved in the
weighted dual average value (32) for s 6= 0 and will be lost in the conventional average
value (33) for s = 0. The second advantage is that one can regulate the value of s to get
the desired results from (32) depending on the considered problem.

3. APPLICATIONS OF DUAL TECHNIQUES

The equivalent linearization method of Krylov and Bogoliubov [33] that replaces a
nonlinear system by an equivalent linear one was generalized to the case of nonlinear
dynamic systems with random excitation by Kazakov and Caughey. In the theory of ran-
dom vibration, the stochastic equivalent linearization method is a popular method since
it preserves some essential properties of the original nonlinear system. The method has
been described in numerous review articles [34, 35], and was summarized in the mono-
graphs by Roberts and Spanos [29] and Socha [36]. The essential of the equivalent lin-
earization method is how to find the linearization coefficients for a given nonlinear sys-
tem. In the literature, several criteria of equivalent linearization have been suggested to
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define the linearization coefficients where the original version is the conventional crite-
rion [29, 34–36] that minimizes the mean-square of equation error. Despite the advan-
tages, the main disadvantage of this criterion is that its accuracy decreases as the non-
linearity is increasing, in many cases it results in unacceptable errors. To improve the
accuracy of the equivalent linearization method the dual mean-square error criterion is
proposed in [2]. Application of the dual criterion to three nonlinear systems, namely
Duffing, Van der Pol and Lutes–Sarkani oscillators, has shown an improved accuracy of
the approximate solutions for cases where the nonlinearity is of intermediate level [4]. A
possible reason may be the fact that the forward and return replacements would have dif-
ferent roles in adjusting the replacement error rather than being the same. The accuracy
of the dual mean-square error criterion can be improved by introducing a weighted dual
mean-square error criterion where the weight parameter p is presented as a piecewise
linear function of the squared correlation coefficient which is defined by the interpola-
tion method of least squares from available exact solutions of several nonlinear restoring
oscillators [2,10,11]. Introducing the weight parameter p makes the weighted dual mean-
square error criterion more flexible than the conventional and dual mean square error
criteria. The empirical expression (15) for p was given in [23]. The application to several
nonlinear random systems has shown the improved accuracy of the proposed weighted
dual equivalent linearization technique for a quite large range of nonlinearity. Extension
of dual equivalent linearization technique to flutter analysis of two dimensional nonlin-
ear airfoils was investigated in [16]. In [20,21] the dual equivalent linearization is applied
to the problem of thermal analysis of small satellites in Low Earth Orbit using one- and
two-node models. To simplify the process of linearization, a preprocessing step in sep-
arating nonlinear terms of the original system is carried out to get an equivalent system
in which each differential equation contains only one nonlinear term. Based on the dual
mean square error criterion a closed form of linearization coefficients system is obtained
and solved by a Newton–Raphson iteration procedure. It is shown that the solutions
obtained from the dual criterion are in a good agreement with those obtained from the
Grande’s approach and Runge–Kutta algorithm.

The new development based on the dual approach to LOMSEC was suggested in [9,
14] where the authors proposed a global–local mean square error criterion (GLOMSEC)
to single- and multi-degree-of-freedom stochastic nonlinear systems, considering local
and global levels, and thus new values of linearization coefficients are obtained as global
averaged values of all local linearization coefficients. The numerical results for several
nonlinear systems under white noise excitation demonstrated a significant improvement
in the accuracy of solutions, especially when the nonlinearity is strong.

The equivalent linearization method with the weighted averaging using weighting
coefficient (27) was applied in [22] to analyze some vibrating systems with nonlinear-
ities. The strongly nonlinear Duffing oscillator with third, fifth, and seventh powers of
the amplitude, the other strongly nonlinear oscillators and the cubic Duffing with discon-
tinuity are considered. The results obtained via this method are compared with the ones
achieved by the Min-Max Approach (MMA), the Modified Lindstedt – Poincare Method
(MLPM), the Parameter – Expansion Method (PEM), the Homotopy Perturbation Method
(HPM) and 4th order Runge–Kutta method.
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Further developments of this weighted averaging have been presented in [24,25] for
nonlinear systems appearing in practical engineering and physical problems. In [26, 27]
the equivalent linearization method with weighted averaging has been used to inves-
tigate the nonlinear vibration of microbeams based on the nonlinear elastic foundation
through the modified couple stress theory [26] and the nonlinear vibration of nanobeams
under electrostatic force through the nonlocal strain gradient theory [17]. The obtained
results demonstrate that this method is very convenient for solving nonlinear equations.

Anh and Nguyen [6, 7] suggested approximate analytical solutions of the optimal
tuning ratio of the DVA for the H∞ optimization by using the idea of local averaging
and dual replacement to the equivalent linearization method. Based on the idea of the
weighted dual mean square error criterion, the authors of [8] give an analytical approach
to the design of the three-element dynamic absorber for damped structures under ground
motion by replacing the original damped structure by an equivalent undamped structure.
Comparisons have been done to validate the accuracy of the obtained results. In [17] a
simple method to determine the approximate analytical solutions of the nontraditional
DVA when the damped primary structure is subjected to ground motion is proposed. The
main idea is based on the dual mean square error criterion of the equivalent linearization
method to replace approximately the original damped structure by an equivalent un-
damped one. Comparisons have been done to validate the effectiveness of the obtained
results. The global-local approach is used in [18] to give approximate analytical solutions
of H∞ optimization for all standard, three-element and non-traditional DVAs attached
to damped primary structures. The study is based on the global-local criterion of the
equivalent linearization method in order to replace approximately the original damped
structure by an equivalent undamped one.

4. SOME PERSPECTIVE ASPECS OF DUAL APPROACH

In this section we suggest some further perspective research aspects of the dual ap-
proach. First the weighted dual mean square error criterion has been investigated for
many stochastic nonlinear systems; however, it wasn’t used to study deterministic non-
linear vibrational systems. Thus, numerical simulations can be carried out to check the
accuracy of this criterion for free and forced vibrations in those systems. A new expres-
sion for the weighted parameter p different from (16) may be proposed to improve the
accuracy of the weighted dual mean square error criterion.

Similarly, the global-local mean square error criterion can be modified in order to
be applicable to deterministic nonlinear vibrational systems. Second, comprehensive re-
searches about the local averaging operator should be investigated for periodic functions.
For ω-periodic function x(ωt) the conventional averaged value of x(ωt) over one period
is defined as

〈x(ωt)〉 = ω

2π

2π/ω∫
0

x(ωt)dt =
1

2π

2π∫
0

x(τ)dτ. (34)
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The local averaged value of x(ωt) is defined by replacing 2π in (34) by a positive
value r

〈x(φ)〉r =
1
r

r∫
0

x(φ)dφ, φ = ωt. (35)

If substituting the local averaging operator determined in (35) into the mean-square
error criterion (1) for the equivalent replacement of A(ωt) by kB(ωt) one gets the local
mean-square error criterion

〈
e2〉

r =
1
r

r∫
0

(A(φ)− kB(φ))2 dφ→ min
k

, (36)

which leads to

k(r) =

r∫
0

A(φ)B(φ)dφ

r∫
0

B2(φ)dφ

. (37)

The behavior of the equivalent replacement coefficient k(r) depending on the local
value r needs to be investigated. The question of how r can be chosen is open and mini-
mal values of k(r) are ones of interest.

5. CONCLUSIONS

The study of nonlinear problems is of crucial importance not only in all areas of
physics but also in engineering and in other disciplines. In particular, it appears that
the analysis of vibration based on nonlinear mathematical models requires appropriate
methods. Therefore, new methods for analysis of nonlinear oscillations always cause
concern of scientists and technicians. Nature and life always contain dual inclinations.
Those are perspectives that are contradictory, or complementary to each other. There-
fore, scientific research also needs to reflect these properties. The main issue of a dual
approach to a scientific problem is to always consider the two different (dual) aspects of
the problem. This allows the study to become more harmonious and reflect the essence
of the problem. In the dual approach a dual technique is one that can introduce two dual
perspectives for the same problem in consideration.

This paper reviews key ideas of the reported researches on the dual approaches to
the vibration analysis. Three types of dual techniques, namely, forward - return dual
technique, global-local dual technique, weighted averaging dual technique for the prob-
lem of equivalent replacement are summarized. Different implements and realizations
of dual techniques to nonlinear vibration analysis and design of dynamic absorbers are
reviewed. Finally, the challenging issues based on the dual techniques are discussed. A
number of possibilities for developing analytical techniques related to dual techniques
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are proposed. The review of the above studies shows that the dual approach is an ap-
propriate one and the dual techniques are effective tools for studying random and deter-
ministic nonlinear vibrational systems. Meanwhile the extension of the dual approach to
other scientific problems is of high interest.
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