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Abstract. This paper establishes the exact receptance function of a clamped-clamped beam
carrying concentrated masses. The derivation of exact receptance and the numerical sim-
ulations are provided. The proposed receptance function can be used as a convenient tool
for predicting the dynamic response at arbitrary point of the beam acted by a harmonic
force applied at arbitrary point. The influence of the concentrated masses on the recep-
tance is investigated. The numerical simulations show that peak in the receptance will
decrease when there is a mass located close to that peak position. The numerical results
have been compared to the experimental results to justify the theory.
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1. INTRODUCTION

The receptance function is very important in vibration problems such as control de-
sign, system identification or damage detection since it interrelates the harmonic excita-
tion and the response of a structure in the frequency domain. The receptance method
was first introduced by Bishop and Johnson [1]. This method has been developed and
applied widely in mechanical systems and structural dynamics. Milne [2] proposed a
general solution of the receptance function of uniform beams which can be applied for
all combinations of beam end conditions. Yang [3] derived the exact receptances of non-
proportionally damped dynamic systems. In this work an iteration procedure is devel-
oped based on a decomposition of the damping matrix, which does not require matrix
inversion and eliminate the error caused by the undamped model data. Lin and Lim [4]
proposed the receptance sensitivity with respect to mass modification and stiffness mod-
ification from the limited vibration test data. Mottershead [5] investigate the measured
zeros from frequency response functions and its application to model assessment and
updating. Gurgoze [6] presented the receptance matrices of viscously damped systems

c© 2020 Vietnam Academy of Science and Technology

https://doi.org/10.15625/0866-7136/14628
mailto: nvkhoa@imech.vast.vn


30 Nguyen Viet Khoa, Dao Thi Bich Thao

subject to several constraint equations. In this paper, the frequency response matrix of the
unconstrained system and the coefficient vectors of the constraint equations was used to
obtain the frequency response matrix of the constrained system. Gürgöze and Erol [7]
established the frequency response function of a damped cantilever simply supported
beam carrying a tip mass. In this paper, the frequency response function was derived
by using a formula established for the receptance matrix of discrete linear systems sub-
jected to linear constraint equations, in which the simple support was considered as a
linear constraint imposed on generalized co-ordinates. Burlon et al. [8] derived an ex-
act frequency response function of axially loaded beams with viscoelastic dampers. The
method relies on the theory of generalized functions to handle the discontinuities of the
response variables, within a standard 1D formulation of the equation of motion. In an-
other work, Burlon et al. [9] presented an exact frequency response of two-node coupled
bending-torsional beam element with attachments. Karakas and Gürgöze [10] extended
the work in [3] in which the receptance matrix was obtained directly without using the it-
erations as presented in [3] to form the receptance matrix of non-proportionally damped
dynamic systems. Muscolino and Santoro [11] developed the explicit frequency response
functions of discretized structures with uncertain parameters. Recently, the authors of
this paper [12] presented the exact formula of the receptance function of a cracked beam
and its application for crack detection. However, the exact form of frequency response
function of a beam with concentrated masses has not been established yet.

The aim of the present paper is to present an exact receptance function of a clamped-
clamped beam carrying an arbitrary number of concentrated masses. The proposed for-
mula of receptance function is simple and can be applied easily to investigate the dy-
namic response of beam at an arbitrary point under a harmonic force applied at any
point along the beam. The influence of concentrated masses on the receptance of the
clamped-clamped beam is investigated. The comparison between numerical simulations
and experimental results have been carried out to justify the proposed method.

2. THEORETICAL BACKGROUND

Considering the Euler–Bernoulli beam carrying concentrated masses subjected to a
force as shown in Fig. 1, the governing bending motion equation of the beam can be
extended from [13] as follows

EIy′′′′ +

[
m +

n

∑
k=1

mkδ (x− xk)

]
ÿ = δ

(
x− x f

)
f (t) , (1)

where E is the Young’s modulus, I is the moment of inertia of the cross sectional area of
the beam, µ is the mass density per unit length, mk is the kth concentrated mass located at
xk, y(x, t) is the bending deflection of the beam at location x and time t, f (t) is the force
acting at position x f , δ

(
x− x f

)
is the Dirac delta function. Symbols “ ′ ” and “ ˙ ” denote

differentials with respect to x and t, respectively.
Eq. (1) can be rewritten in the form

EIy′′′′ + mÿ = δ
(
x− x f

)
f (t)−

n

∑
k=1

mkδ (x− xk)ÿ. (2)
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generalized coordinate. 

Substituting (3) into (2), yields: 

( ) ( ) ( )
1

n

k k f
k

EIy m m x x y x x f td d
=

é ù¢¢¢¢+ + - = -ê úë û
å !!

( )fx xd -

( ) ( ) ( )
1

n

f k k
k

EIy my x x f t m x x yd d
=

¢¢¢¢+ = - - -å!! !!

( ) ( ) ( )
1

, i i
i

y x t x q tf
¥

=

=å

xk 

mn m2 m1 … y 

x 

f(t) 

xf 

Fig. 1. A clamped-clamped beam with concentrated masses

Eq. (2) can be considered as the equation of forced vibration of a beam without con-
centrated masses which is acted by the inertia forces of n concentrated masses and the
external force f (t). The solution of Eq. (2) can be expressed in the form

y (x, t) =
∞

∑
i=1

φi (x) qi (t), (3)

where φi is the ith mode shape of the beam without concentrated masses and qi is the ith

generalized coordinate.
Substituting (3) into (2), yields

EI
∞

∑
i=1

φi
′′′′ (x) qi (t) + m

∞

∑
i=1

φi (x) q̈i (t) = −
n

∑
k=1

δ (x− xk)mk

∞

∑
i=1

φi (x) q̈i (t) + δ
(

x− x f

)
f (t) .

(4)
Multiplying Eq. (4) by φj(x) and integrating from 0 to L and considering the defini-

tion of the Dirac delta function, one obtains
L∫

0

EI
∞

∑
i=1

φi
′′′′ (x) φj (x) qi (t)dx +

L∫
0

m
∞

∑
i=1

φi (x) φj (x) q̈i (t)dx

= −
n

∑
k=1

mkφi (xk) φj (xk) q̈i (t) + φj
(
x f
)

f (t).

(5)

The orthogonality of the normal mode shapes of the beam without concentrated
masses can be addressed here

L∫
0

φi (x) EIφi
′′′′ (x)dx = 0 if i 6= j (6)

L∫
0

φi (x)mφj (x)dx = 0 if i 6= j (7)
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Integrating the first equation in Eq. (6) twice by parts, yields

φi (x) EIφj
′′′ (x)

∣∣L
0 − φ′i (x) EIφj

′′ (x)
∣∣L
0 +

L∫
0

φ′′i (x) EIφ′′ j (x)dx = 0 if i 6= j. (8)

For general boundary conditions the first two terms in Eq. (8) vanish. Thus, from
Eq. (8) we have

L∫
0

φ′′i (x) EIφ′′ j (x)dx =


0 if i 6= j

L∫
0

φ′′i
2
(x) EIdx if i = j (9)

Applying Eqs. (6)–(9), Eq. (5) can be rewritten asm
L∫

0

φi
2 (x)dx +

n

∑
k=1

mkφ2
i (xk)

 q̈i (t) +

EI
L∫

0

φ′′i
2
(x)dx

 qi (t) = φj
(
x f
)

f (t) . (10)

By introducing notations

M = m



L∫
0

φ1
2 (x)dx +

n

∑
k=1

m̄kφ2
1 (xk)

n

∑
k=1

m̄kφ1 (xk) φ2 (xk) . . .
n

∑
k=1

m̄kφ1 (xk) φN (xk)

n

∑
k=1

m̄kφ2 (xk) φ1 (xk)

L∫
0

φ2
2 (x)dx +

n

∑
k=1

m̄kφ2
2 (xk) . . .

n

∑
k=1

m̄kφ2 (xk) φN (xk)

. . . . . .
n

∑
k=1

m̄kφN (xk) φ1 (xk)
n

∑
k=1

m̄kφN (xk) φ2 (xk) . . .
L∫

0

φN
2 (x)dx +

n

∑
k=1

m̄kφ2
N (xk)


,

K = EI



L∫
0

φ′′
2
1 (x)dx 0 . . . 0

0
L∫

0

φ′′2
2
(x)dx . . . 0

. . . . . .

0 0 . . .
L∫

0

φ′′
2
N (x)dx


,

Φ (x) = [φ1 (x) , . . . , φN (x)]T, q̈ (t) = [q̈1 (t) , q̈2 (t) , . . . , q̈N (t)]T,

q (t) = [q1 (t) , q2 (t) , . . . , qN (t)]T, m̄k =
mk

m
.

Eq. (10) can be expressed in matrix form as follows

Mq̈ (t) + Kq (t) = Φ
(
x f
)

f (t) . (11)
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The natural frequency of beam carrying concentrated masses can be obtained by
solving the eigenvalue problem associated with Eq. (11), that is

det
[
K−ω2M

]
= 0. (12)

If the force is harmonic f (t) = f̄ eiωt then the solution of Eq. (11) can be found in
the form

q (t) = q̄eiωt. (13)
Substituting Eq. (13) into Eq. (11) yields(

K−ω2M
)

q̄ = Φ
(
x f
)

f̄ . (14)

The receptance function is defined as the frequency response function in which the
response is the displacement. This means that in the frequency domain: receptance =

displacement/force. Thus, left multiplying Eq. (14) with
ΦT (ξ)

f̄
[(

K−ω2M
)]−1

the re-

ceptance at x due to the force at x f is obtained

α
(
x, x f , ω

)
=

ΦT (x) q̄
f̄

= ΦT (x)
(
K−ω2M

)−1
Φ
(
x f
)

. (15)

It is noted that when infinite modes are applied, i.e. N → ∞, Eq. (15) becomes the
exact formula of the receptance function.

For the clamped-clamped beam, following relations can be derived:

φi (x) =
sin αiL + sinh αiL
cos αiL− cosh αiL

(sin αix− sinh αix) + cos αix− cosh αix,

φ′′i (x) = −α2
i

[
sin αiL + sinh αiL
cos αiL− cosh αiL

(sin αix + sinh αix) + cos αix + cosh αix
]

,∫ L

0
φ2

i (x)dx = L,∫ L

0

[
φ′′i (x)

]2dx = Lα4
i ,

(16)

where αi is the solution of the frequency equation cos αL cosh αL− 1 = 0.
From Eq. (16) the matrices M and K are derived

M = m


L + β11 β12 . . . β1N

β21 L + β22 . . . β2N
. . . . . .
βN1 . . . L + βNN

 , K = EIL


α4

1 0 . . . 0
0 α4

2 . . . 0
. . . . . .
0 . . . α4

N

 , (17)

where

βij =
n

∑
k=1

{
m̄k

[
sinαiL + sinhαiL
cosαiL− coshαiL

(sinαixk − sinhαixk) + cosαixk − coshαixk

]
×
[

sinαjL + sinhαjL
cosαjL− coshαjL

(
sinαjxk − sinhαjxk

)
+ cosαjxk − coshαjxk

]}
.

(18)
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The exact formula of the receptance of the clamped-clamped beam carrying concen-
trated masses will be derived from Eqs. (16)–(18).

3. NUMERICAL SIMULATION

3.1. Reliability of the theory
In order to check the reliability of the proposed receptance, frequency parameters

αiL of a clamped-clamped beam carrying two masses are calculated from Eq. (12) and
compared to Ref. [14]. Five lowest frequency parameters of the clamped-clamped beam
with two concentrated masses m̄1 = m̄2 = 0.5 attached at 0.25L and 0.75L obtained by
two methods are listed in Tab. 1. As can be seen from this table, the first five frequency
parameters of the present work are in excellent agreement with Ref. [14]. This result
justifies the reliability of the proposed receptance function.

Table 1. Frequency parameters of the clamped-clamped beam

Frequency parameters Ref. [14] Present paper Error (%)

α1L 4.0973 4.0976 0.00007
α2L 5.8984 5.8995 0.00019
α3L 9.1453 9.1534 0.00089
α4L 13.7527 13.7567 0.00029
α5L 16.9258 16.9399 0.00083

3.2. Influence of location of the concentrated masses on the receptance
In this paper, the numerical simulations of a clamped-clamped beam with two masses

are presented. Parameters of the beam are: Mass density ρ = 7800 kg/m3; modulus of
elasticity E = 2.0 × 1011 N/m2; L = 1 m; b = 0.02 m; h = 0.01 m. Two equal con-
centrated masses of 0.6 kg are attached on the beam in different scenarios. The first five
mode shapes are used to calculate the receptance. The receptance matrices are calculated
at 50 points spaced equally on the beam while the force moves along these points.

The receptance of the clamped-clamped beam without masses is calculated first.
Fig. 2 presents the receptance matrices when the forcing frequencies equal to the first,
second and third natural frequencies of the beam-mass system, respectively. As can be
seen from Fig. 2(a) when the forcing frequency is equal to the first natural frequency,
the receptance is maximum at the middle of the beam which corresponds to the position
where the amplitude of the first mode is maximum. As can be observed from Fig. 2(b)
that when the forcing frequency is equal to the second natural frequency, the receptance
is maximum at position of about 0.3L and 0.7L from the left end of the beam which are
the positions where the amplitude of the second mode shape is maximum. Meanwhile,
the receptance is smallest at the middle of beam which corresponds to the position where
the amplitude of the second mode shape is minimum. Fig. 2(c) presents the receptance
matrix of the beam when the frequency of the force is equal to the third natural fre-
quency. The receptance of the beam is maximum at the positions of about 0.2L, 0.5L and
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0.8L where the amplitude of the third mode shape is maximum. The receptance is min-
imum at positions of about 0.35L, 0.65L where the amplitude of the third mode shape is
minimum. It can be concluded that, when the excitation frequency is equal to a natural
frequency the positions of maxima and minima in the receptance are the same with the
positions of maxima and minima in the corresponding mode shape. Therefore, similar
to the mode shape, we call the maxima in the receptance “peaks of receptance” and the
minima in the receptance “nodes of receptance”.
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Fig. 2. Receptance of beam without a masse

When there is a concentrated mass, the receptance matrix of the beam is changed.
Fig. 3 presents the receptance matrices of the beam when the forcing frequency is equal
to the first natural frequency of the beam-mass system. As can be seen from this figure,
when the mass is located 0.25L the position of the peak of receptance “moves” to the
left end of beam. However, when the mass is located at the middle of the beam, the
shape of the receptance is unchanged. The change of position of the peak of receptance
is depicted clearer in Fig. 4 when the force is fixed at position 0.5L. As can be observed
from this figure, the peak of receptance moves to the position of 0.4L when the mass is
located at 0.25L. The receptance seems to be “pulled’ toward the mass position.

position of 0.4L when the mass is located at 0.25L. The receptance seems to be “pulled’ toward 
the mass position. 
Fig. 4 presents the receptance of beam carrying a concentrated mass at different positions when 
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is attached at a peak of the receptance matrix, the peaks corresponding to either the response 
position or force position which is close to the mass position will decrease. Meanwhile, the 
shape of receptance is unchanged when the mass is attached at the nodes of the receptance. The 
change in receptance can be observed in more detail as presented in Fig. 5 when the force is 
fixed at position 0.25L. As can be seen from this figure, the peak of receptance decreases. In 
addition, the peak of receptance moves slightly toward the mass position. 
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position of 0.4L when the mass is located at 0.25L. The receptance seems to be “pulled’ toward 
the mass position. 
Fig. 4 presents the receptance of beam carrying a concentrated mass at different positions when 
the forcing frequency is equal to the second natural frequency. As shown in Fig. 4a, when the 
mass is located at 0.3L, the peaks corresponding to either the response position of 0.3L or the 
force position of 0.3L decrease significantly. When the mass is located the middle of the beam, 
the receptance shape is unchanged as shown in Fig. 4b. These results show that when the mass 
is attached at a peak of the receptance matrix, the peaks corresponding to either the response 
position or force position which is close to the mass position will decrease. Meanwhile, the 
shape of receptance is unchanged when the mass is attached at the nodes of the receptance. The 
change in receptance can be observed in more detail as presented in Fig. 5 when the force is 
fixed at position 0.25L. As can be seen from this figure, the peak of receptance decreases. In 
addition, the peak of receptance moves slightly toward the mass position. 
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Fig. 2. Receptance matrices at ω=ω1 
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Fig. 5 presents the receptance of beam carrying a concentrated mass at different po-
sitions when the forcing frequency is equal to the second natural frequency. As shown in
Fig. 5(a), when the mass is located at 0.3L, the peaks corresponding to either the response
position of 0.3L or the force position of 0.3L decrease significantly. When the mass is lo-
cated the middle of the beam, the receptance shape is unchanged as shown in Fig. 5(b).
These results show that when the mass is attached at a peak of the receptance matrix, the
peaks corresponding to either the response position or force position which is close to
the mass position will decrease. Meanwhile, the shape of receptance is unchanged when
the mass is attached at the nodes of the receptance. The change in receptance can be ob-
served in more detail as presented in Fig. 6 when the force is fixed at position 0.25L. As
can be seen from this figure, the peak of receptance decreases. In addition, the peak of
receptance moves slightly toward the mass position.
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Fig. 4. Receptance of beam at ω=ω2  

 
Fig. 5. Measured receptance with the force acting at 0.25L, ω=ω2 
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Fig. 4. Receptance of beam at ω=ω2  

 
Fig. 5. Measured receptance with the force acting at 0.25L, ω=ω2 
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The change in receptance can be seen in more detail when the force is fixed at position 0.2L as 
depicted in Fig. 7. Similar conclusion can be drawn from this figure that when there is a mass 
attached at a peak, this peak will decrease significantly. When there is one mass the peaks of 
receptance move toward the mass position. When there are two masses attached symmetrically 
at 0.2L and 0.8L the peak at 0.2L moves to the left end, while the peak at 0.8L moves to the 
right end. When there are two masses attached at 0.2L and 0.5L, the receptance is “pulled” to 
the left end. In this case, the receptance tends to “move” toward the heavier side of the beam. 

 
Figure 7. Normalized receptance when the force is fixed at 0.2L, ω=ω3 

4. Experiment results  
The experimental setup is illustrated in Fig. 8. The clamped-clamped beam with the same 
parameters presented in Section 3.1 has been tested. The beam is excited by the Vibration 
Exciter Bruel & Kjaer 4808 and the response is measured by the instrument Polytec Laser 
Vibrometer PVD-100. Two equal concentrated masses of 0.6 kg are attached on the beam in 
different scenarios. The receptance is measured along the beam when the forcing frequency is 
set to the first three natural frequencies of the beam-mass system. The receptance matrix is 
obtained at 50 points spaced equally on the beam.  
According to the simulation results, when the forcing frequency is equal to the first natural 
frequency, the change in receptance is simple that it has only one peak at the middle of the beam 
and it moves toward the position of the attached mass. Meanwhile, when the forcing frequency 
is high the change in receptance becomes more complicated with different configurations of the 
attached masses. Therefore, when the forcing frequency is equal to the first natural frequency 
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Fig. 7. Normalized receptance at ω = ω3

Fig. 7 presents the receptance of beam when the forcing frequency is equal to the
third natural frequency. As shown in Fig. 7(a), when one mass is located at 0.2L or 0.8L,
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the peaks corresponding to either the response position of 0.2L or the force positions of
0.2L decrease significantly. When one mass is located at 0.5L, the peaks corresponding
to either the response position of 0.5L or the force position of 0.5L decrease significantly
as shown in Fig. 7(b). When two masses are located at 0.2L and 0.5L, the peaks corre-
sponding to either the response positions of 0.2L, 0.5L or the force positions of 0.2L, 0.5L
decrease significantly as depicted in Fig. 7(c). When two masses are located at 0.2L and
0.8L, the peaks corresponding to either the response positions of 0.2L, 0.8L or the force
positions of 0.2L, 0.8L decrease significantly as shown in Fig. 7(d). The change in recep-
tance can be seen in more detail when the force is fixed at position 0.2L as depicted in
Fig. 8. Similar conclusion can be drawn from this figure that when the masses attached
at peaks, these peaks will decrease significantly. When there is one mass the peaks of
receptance move toward the mass position. When there are two masses attached sym-
metrically at 0.2L and 0.8L the peak at 0.2L moves to the left end, while the peak at 0.8L
moves to the right end. When there are two masses attached at 0.2L and 0.5L, the recep-
tance is “pulled” to the left end. In this case, the receptance tends to “move” toward the
heavier side of the beam.
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4. Experiment results  
The experimental setup is illustrated in Fig. 8. The clamped-clamped beam with the same 
parameters presented in Section 3.1 has been tested. The beam is excited by the Vibration 
Exciter Bruel & Kjaer 4808 and the response is measured by the instrument Polytec Laser 
Vibrometer PVD-100. Two equal concentrated masses of 0.6 kg are attached on the beam in 
different scenarios. The receptance is measured along the beam when the forcing frequency is 
set to the first three natural frequencies of the beam-mass system. The receptance matrix is 
obtained at 50 points spaced equally on the beam.  
According to the simulation results, when the forcing frequency is equal to the first natural 
frequency, the change in receptance is simple that it has only one peak at the middle of the beam 
and it moves toward the position of the attached mass. Meanwhile, when the forcing frequency 
is high the change in receptance becomes more complicated with different configurations of the 
attached masses. Therefore, when the forcing frequency is equal to the first natural frequency 

Fig. 8. Normalized receptance when the force is fixed at 0.2L, ω = ω3

4. EXPERIMENT RESULTS

The experimental setup is illustrated in Fig. 9. The clamped-clamped beam with
the same parameters presented in Section 3.1 has been tested. The beam is excited by
the Vibration Exciter Bruel & Kjaer 4808 and the response is measured by the instrument
Polytec Laser Vibrometer PVD-100. Two equal concentrated masses of 0.6 kg are attached
on the beam in different scenarios. The receptance is measured along the beam when the
forcing frequency is set to the first three natural frequencies of the beam-mass system.
The receptance matrix is obtained at 50 points spaced equally on the beam.

According to the simulation results, when the forcing frequency is equal to the first
natural frequency, the change in receptance is simple that it has only one peak at the mid-
dle of the beam and it moves toward the position of the attached mass. Meanwhile, when
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only the receptance curve extracted with the force fixed at one position is measured, while the 
whole receptance matrices are measured at the second and third natural frequencies. 

When the mass is attached at the position of L/4, the force is fixed at L/2 and the forcing 
frequency is equal to the first natural frequency, the measured receptance moves to the left end 
as presented in Fig. 9. Comparing Figs. 3 and 9 it is concluded that the measured receptance 
and the simulation results are in very good agreement in both cases without and with an attached 
mass. 
When the excitation frequency is equal to the second natural frequency and the mas is attached 
at the position of L/4, the measured receptance matrix presented in Fg. 4a and the simulation 
receptance matrix shown in Fig. 10a are in very good agreement. As can be seen from Fig. 10a, 
three peaks corresponding to the position of L/4 in the receptance matrix decrease significantly. 
When the mass is attached at L/2 and the forcing frequency is equal to the third natural 
frequency, five peaks of the receptance matrix corresponding to the position of L/2 decrease 
significantly as can be observed in Fig. 10b. This agrees with the simulation result depicted in 
Fig 6b. Fig. 11 presents the experimental receptance curves of beam without and with an 
attached mass at L/4 which was measured when the forcing frequency is equal to the second 
natural frequency. When there is no mass attached, these receptance has two peaks at L/4 and 
3L/4. These experimental results justify the correctness of the simulation results presented in 
Fig. 5. When there is a mass attached at the position of L/4, the peak at the mass position 
decreases clearly. Fig. 12 presents the receptance measured when the force frequency is equal 
to the third natural frequency. As can be seen from this figure, when there is no mass attached 
the receptance has three peaks at L/6, L/2 and 5L/6. When there are masses attached, the 
receptance peaks decrease significantly at the mass positions. The experimental results 
presented in Fig. 12 are in very good agreement with the simulation results depicted in Fig. 7. 

 
Fig. 8. Experimental setup  Fig. 9. Experimental setup

the forcing frequency is high the change in receptance becomes more complicated with
different configurations of the attached masses. Therefore, when the forcing frequency
is equal to the first natural frequency only the receptance curve extracted with the force
fixed at one position is measured, while the whole receptance matrices are measured at
the second and third natural frequencies.

When the mass is attached at the position of L/4, the force is fixed at L/2 and the
forcing frequency is equal to the first natural frequency, the measured receptance moves
to the left end as presented in Fig. 10. Comparing Figs. 4 and 10 it is concluded that the
measured receptance and the simulation results are in very good agreement in both cases
without and with an attached mass.

 
Fig. 9. Measured receptance curves of beam, force position=L/4, ω=ω1 
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Fig. 10. Measured receptance matrices of beam: a) ω=ω2; b) ω=ω3 

 
Figure 11. Measured receptance curves of beam, force position=L/4, ω=ω2 
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Fig. 10. Measured receptance curves of beam, force position = L/4, ω = ω1



40 Nguyen Viet Khoa, Dao Thi Bich Thao

When the excitation frequency is equal to the second natural frequency and the mas
is attached at the position of L/4, the measured receptance matrix presented in Fig. 5(a)
and the simulation receptance matrix shown in Fig. 11(a) are in very good agreement. As
can be seen from Fig. 11(a), three peaks corresponding to the position of L/4 in the re-
ceptance matrix decrease significantly. When the mass is attached at L/2 and the forcing
frequency is equal to the third natural frequency, five peaks of the receptance matrix cor-
responding to the position of L/2 decrease significantly as can be observed in Fig. 11(b).
This agrees with the simulation result depicted in Fig. 7(b). Fig. 12 presents the experi-
mental receptance curves of beam without and with an attached mass at L/4 which was
measured when the forcing frequency is equal to the second natural frequency. When
there is no mass attached, these receptance has two peaks at L/4 and 3L/4. These exper-
imental results justify the correctness of the simulation results presented in Fig. 6. When
there is a mass attached at the position of L/4, the peak at the mass position decreases
clearly. Fig. 13 presents the receptance measured when the force frequency is equal to the
third natural frequency. As can be seen from this figure, when there is no mass attached
the receptance has three peaks at L/6, L/2 and 5L/6. When there are masses attached, 

Fig. 9. Measured receptance curves of beam, force position=L/4, ω=ω1 
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Fig. 10. Measured receptance matrices of beam: a) ω=ω2; b) ω=ω3 
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Fig. 9. Measured receptance curves of beam, force position=L/4, ω=ω1 
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Fig. 10. Measured receptance matrices of beam: a) ω=ω2; b) ω=ω3 
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Fig. 11. Measured receptance matrices of beam

 
Fig. 9. Measured receptance curves of beam, force position=L/4, ω=ω1 
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Fig. 10. Measured receptance matrices of beam: a) ω=ω2; b) ω=ω3 
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Figure 12. Measured receptance curves of beam, force position=L/6, ω=ω3 

5. Conclusion 
In this paper, the exact receptance function of clamped-clamped beam carrying concentrated 
masses is derived. The proposed receptance function can be applied easily for predicting the 
response of the beam under a harmonic excitation. The influence of the concentrated masses on 
the receptance of beam is also investigated.  
When the excitation frequency is equal to a natural frequency, the peaks and nodes positions of 
the receptance are the same with the maximum and minimum positions of the corresponding 
mode shape. When there are concentrated masses the shape of receptance is changed. When the 
mass positions are close to peaks of receptance, these peaks will decrease significantly. When 
the masses are located at the nodes of receptance, the receptance is not influenced. The influence 
of the masses on the receptance matrices can be used to control the vibration amplitudes at some 
specific positions at given forcing frequencies.  
The experiment has been carried out when the forcing frequency is set to the first three natural 
frequencies of the beam carrying concentrated masses. The experimental and simulation results 
are in very good agreement which justifies the proposed method. 
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the receptance peaks decrease significantly at the mass positions. The experimental re-
sults presented in Fig. 13 are in very good agreement with the simulation results depicted
in Fig. 8.

5. CONCLUSIONS

In this paper, the exact receptance function of clamped-clamped beam carrying con-
centrated masses is derived. The proposed receptance function can be applied easily
for predicting the response of the beam under a harmonic excitation. The influence of
the concentrated masses on the receptance of beam is also investigated. When the ex-
citation frequency is equal to a natural frequency, the peaks and nodes positions of the
receptance are the same with the maximum and minimum positions of the correspond-
ing mode shape. When there are concentrated masses the shape of receptance is changed.
When the mass positions are close to peaks of receptance, these peaks will decrease sig-
nificantly. When the masses are located at the nodes of receptance, the receptance is not
influenced. The influence of masses on the receptance matrices can be used to control the
vibration amplitudes at some specific positions at given forcing frequencies.

The experiment has been carried out when the forcing frequency is set to the first
three natural frequencies of the beam carrying concentrated masses. The experimental
and simulation results are in very good agreement which justifies the proposed method.
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[10] A. Karakas and M. Gürgöze. A novel formulation of the receptance matrix of non-
proportionally damped dynamic systems. Journal of Sound and Vibration, 264, (3), (2003),
pp. 733–740. https://doi.org/10.1016/s0022-460x(02)01507-9.

[11] G. Muscolino, R. Santoro, and A. Sofi. Explicit frequency response functions of dis-
cretized structures with uncertain parameters. Computers & Structures, 133, (2014), pp. 64–78.
https://doi.org/10.1016/j.compstruc.2013.11.007.

[12] N. V. Khoa, C. Van Mai, and D. T. B. Thao. Exact receptance function and receptance curva-
ture of a clamped-clamped continuous cracked beam. Vietnam Journal of Mechanics, 41, (4),
(2019), pp. 349–361. https://doi.org/10.15625/0866-7136/14566.

[13] J. S. Wu and T. L. Lin. Free vibration analysis of a uniform cantilever beam with point masses
by an analytical-and-numerical-combined method. Journal of Sound and Vibration, 136, (2),
(1990), pp. 201–213. https://doi.org/10.1016/0022-460X(90)90851-P.

[14] S. Maiz, D. V. Bambill, C. A. Rossit, and P. A. A. Laura. Transverse vibration of
Bernoulli–Euler beams carrying point masses and taking into account their rotatory in-
ertia: Exact solution. Journal of Sound and Vibration, 303, (3-5), (2007), pp. 895–908.
https://doi.org/10.1016/j.jsv.2006.12.028.

https://doi.org/10.1016/j.ijmecsci.2016.07.024
https://doi.org/10.1016/j.apm.2018.06.047
https://doi.org/10.1016/s0022-460x(02)01507-9
https://doi.org/10.1016/j.compstruc.2013.11.007
https://doi.org/10.15625/0866-7136/14566
https://doi.org/10.1016/0022-460X(90)90851-P
https://doi.org/10.1016/j.jsv.2006.12.028

	1. INTRODUCTION
	2. THEORETICAL BACKGROUND
	3. NUMERICAL SIMULATION
	3.1. Reliability of the theory
	3.2. Influence of location of the concentrated masses on the receptance

	4. EXPERIMENT RESULTS
	5. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

