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Abstract. Taylor expansion is one of the many mathematical tools that is applied in Me-
chanics and Engineering. In this paper, using the partial derivative of a matrix with respect
to a vector and the Kronecker product, the formulae of Taylor series of vector variable for
scalar functions, vector functions and matrix functions are built and demonstrated. An
example regarding the linearization of the differential equations of an elastic manipulator
is presented using Taylor expansion.
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1. INTRODUCTION

Taylor expansion is one of the many mathematical tools that is applied in Mechanics
and Engineering [1–4]. Taylor series for multivariate scalar functions has been well doc-
umented in mathematics textbooks [5]. Recently, the partial derivatives with respect to
a vector variable of vector functions and matrix functions using the Kronecker product
have been studied [6,7]. This type of derivative has been used in dynamics of multi-body
systems [8–11].

In the field of dynamics of many elastic objects, equations of motion have very com-
plex forms. The simplification of these complex equations is essential. On the other hand,
it is also desirable to get the solutions quickly and handily for the applications in opti-
mum design, real-time control or optimal control. Therefore, in many cases the solutions
of nonlinear partial differential equations are not desired directly; instead, appropriate
techniques are used to convert them into more suitable forms which not only still ade-
quately describe the important characteristics of the true systems but also are easier to
deal with. One of these techniques is the Taylor expansion. However, applying common
Taylor expansion formula for scalar functions of one or many scalar variables to the prob-
lems of multi-body systems where matrix functions of vector variables are widely used,
one witnesses the inconvenience of cumbersome formulations.
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In this paper, using the definition on partial derivative of a matrix with respect to a
vector and Kronecker product [7–9], the formulae of Taylor expansion according to a vec-
tor x for scalar functions, vector functions and matrix functions will be built and demon-
strated. An applied example regarding the linearization of the differential equations of
an elastic manipulator will be presented.

2. SOME DEFINITIONS AND PROPERTIES: A REVIEW

2.1. Single variable Taylor series
Let f (x) be an infinitely differentiable function in some open interval around x = x0.

Then the Taylor expansion of f (x) at x0 is [5]

f (x) = f (x0) +
n

∑
k=1

f (k) (x0)

k!
(x− x0)

k + O
[
(x− x0)

n+1
]

, (1)

where O
[
(x− x0)

n+1
]

is the remainder.

2.2. The Kronecker product and the Kronecker exponentiation

Definition 1. Let A = [aij] ∈ Rm×n, B = [bij] ∈ Rr×s. Then, the Kronecker product of A
and B is defined as the matrix [6]

A⊗ B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

 ∈ Rmr×ns. (2)

Some properties of Kronecker products [6–10]

(A⊗ B)⊗C = A⊗ (B⊗C) , (3)

(A⊗ B)T = AT ⊗ BT, (4)

(A⊗ B)(C⊗D) = (AC)⊗ (BD), (5)

(Ep ⊗ xn×1)Ap×mdm×1 = (A⊗ En)(d⊗ x), (6)

dp×1 ⊗ xn×1 = (d⊗ En)x. (7)

From Eqs. (6) and (7), we have

(En ⊗ am×1)bn×1 = (bn×1 ⊗ Em) am×1. (8)

It is possible to prove

am×1bT
n×1 = (bT ⊗ Em)(En ⊗ a). (9)
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Indeed, using Eq. (5), we have

(bT ⊗ Em)(En ⊗ a) = (bTEn)⊗ (Ema)

= bT ⊗ a =


a1b1 a1b2 . . . a1bn
a2b1 a2b2 . . . a2bn

...
...

. . .
...

amb1 amb2 . . . ambn

 = abT.
(10)

In the above formulae, Em denotes the m×m identity matrix.

Definition 2. The kth-Kronecker power of the matrix A (k is an integer larger than 1) is
defined as follows

A⊗k = A⊗ (A⊗k−1) = A⊗A⊗ . . .⊗A︸ ︷︷ ︸
k copies

. (11)

If k = 1, we have
A⊗1 = A. (12)

2.3. The partial derivative of a matrix with respect to a vector

Let scalar α(x), vector a(x) ∈ Rm and matrix A(x) ∈ Rm×p be functions of vector
variable x ∈ Rn.

Definition 3. The first order partial derivatives with respect to vector x of scalar α(x),
vector a(x) and matrix A(x) are respectively defined by [7, 8]

∂α

∂x
=

[
∂α

∂x1

∂α

∂x2
· · · ∂α

∂xn

]
∈ Rn, (13)

∂a
∂x

=



∂a1

∂x
∂a2

∂x
...

∂am

∂x


=



∂a1

∂x1

∂a1

∂x2
· · · ∂a1

∂xn
∂a2

∂x1

∂a2

∂x2
· · · ∂a2

∂xn
...

...
. . .

...
∂am

∂x1

∂am

∂x2
· · · ∂am

∂xn


∈ Rm×n, (14)

∂A
∂x

=

[
∂a1

∂x
· · ·

∂ap

∂x

]
=


∂a11

∂x1
· · · ∂a11

∂xn
...

. . .
...

∂am1

∂x1
· · · ∂am1

∂xn

· · ·

∂a1p

∂x1
· · ·

∂a1p

∂xn
...

. . .
...

∂amp

∂x1
· · ·

∂amp

∂xn

 ∈ Rm×np.

(15)

Definition 4. The kth-order partial derivatives with respect to vector x of scalar α(x),
vector a(x) and matrix A(x) are respectively defined as follows (k > 2)

∂(k)α

∂x(k)
=

∂

∂x

(
∂(k−1)α

∂x(k−1)

)
=

∂(k−1)

∂x(k−1)

(
∂α

∂x

)
∈ Rnk

, (16)
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∂(k)a
∂x(k)

=
∂

∂x

(
∂(k−1)a
∂x(k−1)

)
=



∂ka1

∂xk

∂ka2

∂xk
...

∂kam

∂xk


∈ Rm×nk

, (17)

∂kA
∂xk =

∂

∂x

(
∂(k−1)A
∂x(k−1)

)
=



1×nk︷ ︸︸ ︷
∂ka11

∂xk

1×nk︷ ︸︸ ︷
∂ka12

∂xk . . .

1×nk︷ ︸︸ ︷
∂ka1p

∂xk
...

...
. . .

...
...

...
. . .

...
1×nk︷ ︸︸ ︷

∂kam1

∂xk

1×nk︷ ︸︸ ︷
∂kam2

∂xk . . .

1×nk︷ ︸︸ ︷
∂kamp

∂xk


∈ Rm×pnk

. (18)

Property 1. For the product of two matrices A(x) ∈ Rm×p and B(x) ∈ Rp×s, we have the
following property [8]

∂

∂x
(A(x)B(x)) =

∂A
∂x

(B⊗ En) + A
∂B
∂x

. (19)

Corollary. Using Eq. (19) for matrix A(x) ∈ Rm×p and matrix of constants C ∈ Rp×s, we
have

∂

∂x
(A(x)C) =

∂A
∂x

(C⊗ En). (20)

Deriving the above expression with respect to the vector x successively, we get

∂k

∂xk (A(x)C) =
∂k−1

∂xk−1

(
∂A
∂x

(C⊗ En)

)
=

∂k−2

∂xk−2

(
∂2A
∂x2 (C⊗ E⊗2

n )

)
=

∂kA
∂xk (C⊗E⊗k

n ). (21)

Property 2. Taking kth-order derivative of the identity

a(x) =
m

∑
i=1

eiai, (22)

where ei is the ith column of the unit matrix with an appropriate size, one obtains

∂k

∂xk a(x) =
m

∑
i=1

∂k

∂xk (eiai) =
m

∑
i=1

ei
∂k

∂xk ai. (23)

Property 3. Taking kth-order derivative of the identity

A(x) =
p

∑
i=1

aieT
i , (24)
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and noting (21) yield

∂k

∂xk A(x) =
p

∑
i=1

∂k

∂xk (aieT
i ) =

p

∑
i=1

∂k

∂xk ai(eT
i ⊗ E⊗k

n ) =
p

∑
i=1

∂k

∂xk ai(eT
i ⊗ Enk). (25)

3. TAYLOR EXPANSION FOR MATRIX FUNCTIONS OF VECTOR VARIABLE

3.1. Taylor series for scalar functions of vector variable
Let scalar α (x) be a function of vector variable x ∈ Rn, namely

α = α (x) = α (x1, x2, . . . , xn) .

The Taylor expansion with respect to vector x for α (x) in the neighborhood of x = x0
is defined as follows

α (x) ≈ α (x0) +
1
1!

n

∑
i1=1

∂

∂xi1
α (x0) (xi1 − xi10)

+
1
2!

n

∑
i1=1

n

∑
i2=1

∂2

∂xi1 ∂xi2
α (x0) (xi1 − xi10) (xi2 − xi20)

+
1
3!

n

∑
i1=1

n

∑
i2=1

n

∑
i3=1

∂3

∂xi1 ∂xi2 ∂xi3
α (x0) (xi1 − xi10) (xi2 − xi20) (xi3 − xi30) + . . .

+
1
k!

n

∑
i1=1

n

∑
i2=1

. . .
n

∑
ik=1

∂k

∂xi1 ∂xi2 . . . ∂xik

α (x0) (xi1 − xi10) (xi2 − xi20) . . . (xik − xik0),

(26)

where
x0 =

[
x10 x20 . . . xn0

]T .

Lemma 1. The following expression holds
n

∑
i1=1

n

∑
i2=1

. . .
n

∑
ik=1

∂k

∂xi1 ∂xi2 . . . ∂xik

α (x0) (xi1 − xi10) (xi2 − xi20) . . . (xik − xik0) =
∂k

∂xk α (x0)∆⊗k,

(27)
where

∆ = x− x0. (28)

Proof. It can easily be shown that Eq. (27) is true when k = 1

n

∑
i1=1

∂

∂xi1
α (x0) (xi1 − xi10) =

[
∂

∂x1
α (x0)

∂

∂x2
α (x0) . . .

∂

∂xn
α (x0)

] 
(x1 − x10)
(x2 − x20)

...
(xn − xn0)


=

∂

∂x
α (x0)∆⊗1.

(29)
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Assuming that Eq. (27) is correct with k = j
n

∑
i1=1

n

∑
i2=1

. . .
n

∑
ij=1

∂j

∂xi1 ∂xi2 . . . ∂xij

α (x0)
(
xi1 − xi10

) (
xi2 − xi20

)
. . .
(

xij − xij0

)
=

∂j

∂xj α (x0)∆⊗j, (30)

we just need to prove that Eq. (27) is true with k = j + 1.
n

∑
i1=1

. . .
n

∑
ij=1

n

∑
ij+1=1

∂j+1

∂xi1 ∂xi2 . . . ∂xij+1

α (x0)
(
xi1 − xi10

) (
xi2 − xi20

)
. . .
(

xij − xij0

) (
xij+1 − xij+10

)
=

∂j+1

∂xj+1 α (x0)∆⊗j+1.

(31)

Consider an integer value ij+1 such that 1 ≤ ij+1 ≤ n. From (30) replacing α by
∂α

∂xij+1

,

we have
n

∑
i1=1

. . .
n

∑
ij=1

∂j

∂xi1 ∂xi2 . . . ∂xij

(
∂α

∂xij+1

)∣∣∣∣∣
x0

(
xi1 − xi10

) (
xi2 − xi20

)
. . .
(

xij − xij0

)
=

∂j

∂xj

(
∂α

∂xij+1

)∣∣∣∣∣
x0

∆⊗j.

(32)
Multiplying both sides of the above equation with

(
xij+1 − xij+10

)
, we get

n

∑
i1=1

. . .
n

∑
ij=1

∂j

∂xi1 ∂xi2 . . . ∂xij

(
∂α

∂xij+1

)∣∣∣∣∣
x0

(xi1 − xi10) (xi2 − xi20) . . .
(

xij − xij0

) (
xij+1 − xij+10

)

=
∂j

∂xj

(
∂α

∂xij+1

)∣∣∣∣∣
x0

∆⊗j
(

xij+1 − xij+10

)
.

(33)
Assigning values from 1 to n to ij+1 and adding all expressions (33), we have another
representation of the left side of (31) as follows

n

∑
ij+1

∂j

∂xj

(
∂α

∂xij+1

)∣∣∣∣∣
x0

(
xij+1 − xij+10

)
∆⊗j

=

[
∂j

∂xj

(
∂α

∂x1

)∣∣∣∣
x0

(x1 − x10) . . .
∂j

∂xj

(
∂α

∂xn

)∣∣∣∣
x0

(xn − xn0)

]
∆⊗j

=

[
∂j

∂xj

(
∂α

∂x1

)∣∣∣∣
x0

((x1 − x10)En) . . .
∂j

∂xj

(
∂α

∂xn

)∣∣∣∣
x0

((xn − xn0)En)

]
∆⊗j

=

[
∂j

∂xj

(
∂α

∂x1

)∣∣∣∣
x0

. . .
∂j

∂xj

(
∂α

∂xn

)∣∣∣∣
(x0)

]  (x1 − x1 0)En
...
(xn − xn 0)En

∆⊗j

=
∂j

∂xj

(
∂α

∂x

)∣∣∣∣
x0

(∆⊗ En)∆⊗j.

(34)
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Using Eq. (7) and Eq. (16), Eq. (34) can be rewritten as
n

∑
ij+1

∂

∂xij+1

(
∂jα

∂xj

)∣∣∣∣∣
x0

(
xij+1 − xij+10

)
∆⊗j =

∂j+1

∂xj+1 α(x0)∆⊗j+1. (35)

Thus, (31) holds and therefore (27) is true.
Substituting Eq. (27) into Eq. (26), we get a compact formula as follows

α (x) ≈ α (x0) +
k

∑
i=1

1
i!

∂i

∂xi α (x0)∆⊗i (36)

�

3.2. Taylor series for vector functions of vector variable
Consider a vector function of vector x ∈ Rn

a (x) =
[

a1 (x) a2 (x) . . . am (x)
]T

=
m

∑
i=1

eiai, a (x) ∈ Rm. (37)

Using Eq. (36), we have the Taylor expansion with respect to vector x for scalar func-
tion ai (x)in the neighborhood of x = x0

ai (x) ≈ ai (x0) +
k

∑
j=1

1
j!

∂j

∂xj ai (x0)∆⊗j, i = 1, m, (38)

which leads to

a (x) ≈
m

∑
i=1

ei

(
αi (x0) +

k

∑
j=1

1
j!

∂j

∂xj αi (x0)∆⊗j

)

=
m

∑
i=1

eiαi (x0) +
m

∑
i=1

ei

(
k

∑
j=1

1
j!

∂j

∂xj αi (x0)∆⊗j

)

= a (x0) +
k

∑
j=1

m

∑
i=1

1
j!

ei
∂j

∂xj αi (x0)∆⊗j

= a (x0) +
k

∑
j=1

1
j!

(
m

∑
i=1

ei
∂j

∂xj αi (x0)

)
∆⊗j.

(39)

Applying (23), we have

m

∑
i=1

ei
∂j

∂xj αi (x0) =
∂j

∂xj a (x0) , j = 1, k. (40)

Substituting Eq. (40) into Eq. (39), we get

a (x) ≈ a (x0) +
k

∑
j=1

1
j!

∂j

∂xj a (x0)∆⊗j. (41)

Eq. (41) is the Taylor series for vector function a(x) in the neighborhood of x = x0.



344 Nguyen Van Khang, Dinh Cong Dat, Nguyen Thai Minh Tuan

3.3. Taylor series for matrix functions of vector variable
Consider a matrix function of vector x ∈ Rn

A (x) =


a11 (x) a12 (x) . . . a1p (x)
a21 (x) a22 (x) . . . a2p (x)

...
...

. . .
...

am1 (x) am2 (x) . . . amp (x)


=
[

a1 (x) a2 (x) . . . ap (x)
]
=

p

∑
i=1

aieT
i .

(42)

Using Eq. (41), Taylor series for column vector ai ∈ A in a neighborhood of x = x0
has the following form

ai (x) ≈ ai (x0) +
k

∑
j=1

1
j!

∂j

∂xj ai (x0)∆⊗j, i = 1, p. (43)

Substituting Eq. (43) into Eq. (42), we have

A (x) ≈
p

∑
i=1

(
ai (x0) +

k

∑
j=1

1
j!

∂j

∂xj ai (x0)∆⊗j

)
eT

i

=
p

∑
i=1

ai (x0) eT
i +

p

∑
i=1

(
k

∑
j=1

1
j!

∂j

∂xj ai (x0)∆⊗j

)
eT

i

= A (x0) +
k

∑
j=1

p

∑
i=1

1
j!

∂j

∂xj ai (x0)∆⊗jeT
i .

(44)

Applying Eq. (9), we have

∆⊗jeT
i =

(
eT

i ⊗ Enj

) (
Ep ⊗ ∆⊗j

)
, i = 1, p, j = 1, k. (45)

Eq. (44) can be written in the following form

A (x) ≈ A (x0) +
k

∑
j=1

p

∑
i=1

1
j!

∂j

∂xj ai (x0)
(

eT
i ⊗ Enj

) (
Ep ⊗ ∆⊗j

)
= A (x0) +

k

∑
j=1

1
j!

(
p

∑
i=1

∂j

∂xj ai (x0)
(

eT
i ⊗ Enj

))(
Ep ⊗ ∆⊗j

)
.

(46)

Using Eq. (25), we have the Taylor expansion with respect to vector x for matrix
function A (x) in the neighborhood of x = x0

A (x) ≈ A (x0) +
k

∑
j=1

1
j!

∂j

∂xj A (x0)
(

Ep ⊗ ∆⊗j
)

. (47)
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3.4. Linearization of the matrix function of vector variables
If the quadratic or higher terms in the Taylor series (47) are negligibly small, we have

the linearization formula

A (x) ≈ A (x0) +
∂

∂x
A (x0)

(
Ep ⊗ ∆

)
. (48)

For matrix functions with two vector variables x ∈ Rn and y ∈ Rn, we can apply
(48) twice in succession as follows

A (x, y) ≈ A (x0, y) +
∂

∂x
A (x0, y)

(
Ep ⊗ (x− x0)

)
≈ A (x0, y0) +

∂

∂y
A (x0, y0)

(
Ep ⊗ (y− y0)

)
+

+
∂

∂x
A (x0, y0)

(
Ep ⊗ (x− x0)

)
+

+
∂

∂x
∂

∂y
A (x0, y0)

(
Ep ⊗ (x− x0)

) (
Ep ⊗ (y− y0)

)
.

(49)

Note that the last term of (49) is a nonlinear term. The final linearization formula for
a matrix function of two vector variables is

A (x, y) ≈ A (x0, y0) +
∂

∂y
A (x0, y0)

(
Ep ⊗ (y− y0)

)
+

∂

∂x
A (x0, y0)

(
Ep ⊗ (x− x0)

)
.

(50)

A special case but very common in the dynamics of multi-body systems: we need to
linearize the product of a matrix function and one of its vector variable

A (x, y) y ≈
[

A (x0, y0) +
∂

∂y
A (x0, y0)

(
Ep ⊗ (y− y0)

)
+

+
∂

∂x
A (x0, y0)

(
Ep ⊗ (x− x0)

)]
(y0 + (y− y0))

≈ A (x0, y0) y0 +
∂

∂y
A (x0, y0)

(
Ep ⊗ (y− y0)

)
y0+

+
∂

∂x
A (x0, y0)

(
Ep ⊗ (x− x0)

)
y0 + A (x0, y0) (y− y0)+

+

[
∂

∂y
A (x0, y0)

(
Ep ⊗ (y− y0)

)
+

+
∂

∂x
A (x0, y0)

(
Ep ⊗ (x− x0)

)]
(y0 + (y− y0)) .

(51)
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Ignoring the nonlinear terms and using Eq. (8), we have

A (x, y) y ≈ A (x0, y0) y0 +

(
A (x0, y0) +

∂

∂y
A (x0, y0) (y0 ⊗ En)

)
(y− y0)+

+
∂

∂x
A (x0, y0) (y0 ⊗ En) (x− x0).

(52)

As a corollary, one can write

A (x) y ≈ A (x0) y0 + A (x0) (y− y0) +
∂

∂x
A (x0) (y0 ⊗ En) (x− x0). (53)

4. LINEARIZATION OF THE MOTION EQUATIONS OF AN ELASTIC
MANIPULATOR

In this section, we apply the Taylor expansion for matrix functions to linearize the
motion equations of a flexible manipulator moving and vibrating only in a vertical plane
as shown in Fig. 1. Flexible link OE is assumed to be long and slender enough for the
Euler-Bernoulli beam theory to be applied. The stationary frame is denoted as Ox0y0.
If the elastic vibration is ignored, the link move exactly the same as the moving frame
denoted Oxy. The link has Young modulus E, second moment of areaI, volumetric mass
density ρ, length l, and cross-sectional area A. τ(t) is the driving torque.

Using Lagrange’s equations of second kind and the Ritz-Galerkin method, we can
establish the system of differential equations of motion of the system considering only
the first mode shape, assuming that the other mode shapes are negligible.

In this example, the general coordinates of the manipulator are selected as follows

s =

[
qa
w

]
, (54)

where qa is the rotation angle and w is the elastic displacement of the link.
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Fig. 1. A single–link flexible manipulator

The motion equations of the flexible manipulator have the following form [11]

M (s) s̈ + C (s, ṡ) ṡ + g (s) = τ (t) . (55)
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Here we use the following notations

s (t) = sR (t) + ∆s (t) = sR (t) + y (t) , (56)

ṡ (t) = ṡR (t) + ∆ṡ (t) = ṡR (t) + ẏ (t) , (57)

s̈ (t) = s̈R (t) + ∆s̈ (t) = s̈R (t) + ÿ (t) , (58)
where superscript R denotes the basic motion – the motion of the manipulator if the link
is rigid

sR (t) =
[

qR
a (t)

qR
e (t)

]
=

[
qR

a (t)
0

]
, ṡR (t) =

[
q̇R

a (t)
0

]
, s̈R (t) =

[
q̈R

a (t)
0

]
. (59)

Applying (53) to the first term of the left-hand side of (55) results in

M (s) s̈ ≈M
(
sR) s̈R + M

(
sR) ÿ +

∂M
∂s

∣∣∣∣
R
(s̈R ⊗ Em)y. (60)

Using (52) for the second term of the left-hand side of (55) yields

C (s, ṡ) ṡ ≈ C
(
sR, ṡR) ṡR +

∂C
∂s

∣∣∣∣
R
(ṡR ⊗ E)y +

(
C
(
sR, ṡR)+ ∂C

∂ṡ

∣∣∣∣
R
(ṡR ⊗ E)

)
ẏ. (61)

Finally, noting (43), we have

g (s) ≈ g
(
sR)+ ∂g

∂s

∣∣∣∣
R

y. (62)

Substituting Eqs. (60), (61) and (62) into Eq. (55) and ignoring the quadratic small
quantities, we have

ML (t) ÿ + DL (t) ẏ + KL (t) y = hL (t) , (63)
where

hL (t) = τ (t)−
[
g
(
sR)+ M

(
sR) s̈R + C

(
sR, ṡR) ṡR] , (64)

ML (t) = M
(
sR) , (65)

DL (t) = C
(
sR, ṡR)+ ∂C

∂ṡ

∣∣∣∣
R
(ṡR ⊗ E), (66)

KL (t) =
∂M
∂s

∣∣∣∣
R
(s̈R ⊗ Em) +

∂C
∂s

∣∣∣∣
R
(ṡR ⊗ E) +

∂g
∂s

∣∣∣∣
R

, (67)

or, more specifically,

ML (t) =

 J1 + mEl2 +
1
3

mOEl2 ρAD1 + mElX1 (l)

mElX1 + ρAD1 mEX2
1 (l) + ρAm11

 , (68)

KL (t) =

 −mEgl sin qR
a −

mOEglsinqR
a

2
−mEgX1 (l) sin qR

a − µg sin qR
a C1

−mEgX1 (l) sin qR
a − µg sin qR

a C1 −mE
(
q̇R

a
)2

X2
1 (l)− ρA

(
q̇R

a
)2

m11 + EIk11

 ,

(69)

DL (t) =
[

0 0
0 0

]
, (70)
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hL (t) =

 τ −
(

J1 + mEl2 +
1
3

mOEl2
)

q̈R
a −mEgl cos qR

a −
mOEglcosqR

a
2

− (mElX1 + ρAD1) q̈R
a −mEgX1 (l) cos qR

a − µg cos qR
a C1

 . (71)

The appearance of qR
a in the above expressions implies that, if the link exhibits peri-

odic basic motion, (63) is a linear system of ODE with periodic coefficients.

5. CONCLUSIONS

By using the Kronecker product of two matrices and the derivatives of matrices with
respect to vector variable, the paper proposes the Taylor expansion formula for the matrix
of vector variable in a general way. This formula is expected to ease the programming
process for the equations establishment of many mechanical problems. In the applied
example, the Taylor expansion was used to linearize the differential equations of motion
of a flexible manipulator around the basic motion and led to a linear system of ODE
with periodic coefficients. Compared with the known linearization method, the proposed
method gives similar results with a shorter computer time.
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