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Abstract. Dynamic analysis of an inclined functionally graded sandwich (FGSW) beam
traveled by a moving mass is studied. The beam is composed of a fully ceramic core and
two skin layers of functionally graded material (FGM). The material properties of the FGM
layers are assumed to vary in the thickness direction by a power-law function, and they
are estimated by Mori–Tanaka scheme. Based on the first-order shear deformation theory,
a moving mass element, taking into account the effect of inertial, Coriolis and centrifugal
forces, is derived and used in combination with Newmark method to compute dynamic
responses of the beam. The element using hierarchical functions to interpolate the dis-
placements and rotation is efficient, and it is capable to give accurate dynamic responses
by small number of the elements. The effects of the moving mass parameters, material dis-
tribution, layer thickness ratio and inclined angle on the dynamic behavior of the FGSW
beam are examined and highlighted.

Keywords: inclined FGSW beam; hierarchical functions; moving mass element; Mori–
Tanaka scheme; dynamic responses.

1. INTRODUCTION

Sandwich beams are widely used in the aerospace industry as well as in other indus-
tries due to their high stiffness to weight ratio. Functionally graded materials (FGMs),
initiated by Japanese scientists in 1984, are employed to fabricate functionally graded
sandwich (FGSW) beams to improve their performance in severe conditions. Investiga-
tions on mechanical behavior of the FGSW beams have been recently reported by several
researchers. Bhangale and Ganesan [1] studied thermo-elastic buckling and vibration
behavior of a FGSW beam having constrained viscoelastic core using a finite element for-
mulation. Amirani et al. [2] analyzed free vibration of sandwich beam with FGM core
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by a mesh-less method. Bui et al. [3] proposed a novel truly mesh-free radial point inter-
polation method to investigate transient responses and natural frequencies of sandwich
beams with FGM core. Using a mesh-free boundary-domain integral equation method,
Yang et al. [4] studied free vibration of the FGSW beams. Based on a refined shear defor-
mation theory and a quasi-3D theory, Vo et al. [5, 6] derived finite element formulations
for free vibration and buckling analyses of FGSW beams. Nguyen et al. [7] obtained an
analytical solution for buckling and vibration analysis of FGSW beams using a quasi-3D
shear deformation theory. Again, a quasi-3D theory is used by Vo et al. [8] to study static
behavior of FGSW beams. Finite element model and Navier solutions are developed by
the authors to determine the displacements and stresses of FGSW beams with various
boundary conditions. Su et al. [9] considered free vibration of FGSW beams resting on
a Pasternak elastic foundation. The effective material properties of FGM are estimated
by both Voigt model and Mori–Tanaka scheme, and the governing equations are solved
using the modified Fourier series method. Based on Timoshenko beam theory, Şimşek
and Al-shujairi [10] examined static, free and forced vibration of FGSW beams under
the action of two moving harmonic loads. The equations of the motion are obtained by
the authors using Lagrange’s equations, and they are solved by the implicit Newmark-β
method.

The problem of beams traveled by a moving mass has drawn much attention from
scientists [11–15]. The inertial effects of the moving mass including Coriolis, inertia and
centrifugal forces are taken into consideration by the authors. Most of the works, how-
ever considered the horizontal beams. When the beams are inclined, then the approaches
presented in the foregoing researches cannot be directly applied to solve the problem. For
this reason, Wu [16] used the theory of moving mass element to determine the dynamic
response of an inclined homogeneous Euler-Bernoulli beam due to a moving mass. The
property matrices of the moving mass element are derived by taking into account of the
effects of inertial force, Coriolis force and centrifugal force induced by a moving mass.
Mamandi and Kargarnovin [17] studied dynamic behavior of inclined pinned-pinned
Timoshenko beams made of linear, homogenous and isotropic material subjected to a
traveling mass/force. The inertial force due to the motion of the traveling mass on the
deformed shape of the beam is considered. Bahmyari et al. [18] presented the finite el-
ement dynamic analysis of inclined composite laminated beams under a moving dis-
tributed mass with constant speed. The algorithm developed accounts for inertial, Cori-
olis, and centrifugal forces due to the moving distributed mass and friction force between
the beam and the moving distributed mass.

According to authors’ best knowledge, there have not been any studies on dynamic
analysis of inclined FGSW beams subjected to moving mass reported in the literature so
far. In this paper, dynamic analysis of an inclined FGSW beam subjected to traveling
mass is studied using a moving mass element. The beam is composed of a fully ceramic
core and two skin layers of FGM. The material properties of the FGM skin layers are
assumed to vary continuously through the thickness of the beam according to a power-
law. Mori–Tanaka scheme is employed to evaluate the effective properties. The effects
of interaction forces due to the action of the traveling mass including the inertia force,
Coriolis force and centrifugal force are considered. The overall matrices are received by
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adding the contribution of the mass, damping and stiffness matrices of the moving mass
element, respectively. The present work focuses on the use of hierarchical functions as
interpolation functions to derive a finite element formulation for the analysis. Numeri-
cal investigation is carried out to show the effects of the material gradient index, layer
thickness ratio, inclined angle as well as the weight of the moving mass and its velocity
on dynamic responses of FGSW beam.

2. THEORETICAL FORMULATION

An inclined FGSW beam element with length l, width b and height h, traveled by a
moving mass mc as shown in Fig. 1 is considered. The beam element is inclined an angle
β to the horizontal plane. The local coordinate (x, z) is chosen such that the x-axis is on
the mid-plane, and the z-axis is perpendicular to the mid-plane and directs upward.
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Fig. 1. An inclined FGSW beam element traveled by a moving mass mc

The beam element is composed of a fully ceramic core and two skin layers of trans-
verse FGM. The vertical positions of the bottom, top and of the two interfaces between

the layers are denoted by h0 = −h
2

, h1, h2, h3 =
h
2

. The volume fraction function V(k)
c of

ceramic at the kth layer is given by [5]
V(1)

c (z) =
(

z− h0

h1 − h0

)n

, z ∈ [h0, h1]

V(2)
c (z) = 1 , z ∈ [h1, h2]

V(3)
c (z) =

(
z− h3

h2 − h3

)n

, z ∈ [h2, h3]

(1)

where n is a non-negative material grading index.
This paper employs Mori–Tanaka scheme to evaluate the effective material proper-

ties. According to the Mori–Tanaka scheme, the effective local bulk modulus K(k)
f and the



322 Tran Thi Thom, Nguyen Dinh Kien, Le Thi Ngoc Anh

shear modulus G(k)
f of the kth layer of the sandwich beams can be given by [9]
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m

K(k)
c − K(k)

m

=
V(k)

c

1 +
(

1−V(k)
c

) (
K(k)
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where

K(k)
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c

3
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(
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m =
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m

2
(

1 + µ
(k)
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) , (4)

are the local bulk modulus and the shear modulus of the ceramic and metal at the kth

layer, respectively.
Noting that the effective mass density ρ

(k)
f is defined by Voigt model as [9]

ρ
(k)
f = (ρ

(k)
c − ρ

(k)
m )V(k)

c + ρ
(k)
m . (5)

The effective Young’s modulus E(k)
f and Poisson’s ratio υ

(k)
f are computed via effec-

tive bulk modulus and shear modulus as

E(k)
f =

9K(k)
f G(k)

f

3K(k)
f + G(k)

f

, υ
(k)
f =

3K(k)
f − 2G(k)

f

6K(k)
f + 2G(k)

f

. (6)

Based on the first-order shear deformation beam theory, the displacements in x- and
z-directions, u1(x, z, t) and u3(x, z, t), respectively, at any point of the inclined beam ele-
ment are given by

u1(x, z, t) = u(x, t)− zθ(x, t), u3(x, z, t) = w(x, t), (7)

where z is the distance from the mid-plane to the considering point; u(x, t) and w(x, t)
are, respectively, the displacements of the point on the mid-plane in x- and z-directions;
θ(x, t) is the cross-sectional rotation.

The axial strain (εxx) and the shear strain (γxz) resulted from Eq. (7) are of the forms

εxx = u,x − zθ,x, γxz = w,x − θ, (8)

where a subscript comma is used to indicate the derivative of the variable with respect to
the spatial coordinate x, that is (.),x = ∂ (.) /∂x.

Based on the Hooke’s law, the constitutive relation for the FGSW beam element is as
follows

σ
(k)
xx = E(k)

f (z)εxx, τ
(k)
xz = ψG(k)

f (z)γxz, (9)

where σ
(k)
xx and τ

(k)
xz are the axial stress and shear stress at the kth layer, respectively; ψ

is the shear correction factor, equals to 5/6 for the beams with rectangular cross-section
considered herein.
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The strain energy of the beam element (Ue) resulted from Eq. (8) and Eq. (9) is

Ue =
1
2

l∫
0

∫
A

(σ
(k)
xx εxx + τ

(k)
xz γxz)dAdx =

1
2

l∫
0

[
A11u2

,x − 2A12u,xθ,x + A22θ2
,x + ψA33 (w,x − θ)2

]
dx. (10)

The kinetic energy resulted from Eq. (7) is of the form

Te =
1
2

l∫
0

∫
A

ρ
(k)
f (z)

(
u̇2

1 + u̇2
3
)

dAdx =
1
2

l∫
0

[
I11u̇2 + I11ẇ2 − 2I12u̇θ̇ + I22θ̇2]dx, (11)

where the overhead dot (.) indicates derivative with respect to time t. In Eqs. (10) and
(11), A is the cross-sectional area; A11, A12, A22 and A33 are, respectively, the extensional,
extensional-bending coupling, bending rigidities and the shear rigidity, which are de-
fined as

(A11, A12, A22) = b
3

∑
k=1

hk∫
hk−1

E(k)
f (z)

(
1, z, z2)dz, A33 = b

3

∑
k=1

hk∫
hk−1

G(k)
f (z)dz, (12)

and I11, I12, I22 are the mass moments, defined as

(I11, I12, I22) = b
3

∑
k=1

hk∫
hk−1

ρ
(k)
f (z)

(
1, z, z2)dz. (13)

3. FINITE ELEMENT FORMULATION

The finite element formulation for dynamic analysis of the beam is derived in this
section by using hierarchical functions to interpolate the kinematic variables. These
shape functions are of the forms [19]

N1 =
1
2
(1− ξ) , N2 =

1
2
(1 + ξ) , N3 =

(
1− ξ2) , N4 = ξ

(
1− ξ2) , (14)

with ξ = 2
x
l
− 1 being the natural coordinate.

The beam element based on the hierarchical functions needs middle values of the
variables, and this increases the number of degrees of freedom of the element. In order to
improve the efficiency of the element, the shear strain is constrained to be constant [20]
for reducing the number of degrees of freedom. Using this procedure, the vector of nodal
displacements for a generic element (d) has seven components as

d = {u1 u2 w1 θ1 θ3 w2 θ2}T . (15)
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In the above equation and hereafter, the superscript ‘T’ is used to denote the trans-
pose of a vector or a matrix. By constraining the shear strain to constant, the displace-
ments and rotation are interpolated as [21]

u =
1
2
(1− ξ) u1 +

1
2
(1 + ξ) u2 ,

θ =
1
2
(1− ξ) θ1 +

1
2
(1 + ξ) θ2 +

(
1− ξ2) θ3 ,

w =
1
2
(1− ξ)w1 +

1
2
(1 + ξ)w2 +

l
8
(
1− ξ2) (θ1 − θ2) +

l
6

ξ
(
1− ξ2) θ3.

(16)

In matrix forms, we can write Eq. (16) in the forms

u = Nud, w = Nwd, θ = Nθd. (17)

where

Nu = {N1 N2 0 0 0 0 0}T ,

Nθ = {0 0 0 N1 N3 0 N2}T ,

Nw =

{
0 0 N1

l
8

N3
l
6

N4 N2 −
l
8

N3

}T

,

(18)

with N1, N2, N3, N4 are defined by Eq. (14). From the displacement field in Eq. (17), one
can rewrite the strain energy (10) in the form

Ue =
1
2

dTk d, with k = kuu + kuθ + kθθ + ks, (19)

where k is the element stiffness matrix; kuu, kuθ , kθθ and ks are, respectively, the stiffness
matrices stemming from the axial stretching, axial stretching-bending coupling, bending

and shear deformation. Using (.),ξ =
l
2
(.),x ; (.),ξξ =

l2

4
(.),xx ; dξ =

2
l

dx, these matrices
have the following forms

kuu =

l∫
0

NT
u,x A11 Nu,xdx, kuθ = −

l∫
0

NT
u,x A12 Nθ,xdx,

kθθ =

l∫
0

NT
θ,x A22 Nθ,xdx, ks = ψ

l∫
0

(
NT

w,x −NT
θ

)
A33 (Nw,x −Nθ)dx.

(20)

Similarly, the kinetic energy (11) can also be written in the form

Te =
1
2

ḋTm ḋ with m = muu + muθ + mθθ + mww, (21)
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where m denotes the element mass matrix, and

muu =

l∫
0

NT
u I11 Nudx, mww =

l∫
0

NT
w I11 Nwdx,

muθ = −
l∫

0

NT
u I12 Nθdx, mθθ =

l∫
0

NT
θ I22 Nθdx,

(22)

are, respectively, the element mass matrices resulted from the axial and transverse trans-
lations, axial translation-rotation coupling, cross-sectional rotation.

When beam is inclined an angle β to the horizontal plane as in Fig. 1, the displace-
ment components of an arbitrary point on the inclined beam in the local x and z direc-
tions, u and w are related to those in the global x̄ and z̄ directions, ū and w̄

ū = u cos β− w sin β; w̄ = u sin β + w cos β. (23)

Because the local rotations and the global ones are identical, the vector of local degrees of
freedom d is related to the global one d̄ by d = Td̄ where d̄ =

{
ū1 ū2 w̄1 θ̄1 θ̄3 w̄2 θ̄2

}T

and

T =



cos β 0 sin β 0 0 0 0
0 cos β 0 0 0 sin β 0

− sin β 0 cos β 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 − sin β 0 0 0 cos β 0
0 0 0 0 0 0 1


, (24)

is the transformation matrix between the local coordinate and the global one.
The global element stiffness and mass matrices are finally computed as

k̄ = TTkT and m̄ = TTmT, (25)

with k and m are given in Eqs. (19) and (21). The structural mass matrix M̄b and stiffness
matrix K̄b of the inclined FGSW beam are obtained by assembling the corresponding
element matrices over the total elements.

Assumption that the moving mass mc is located at point i of the beam element. The
interaction forces in the x- and z-directions due to the action of the traveling mass are
respectively given by [16]

Fx = mcüc, Fz = mc
(
ẅc + 2vẇc,x + v2wc,xx

)
, (26)

where v is the velocity of the moving mass; uc, wc represent the displacement compo-
nents of the contact point i in the local x and z directions of the beam element, respec-
tively; mcüc, mcẅc represent the inertia forces; and 2mcvẇc,x, mcv2wc,xx represent the Cori-
olis force and centrifugal force, respectively. The equivalent nodal forces of the beam
element induced by the two forces given by Eq. (26) are [16]

fk = NukFx (k = 1, 2), fk = NwkFz (k = 3, 4, 5, 6, 7), (27)
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where Nuk, Nwk are the hierarchical functions defined in Eq. (18). The displacement com-
ponents of the contact point i can be also interpolated from the nodal displacements as

uc = Nu1u1 + Nu2u2, wc = Nw3w1 + Nw4θ1 + Nw5θ3 + Nw6w2 + Nw7θ2. (28)

From Eq. (28), one can receive the time derivatives of displacement components, then
substituting into Eqs. (26), (27), and writing the resulting expressions in matrix form yield

fc = mcd̈ + ccḋ + kcd, (29)

with d is given in Eq. (15). In Eq. (29),

mc = mc



N2
1 N1N2 0 0 0 0 0

N1N2 N2
2 0 0 0 0 0

0 0 N2
1

l
8

N1N3
l
6

N1N4 N1N2 − l
8

N1N3

0 0
l
8

N1N3
l2

64
N2

3
l2

48
N3N4

l
8

N2N3 − l2

64
N2

3

0 0
l
6

N1N4
l2

48
N3N4

l2

36
N2

4
l
6

N2N4 − l2

48
N3N4

0 0 N1N2
l
8

N2N3
l
6

N2N4 N2
2 − l

8
N2N3

0 0 − l
8

N1N3 − l2

64
N2

3 − l2

48
N3N4 − l

8
N2N3

l2

64
N2

3



, (30a)

cc = 2mcv



0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 N1N1,x
l
8

N1N3,x
l
6

N1N4,x N1N2,x − l
8

N1N3,x

0 0
l
8

N1,x N3
l2

64
N3N3,x

l2

48
N3N4,x

l
8

N2,x N3 − l2

64
N3N3,x

0 0
l
6

N1,x N4
l2

48
N3,x N4

l2

36
N4N4,x

l
6

N2,x N4 − l2

48
N3,x N4

0 0 N1,x N2
l
8

N2N3,x
l
6

N2N4,x N2N2,x − l
8

N2N3,x

0 0 − l
8

N1,x N3 − l2

64
N3N3,x − l2

48
N3N4,x − l

8
N2,x N3

l2

64
N3N3,x



, (30b)

kc = mcv2



0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 N1N1,xx
l
8

N1N3,xx
l
6

N1N4,xx N1N2,xx − l
8

N1N3,xx

0 0
l
8

N1,xx N3
l2

64
N3N3,xx

l2

48
N3N4,xx

l
8

N2,xx N3 − l2

64
N3N3,xx

0 0
l
6

N1,xx N4
l2

48
N3,xx N4

l2

36
N4N4,xx

l
6

N2,xx N4 − l2

48
N3,xx N4

0 0 N1,xx N2
l
8

N2N3,xx
l
6

N2N4,xx N2N2,xx − l
8

N2N3,xx

0 0 − l
8

N1,xx N3 − l2

64
N3N3,xx − l2

48
N3N4,xx − l

8
N2,xx N3

l2

64
N3N3,xx



, (30c)

are the mass, damping and stiffness matrices of the moving mass element written in
the local coordinate system. It can be seen from Eqs. (30b), (30c) that the damping and
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stiffness matrices of the moving mass element are generated from transverse displace-
ment only.

Using Eq. (23) one can also get

uc = Tūc, wc = Tw̄c. (31)

Similarly, the nodal forces and the time derivatives of displacement components in
local coordinate system can be also transformed into those in global coordinate system.
Since, one receives

f̄c = m̄c
¨̄d + c̄c

˙̄d + k̄cd̄, (32)

where

m̄c = TTmcT; c̄c = TTccT; k̄c = TTkcT, (33)

are the mass, damping and stiffness matrices of the moving mass element written in
global coordinate system, respectively.

The finite element equation for the dynamic analysis of the beam can be written in
the form

M̄ ¨̄D + C̄ ˙̄D + K̄D̄ = F̄ex, (34)

where M̄, K̄ are the instantaneous overall mass and stiffness matrices, respectively. They
composed of the constant overall mass and stiffness matrices of the entire inclined beam
itself and the time-dependent element property matrices of the moving mass element
[16]. The instantaneous overall damping matrix C̄ is received by adding the damping
matrix of the moving mass element c̄c to the damping matrix of the inclined beam itself
C̄b. The overall damping matrix C̄b of the inclined beam is proportional to the instanta-
neous overall mass and stiffness matrices by using the theory of Rayleigh damping [16].

The equivalent force vector Fex has the following form

Fex =

0 0 . . . 0 0 . . . Px N1|xi
Px N2|xi

Pz N1|xi

l
8

Pz N3

∣∣∣∣
xi

l
6

Pz N4

∣∣∣∣
xi

Pz N2|xi
− l

8
Pz N3

∣∣∣∣
xi︸ ︷︷ ︸

element under moving mass

. . . 0 0 . . . 0 0


T

,

(35)
where Px, Pz are the corresponding force components of the equivalent force vector P
induced by the mc at any time t. They are given by

Px = −mcg sin β, Pz = −mcg cos β, (36)

in which g = 9.81 m/s2 is the acceleration of gravity. Noting that the effect of frictional
force at the contact point i between the moving mass and the inclined beam is small [16],
and it is neglected in this paper. The local equivalent force vector in Eq. (35) must also
transform into global coordinate to form the vector F̄ex. The system of Eq. (34) can be
solved by the direct integration Newmark method. The average acceleration method
which ensures the unconditional convergence is adopted in the present work.
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4. NUMERICAL RESULTS AND DISCUSSION

The dynamic responses of a simply inclined supported FGSW beam subjected to a
moving mass are numerically examined in this section. In the below, it is assumed that
the core of the beam is pure Si3N4 and FGM parts are composed of SUS304 and Si3N4.
The properties of these constituent materials are given in room temperature (T = 300 K)
as [22]:

- SUS304: Em = 207.8 GPa; ρm = 8166 kg/m3; υm = 0.3;
- Si3N4: Ec = 322.3GPa; ρc = 2370 kg/m3; υc = 0.3.
Otherwise stated, an aspect ratio L/h = 20 is assumed, where L is the total length

of the beam. To facilitate the discussion, the dynamic magnification factor (Dd) is intro-

duced as Dd = max
(

w̄ (L/2, t)
w̄st

)
; where w̄st = mcgL3/48Em I is the static deflection of

a full metal beam under mid-span concentrated load of size mcg; I is second moment of
area of the cross-section. The weight of the moving mass is defined through mass ratio
mr = mc/ρm AL, and the layer thickness ratio is defined using three number as (1-0-1),
(2-1-2), (1-1-1), (2-2-1), (1-2-1), (1-8-1), for example (1-1-1) means the thickness ratio of the
bottom, core, and top layers is 1:1:1.
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To confirm the convergence and accuracy of the derived formulation, we have to
consider some special cases of this study to be compared with results in the literature. To
this end, the time histories for normalized mid-point deflection of homogenous beam are
compared with that of Mamandi and Kargarnovin [17] as shown in Fig. 2. In the figure,
w∗ = w̄(L/2, t)/w̄st is the dimensionless mid-span deflection; and the velocity ratio is
defined according to in Ref. [17] as α = v/vcr, with vcr = (π/l)

√
EI/ρA is the critical
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velocity of a moving force on a simply supported Euler-Bernoulli beam. It can be seen
from the figure that the time histories received in this study are in good agreement with
that of Ref. [17], regardless of the velocity ratio.

Tab. 1 compares the fundamental frequency parameters of a simply supported FGSW
beam of the present paper with that of Ref. [9], where the modified Fourier series method

is used. The fundamental frequency parameter is defined as µ =
ωL2

h

√
ρm/Em, with ω

is the fundamental natural frequency. Very good agreement between the results of the
present work with that of Ref. [9] is noted from Tab. 1. It is worth mentioning that con-
vergence of the results obtained in Fig. 2 and Tab. 1 has been achieved by using twenty
elements, and this number of the elements will be used in the below computations.

Table 1. Comparison of fundamental frequency parameter of FGSW beam (L/h = 10)

n Source (1-1-1) (1-2-1) (1-3-1) (1-4-1)

0
Su et al. [9] 5.3988 5.3988 5.3988 5.3988

Present 5.3934 5.3934 5.3934 5.3934

0.6
Su et al. [9] 3.7388 4.0246 4.2394 4.4004

Present 3.7330 4.0187 4.2336 4.3946

1
Su et al. [9] 3.4480 3.7782 4.0314 4.2220

Present 3.4422 3.7723 4.0255 4.2162

5
Su et al. [9] 2.9387 3.3101 3.6263 3.8709

Present 2.9328 3.3040 3.6201 3.8649

Tab. 2 lists the dynamic magnification factors of the beam with two values of the
aspect ratio, L/h = 5 and 20, for various values of the grading index, the layer thickness
ratio and the inclined angle of the beam. The velocity of the moving mass is taken by
v = 20 m/s and the mass ratio is mr = 0.5. Consider the case of L/h = 5, it is clear that
the factor Dd increases as the grading index n increases. The effect of the grading index on
the factor Dd can be explained by the dependence of the rigidities on this index. When
the grading index increases, the beam contains more metal, and thus, its rigidities are
lower, and this is the reason for the increases in the factor Dd when raising n, no matter
what the values of the layer thickness ratio and the inclined angle of the beam would be.
On the contrary, the increase in the thickness of the core layer leads to the decrease in
the factor Dd. This dependence is explained by the fact that for the present FGSW beam
with ceramic hardcore, the rigidities of the beam are higher when the thickness of the
core layer increases, and this leads to the factor Dd decreases. In the case of L/h = 20, the
effect of the grading index, the layer thickness ratio and the inclined angle of the beam
on the factor Dd is similar to the case of L/h = 5. That is, the factor Dd of the FGSW beam
increases as the grading index increases while it decreases as the layer thickness ratio and
the inclined angle of the beam increase. The value of the factor Dd is also dependent on
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Table 2. Variations of the dynamic magnification factor with the grading indexes, layer thickness
ratio and inclined angle for v = 20 m/s, mr = 0.5

β n
L/h = 5 L/h = 20

(1-0-1) (2-1-2) (1-1-1) (2-2-1) (1-2-1) (1-8-1) (1-0-1) (2-1-2) (1-1-1) (2-2-1) (1-2-1) (1-8-1)

0

0 0.7299 0.7299 0.7299 0.7299 0.7299 0.7299 0.6557 0.6557 0.6557 0.6557 0.6557 0.6557

0.5 0.9137 0.9008 0.8707 0.8571 0.8509 0.7815 0.8326 0.8223 0.8125 0.8011 0.7908 0.7195

1 0.9986 0.9795 0.9371 0.9238 0.9096 0.8036 0.9531 0.9092 0.8681 0.8382 0.8327 0.7491

2 1.0802 1.0352 1.0099 0.9869 0.9527 0.8297 1.0306 0.9988 0.9591 0.9187 0.8839 0.7750

5 1.1172 1.1000 1.0599 1.0185 1.0094 0.8560 1.0598 1.0512 1.0236 0.9824 0.9528 0.7968

π

12

0 0.7053 0.7053 0.7053 0.7053 0.7053 0.7053 0.6333 0.6333 0.6333 0.6333 0.6333 0.6333

0.5 0.8818 0.8702 0.8416 0.8267 0.8216 0.7551 0.8043 0.7942 0.7848 0.7736 0.7639 0.6950

1 0.9642 0.9462 0.9059 0.8910 0.8786 0.7757 0.9207 0.8782 0.8386 0.8093 0.8043 0.7236

2 1.0438 1.0002 0.9754 0.9510 0.9210 0.8019 0.9955 0.9648 0.9264 0.8867 0.8538 0.7486

5 1.0784 1.0626 1.0238 0.9817 0.9744 0.8266 1.0236 1.0154 0.9887 0.9481 0.9204 0.7696

π

4

0 0.5174 0.5174 0.5174 0.5174 0.5174 0.5174 0.4633 0.4633 0.4633 0.4633 0.4633 0.4633

0.5 0.6442 0.6359 0.6212 0.6002 0.5985 0.5532 0.5892 0.5811 0.5743 0.5656 0.5591 0.5090

1 0.7037 0.6909 0.6688 0.6445 0.6427 0.5667 0.6741 0.6432 0.6143 0.5913 0.5884 0.5298

2 0.7637 0.7341 0.7112 0.6905 0.6792 0.5891 0.7286 0.7064 0.6784 0.6480 0.6254 0.5480

5 0.7863 0.7772 0.7527 0.7132 0.7104 0.6012 0.7489 0.7431 0.7239 0.6926 0.6740 0.5633

the change of the L/h. In particular, with the velocity value considered in Tab. 2, v = 20
m/s, the factor Dd decreases as L/h increases, however the reduction is negligible. In
addition, it can be seen from Tab. 2 that for any values of the grading index and the
layer thickness ratio, the factor Dd decreases as the inclined angle of the beam increases.
This phenomenon has been explained as follows. Since the axial stiffness of the beam
is much higher than its transverse stiffness, the axial displacement is much smaller than
the transverse one. In this case, the global displacement components in Eq. (23) can be
approximated as w̄ ≈ w cos β, ū ≈ −w sin β. Thus, the value of ū increases and the value
of w̄ decreases when the inclined angle of the beam increases. This leads to the decrease
in the transverse response of the beam.

Tab. 3 shows the effect of grading indexes, the layer thickness ratio and the inclined
angle of the beam on the dynamic magnification factor Dd with a velocity v = 100 m/s.
From Tab. 3, one can see that the rule of dependence of above dynamic parameters on
the factor Dd is similar to the case v = 20 m/s. However, the difference is that a higher
value of the L/h, the factor Dd increases more significantly. The dependence of the factor
Dd on the aspect ratio L/h with two values of the velocity of the moving mass as seen in
Tab. 2 and Tab. 3 shows the effect of the shear deformation on the dynamic behavior of
the beam.

The effect of the layer thickness ratio and inclined angle of the beam on the normal-
ized mid-span deflection is depicted in Fig. 3 for n = 1, v = 30 m/s, mr = 0.5. In the
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Table 3. Variations of the dynamic magnification factor with the grading indexes, layer thickness
ratio and inclined angle for v = 100 m/s, mr = 0.5

β n
L/h = 5 L/h = 20

(1-0-1) (2-1-2) (1-1-1) (2-2-1) (1-2-1) (1-8-1) (1-0-1) (2-1-2) (1-1-1) (2-2-1) (1-2-1) (1-8-1)

0

0 0.7144 0.7144 0.7144 0.7144 0.7144 0.7144 0.9282 0.9282 0.9282 0.9282 0.9282 0.9282

0.5 0.9379 0.9275 0.9134 0.8993 0.8850 0.7964 1.3811 1.3209 1.2716 1.2347 1.1988 1.0439

1 0.9966 0.9660 0.9604 0.9465 0.9374 0.8322 1.5802 1.5095 1.4428 1.3878 1.3380 1.0991

2 1.1254 1.0556 0.9926 0.9707 0.9696 0.8629 1.7323 1.6637 1.5957 1.5265 1.4705 1.1559

5 1.2109 1.1511 1.0900 1.0292 0.9827 0.8912 1.8392 1.7771 1.7111 1.6346 1.5866 1.2117

π

12

0 0.6905 0.6905 0.6905 0.6905 0.6905 0.6905 0.8966 0.8966 0.8966 0.8966 0.8966 0.8966

0.5 0.9051 0.8952 0.8811 0.8669 0.8549 0.7699 1.3340 1.2759 1.2281 1.1919 1.1579 1.0081

1 0.9632 0.9324 0.9270 0.9122 0.9051 0.8039 1.5259 1.4579 1.3936 1.3394 1.2923 1.0617

2 1.0880 1.0200 0.9597 0.9358 0.9361 0.8341 1.6729 1.6066 1.5410 1.4729 1.4203 1.1164

5 1.1712 1.1124 1.0534 0.9909 0.9479 0.8610 1.7760 1.7161 1.6523 1.5767 1.5323 1.1703

π

4

0 0.5134 0.5134 0.5134 0.5134 0.5134 0.5134 0.6562 0.6562 0.6562 0.6562 0.6562 0.6562

0.5 0.6562 0.6501 0.6422 0.6317 0.6241 0.5661 0.9758 0.9337 0.8984 0.8703 0.8467 0.7373

1 0.7126 0.6743 0.6701 0.6607 0.6565 0.5894 1.1129 1.0653 1.0194 0.9780 0.9457 0.7770

2 0.8024 0.7547 0.7107 0.6763 0.6762 0.6107 1.2209 1.1718 1.1249 1.0734 1.0390 0.8167

5 0.8595 0.8206 0.7784 0.7243 0.7023 0.6279 1.2943 1.2523 1.2056 1.1467 1.1192 0.8558

figures, t∗ = t/∆T with ∆T is the total time necessary for the mass crossing the beam.
From the figure one can point out the dynamic deflection of the beam decreases as the
layer thickness ratio increases, and this is explained by the increase in stiffness of the
beam as mentioned above. Also, it can be observed again from Fig. 3 that the increase in
the inclined angle of the beam leads to the decrease in the dynamic deflection. Thus, by
increasing the inclined angle of the beam and the layer thickness ratio, it can be reduced
the dynamic deflection.

In Fig. 4, the time histories for normalized mid-span deflection of the (1-2-1) beam
are depicted for various values of the moving mass speed and mass ratio. The other

parameters are given as: β =
π

5
, n = 1. From Fig. 4, it is clear that the velocity of

the moving mass has a significant effect on both the dynamic deflection and the way the
beam vibrates. For a given mass ratio, the beam performs more vibration cycles when the
velocity is smaller. The values of the normalized mid-span deflection are also strongly
influenced by the mass ratio. The dynamic deflection of the beam increases and reaches
maximum value at a later time when the mass ratio increases.

In Fig. 5, the relation between the dynamic magnification factor Dd and the moving
mass velocity is illustrated with different mass ratio and inclined angle of the beam. As
seen from the figure, the relation between Dd and v is similar to that of isotropic beams
under a moving load, that is, the factor Dd both increases and decreases when the velocity
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by the mass ratio. The dynamic deflection of the beam increases and reaches maximum value at a later time 

when the mass ratio increases.  
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of moving mass is low. When moving mass velocity increases, the factor Dd increases
and it reaches a maximum value. This dependency rule is true for any values of the mass
ratio and inclined angle of the beam. In addition, the increase in the mass ratio leads to
the decrease in the factor Dd and the factor Dd reaches the maximum value at the lower
velocity of moving mass. Also, it is seen from this figure that the factor Dd decreases as
the inclined angle of the beam increases.
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Fig. 5.  Variation of the dynamic magnification factor of (1-2-1) beam with different mass ratio and inclined angle: 

n=1 
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of the axial stress. Specially, it can be observed from these figures that in the case beam is unsymmetrical 

(Fig. 6b, 7b), the stress does not vanish at the mid-span. 

5.  CONCLUSION 

 The dynamic analysis of an inclined FGSW beam subjected to moving mass is studied using the first-

order shear deformation theory. The effective material properties of FGSW beam are estimated by Mori– 

Tanaka’s scheme. The hierarchical functions are used to interpolate the displacements at the contact point 

i between the moving mass and beam element, and these shape functions are also used to interpolate the 

kinematic variables of the beam. The theory of moving mass element has been used to establish the mass, 
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damping and stiffness matrices of the moving mass element generated by the interaction forces including 

the inertia force, Coriolis force and centrifugal force. These matrices must be added to the corresponding 

ones of the entire inclined beam itself to receive the instantaneous overall mass, damping and stiffness 

matrices. The system of motion equations is solved with the aid of Newmark method. The accuracy of the 

derived formulation was validated by comparing the numerical results obtained in the present paper with 

the available data in the literature. The numerical results show a clear effect of the gradient index, the layer 

thickness ratio, moving mass speed, mass ratio and the inclined angle of the beam on the dynamic response 

of the beam. 

 

Fig. 6. Thickness distribution of normalized axial stress at mid-span section of inclined FGSW beam with different 

inclined angle: v=30 m/s, n=1, mr=0.5 

 

Fig. 7.  Thickness distribution of normalized axial stress at mid-span section of inclined FGSW beam with different 
inclined angle: v=100 m/s, n=1, mr=0.5 

-10 -5 0 5 10
-0.5

-0.25

0

0.25

0.5

*

z
/h

 

 

-10 -5 0 5 10
-0.5

-0.25

0

0.25

0.5

*

z
/h

 

 

=0

=/12

=/6

=/4

=0

=/12

=/6

=/4

(a) (1-1-1) (b) (4-2-1)

-10 -5 0 5 10 15
-0.5

-0.25

0

0.25

0.5

*

z
/h

 

 

-10 -5 0 5 10 15
-0.5

-0.25

0

0.25

0.5

*

z
/h

 

 

=0

=/12

=/6

=/4

=0

=/12

=/6

=/4

(b) (4-2-1)(a) (1-1-1)

Fig. 6. Thickness distribution of normalized axial stress at mid-span section of inclined FGSW
beam with different inclined angle: v = 30 m/s, n = 1, mr = 0.5



334 Tran Thi Thom, Nguyen Dinh Kien, Le Thi Ngoc Anh

15 
 

damping and stiffness matrices of the moving mass element generated by the interaction forces including 

the inertia force, Coriolis force and centrifugal force. These matrices must be added to the corresponding 

ones of the entire inclined beam itself to receive the instantaneous overall mass, damping and stiffness 

matrices. The system of motion equations is solved with the aid of Newmark method. The accuracy of the 

derived formulation was validated by comparing the numerical results obtained in the present paper with 

the available data in the literature. The numerical results show a clear effect of the gradient index, the layer 

thickness ratio, moving mass speed, mass ratio and the inclined angle of the beam on the dynamic response 

of the beam. 

 

Fig. 6. Thickness distribution of normalized axial stress at mid-span section of inclined FGSW beam with different 

inclined angle: v=30 m/s, n=1, mr=0.5 

 

Fig. 7.  Thickness distribution of normalized axial stress at mid-span section of inclined FGSW beam with different 
inclined angle: v=100 m/s, n=1, mr=0.5 

-10 -5 0 5 10
-0.5

-0.25

0

0.25

0.5

*

z
/h

 

 

-10 -5 0 5 10
-0.5

-0.25

0

0.25

0.5

*

z
/h

 

 

=0

=/12

=/6

=/4

=0

=/12

=/6

=/4

(a) (1-1-1) (b) (4-2-1)

-10 -5 0 5 10 15
-0.5

-0.25

0

0.25

0.5

*

z
/h

 

 

-10 -5 0 5 10 15
-0.5

-0.25

0

0.25

0.5

*

z
/h

 

 

=0

=/12

=/6

=/4

=0

=/12

=/6

=/4

(b) (4-2-1)(a) (1-1-1)
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In Fig. 6 and Fig. 7, the thickness distributions of the normalized axial stress at
mid-span section of (1-1-1) beam and (4-2-1) beam are depicted for various values of
inclined angle of the beam with v = 30 m/s and v = 100 m/s, respectively. The stress in
these figures was computed at the time when the moving mass arrives at the mid-span
of the inclined beam, and it was normalized as σ∗ = σxx/σ0, where σ0 = PLh/8I, P =
100 kN. At a given value of moving mass velocity, the maximum amplitude of both the
compressive and tensile stresses decrease as the inclined angle of the beam increases.
Thus, by raising the inclined angle of the beam, we could decrease not only the dynamic
magnification factor, but also the maximum amplitude of the axial stress. Specially, it can
be observed from these figures that in the case beam is unsymmetrical (Fig. 6(b), 7(b)),
the stress does not vanish at the mid-span.

5. CONCLUSION

The dynamic analysis of an inclined FGSW beam subjected to moving mass is stud-
ied using the first-order shear deformation theory. The effective material properties of
FGSW beam are estimated by Mori–Tanaka’s scheme. The hierarchical functions are
used to interpolate the displacements at the contact point i between the moving mass
and beam element, and these shape functions are also used to interpolate the kinematic
variables of the beam. The theory of moving mass element has been used to establish
the mass, damping and stiffness matrices of the moving mass element generated by the
interaction forces including the inertia force, Coriolis force and centrifugal force. These
matrices must be added to the corresponding ones of the entire inclined beam itself to re-
ceive the instantaneous overall mass, damping and stiffness matrices. The system of mo-
tion equations is solved with the aid of Newmark method. The accuracy of the derived
formulation was validated by comparing the numerical results obtained in the present
paper with the available data in the literature. The numerical results show a clear effect
of the gradient index, the layer thickness ratio, moving mass speed, mass ratio and the
inclined angle of the beam on the dynamic response of the beam.
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[10] M. Şimşek and M. Al-shujairi. Static, free and forced vibration of functionally graded (FG)
sandwich beams excited by two successive moving harmonic loads. Composites Part B: Engi-
neering, 108, (2017), pp. 18–34. https://doi.org/10.1016/j.compositesb.2016.09.098.

[11] T. O. Awodola, S. A. Jimoh, and B. B. Awe. Vibration under variable magnitude moving
distributed masses of non-uniform Bernoulli-Euler beam resting on Pasternak elastic foun-
dation. Vietnam Journal of Mechanics, 41, (1), (2019), pp. 63–78. https://doi.org/10.15625/0866-
7136/12781.

https://doi.org/10.1016/j.jsv.2006.01.026
https://doi.org/10.1016/j.compstruct.2009.03.023
https://doi.org/10.1016/j.engstruct.2012.03.041
https://doi.org/10.1016/j.compstruct.2014.06.016
https://doi.org/10.1016/j.engstruct.2014.01.029
https://doi.org/10.1016/j.compstruct.2014.08.006
https://doi.org/10.1016/j.compstruct.2015.11.074
https://doi.org/10.1016/j.compositesb.2014.08.030
https://doi.org/10.1007/s00707-016-1575-8
https://doi.org/10.1007/s00707-016-1575-8
https://doi.org/10.1016/j.compositesb.2016.09.098
https://doi.org/10.15625/0866-7136/12781
https://doi.org/10.15625/0866-7136/12781


336 Tran Thi Thom, Nguyen Dinh Kien, Le Thi Ngoc Anh

[12] A. O. Cifuentes. Dynamic response of a beam excited by a moving mass. Finite Elements in
Analysis and Design, 5, (3), (1989), pp. 237–246. https://doi.org/10.1016/0168-874x(89)90046-
2.

[13] E. Esmailzadeh and M. Ghorashi. Vibration analysis of a Timoshenko beam subjected
to a travelling mass. Journal of Sound and Vibration, 199, (4), (1997), pp. 615–628.
https://doi.org/10.1016/s0022-460x(96)99992-7.
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