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Abstract. In this paper, we carry out the homogenization of a very rough three-
dimensional interface separating two dissimilar generally anisotropic poroelastic solids
modeled by the Biot theory. The very rough interface is assumed to be a cylindrical sur-
face that rapidly oscillates between two parallel planes, and the motion is time-harmonic.
Using the homogenization method with the matrix formulation of the poroelasicity theory,
the explicit homogenized equations have been derived. Since the obtained homogenized
equations are totally explicit, they are very convenient for solving various practical prob-
lems. As an example proving this, the reflection and transmission of SH waves at a very
rough interface of tooth-comb type are considered. The closed-form analytical expressions
of the reflection and transmission coefficients have been derived. Based on them, the ef-
fect of the incident angle and some material parameters on the reflection and transmission
coefficients are examined numerically.

Keywords: homogenization; homogenized equations; very rough interfaces; fluid-saturated
porous media.

1. INTRODUCTION

The homogenization of very rough interfaces and boundaries is used to analyze the
asymptotic behavior of various theories of the continuum mechanics in domains includ-
ing a very rough interface or a very rough boundary [1]. It is shown that such an inter-
face and a boundary can be replaced by an equivalent layer within which homogenized
equations hold [2]. The main aim of the homogenization of very rough boundaries or
very rough interfaces is to determine these homogenized equations.

Nevard and Keller [2] considered the homogenization of three-dimensional inter-
faces separating two generally anisotropic solids. The homogenized equations have been
derived, however, they are still implicit. Gilbert and Ou [3] investigated the homogeniza-
tion of a very rough three-dimensional interface that separates two dissimilar isotropic
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poroelastic solids and rapidly oscillates between two parallel planes. The motion of the
solids is assumed to be time-harmonic. The homogenized equations have been obtained,
but they are also still in implicit form. It should be noted that, for deriving the homoge-
nized equations, Nevard and Keller [2], Gilbert and Ou [3] start from basic equations in
component form of the elasticity theory and the poroelasticity theory, respectively.

Using the matrix formulation (not the component formulation) of theories, Vinh and
his coworkers carried out the homogenization of two-dimensional very rough interfaces
and the explicit homogenized equations have been obtained for the elasticity theory [4–7],
for the piezoelectricity theory [8], for the micropolar elasticity [9] and for the poroelastic-
ity with Auriault’s model for time-harmonic motions [10].

A cylindrical surface with a very rough right section is a three-dimensional very
rough interface (see Fig. 1), and it appears frequently in practical problems. The homog-
enization of a such interface, called a very rough cylindrical interface, is therefore neces-
sary and significant in practical applications. Recall that, a right section of a cylindrical
surface is the intersection of it with a plane perpendicular to its generatrices.

In this paper, we carry out the homogenization of a very rough cylindrical interface
that separates two dissimilar generally anisotropic poroelastic solids with time-harmonic
motion, and it oscillates between two parallel planes. When the motion of the poroelas-
tic solids is the same along the direction perpendicular to the plane of right section of
the very rough cylindrical interface, the problem is reduced to the homogenization of a
two-dimensional very rough interface which is the right section (directrix) of the very
rough cylindrical interface. Therefore, this paper can be considered as an extension of
the investigation by Vinh et al. [10].

There exist two models describing the motion of poroelastic solids: Biot’s model
[11, 12] and Auriault’s model [13, 14]. In Biot’s model, the coefficients of equations gov-
erning the motion of poroelastic solids are known. Meanwhile, as Auriault’s model takes
into account the detailed micro-structures of pores including fluid, in order to deter-
mine the coefficients of governing equations (homogenized equations) we have to solve
numerically the corresponding cell problem, and then apply the homogenization tech-
niques. Therefore, Biot’s model is more convenient in use. In this paper, the motion of
poroelastic solids is assumed to be governed by the Biot theory [11, 12].

To carry out the homogenization of the very rough cylindrical interface, first, the
basic equations and the continuity conditions of the linear theory of anisotropic poroe-
lasticity are written in matrix form. Then, by using an appropriate asymptotic expansion
of the solution and following standard techniques of the homogenization method, the
explicit homogenized equation and the explicit associate continuity conditions in matrix
form are derived.

Since the obtained homogenized equations are totally explicit, i.e. their coefficients
are explicit functions of given material and interface parameters, they are of great conve-
nience in solving practical problems. To prove this, the reflection and transmission of SH
waves at a very rough interface of tooth-comb type are considered. The closed-form an-
alytical expressions of the reflection and transmission coefficients are obtained. Based on
them the dependence of the reflection and transmission coefficients on some parameters
is investigated numerically.
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2. BASIC EQUATIONS IN MATRIX FORM

Consider an anisotropic poroelastic medium in which the pore fluid is Newtonian
and incompressible. According to Biot [11], the basic equations governing the time-
harmonic motion of the poroelastic medium are:

div Σ + f = −ω2[ρu + ρLw
]
, (1)

w = K̂[−iωρLu +
i
ω

gradp], (2)

Σ = Ce(u)− αp, (3)
divw = −α : e(u)− βp, (4)

where Σ = (σmn) represents the total stress tensor, C = (cmn) is the elasticity tensor of
the skeleton, α = (αij) is the Biot effective stress coefficient (tensor), β is the inverse of
the Biot modulus reflecting compressibility of the fluid and of the skeleton, p is the fluid
pressure (positive for compression), u = (um) is the displacement of the solid part, w =
f (UL − u) is the displacement of the fluid relative to the solid skeleton, w = (wm), UL is

the displacement of the fluid part, e(u) = (emn) is the strain tensor: emn =
1
2
(um,n + un,m),

commas indicate differentiation with respect to spatial variables xm, f is the porosity,
ρ = (1 − f )ρs + f ρL is the composite mass density, ρL is the mass density of the pore
fluid, ρs is the mass density of the skeleton, K̂ = (k̂mn) = [K−1 + iωρwI]−1, ρw = f−1ρL,
K = (kmn) is the generalized Darcy permeability tensor, symmetric and ω-dependent,
f = ( fm) is the volume force acting on the solid part.

From (2), we have

wm = −α̂mnun +
i
ω

k̂mn p,n, α̂mn = iωρL k̂mn = α̂nm. (5)

Substitution of Eq. (5) into Eqs. (1) and (4) leads to four equations for unknowns u1, u2,
u3 and p, namely

σmn,n + ω2ρ̂mnun + α̂mn p,n + fm = 0, m = 1, 2, 3 (6)[
k̂mn
(

p,n −ω2ρLun
)]

,m = iωαmnum,n + iωβp, (7)

where ρ̂mn = ρδmn− ρLα̂mn = ρ̂nm and σij are expressed in terms of u1, u2, u3 and p by (3).
Four equations {(6), (7)} can be written in matrix form as follows

(A11v,1 + A12v,2 + A13v,3 + A14v),1 + (A21v,1 + A22v,2 + A23v,3 + A24v),2

+ (A31v,1 + A32v,2 + A33v,3 + A34v),3 + Bv,1 + Gv,2 + Dv,3 + Ev + F = 0,
(8)

where v = [u1 u2 u3 p]T, F = [ f1 f2 f3 0]T, the symbol “T” indicates the transpose of a
matrix and matrices Ahk, B, G, D and E are given by

A11 =


c11 c16 c15 0
c16 c66 c56 0
c15 c56 c55 0
0 0 0 k̂11

 , A12 =


c16 c12 c14 0
c66 c26 c46 0
c56 c25 c45 0
0 0 0 k̂12

 ,
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A13 =


c15 c14 c13 0
c56 c46 c36 0
c55 c45 c35 0
0 0 0 k̂13

 , A14 =


0 0 0 −α11
0 0 0 −α12
0 0 0 −α13

iωα̂11 iωα̂12 iωα̂13 0

 ,

A21 =


c16 c66 c56 0
c12 c26 c25 0
c14 c46 c45 0
0 0 0 k̂12

 , A22 =


c66 c26 c46 0
c26 c22 c24 0
c46 c24 c44 0
0 0 0 k̂22

 ,

A23 =


c56 c46 c36 0
c25 c24 c23 0
c45 c44 c34 0
0 0 0 k̂23

 , A24 =


0 0 0 −α12
0 0 0 −α22
0 0 0 −α23

iωα̂12 iωα̂22 iωα̂23 0

 ,

A31 =


c15 c56 c55 0
c14 c46 c45 0
c13 c36 c35 0
0 0 0 k̂13

 , A32 =


c56 c25 c45 0
c46 c24 c44 0
c36 c23 c34 0
0 0 0 k̂23

 , (9)

A33 =


c55 c45 c35 0
c45 c44 c34 0
c35 c34 c33 0
0 0 0 k̂33

 , A34 =


0 0 0 −α13
0 0 0 −α23
0 0 0 −α33

iωα̂13 iωα̂23 iωα̂33 0

 ,

B =


0 0 0 α̂11
0 0 0 α̂12
0 0 0 α̂13

−iωα11 −iωα12 −iωα13 0

 , G =


0 0 0 α̂12
0 0 0 α̂22
0 0 0 α̂23

−iωα12 −iωα22 −iωα23 0

 ,

D =


0 0 0 α̂13
0 0 0 α̂23
0 0 0 α̂33

−iωα13 −iωα23 −iωα33 0

 , E = ω2


ρ̂11 ρ̂12 ρ̂13 0
ρ̂12 ρ̂22 ρ̂23 0
ρ̂13 ρ̂23 ρ̂33 0
0 0 0 −iβ/ω

 .

3. CONTINUITY CONDITIONS IN MATRIX FORM

Consider a linear poroelastic body that occupies three-dimensional domains Ω+,
Ω−, their interface is a very rough cylindrical surface, whose generatrices are parallel
to 0x2 and its right section (directrix) L, belong to the plane x2 = 0, is expressed by equa-
tion x3 = h(y), y = x1/ε (ε > 0), where h(y) is a periodic function of period 1 (see
Fig. 1). Suppose that the interface oscillates between two planes x3 = −A (A > 0) and
x3 = 0, and in the plane x2 = 0: in the domain 0 < x1 < ε (i.e. 0 < y < 1), any straight
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Fig. 1. Three-dimensional domains Ω+ and Ω− are separated by a very rough cylindrical surface
whose generatrices are parallel to 0x2 and its right section (directrix) L (belong to the plane x2 = 0)

is expressed by equation x3 = h(y), y = x1/ε, h(y) is a periodic function of period 1

line x3 = x0
3 = const (−A < x0

3 < 0) has exactly two intersections with the right section L.
Let 0 < ε � 1, then the interface is called very rough interface of Ω+ and Ω−. Suppose
that the domains Ω+, Ω− are occupied by different homogeneous poroelastic materials.
In particular, the material parameters are defined as

cij, kij, α, β, f , ρs, ρw, ρL =


cij+, kij+, α+, β+, f+, ρs+, ρw+, ρL+, x3 > h(

x1

ε
)

cij−, kij−, α−, β−, f−, ρs−, ρw−, ρL−, x3 < h(
x1

ε
)

(10)

where cij+, . . . , ρL+, cij−, . . . , ρL− are constant. Correspondingly, the matrices Akh, B, G,
D, E are given by

Akh, B, G, D, E =


A(+)

kh , B(+), G(+), D(+), E(+) for x3 > h(
x1

ε
)

A(−)
kh , B(−), G(−), D(−), E(−) for x3 < h(

x1

ε
)

(11)

where A(+)
kh , . . . , E(+)

(
A(−)

kh , . . . , E(−)
)

are expressed by (9) in which cij, . . . , ρL are re-

placed by cij+, . . . , ρL+
(
cij−, . . . , ρL−

)
, respectively. Note that matrices Akh, B, G, D, E

do not depend on x2.
Suppose that Ω+, Ω− are perfectly welded to each other along L. Then, the continu-

ity condition is of the form

[ ui ]L = 0, i = 1, 2, 3, [ p ]L = 0,

[σiknk]L = 0, i = 1, 2, 3, [iωwknk]L = 0,
(12)
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where nk is the xk-component of the unit normal to the curve (right section) L, and we
introduce the notation [ . ]L, defined such as: [ f ]L = f+ − f− on L.

In view of (3) and (5), in matrix form the continuity condition (12) takes the form[
v
]

L = 0,
[(

A11v,1 + A12v,2 + A13v,3 + A14v
)
n1

+
(
A31v,1 + A32v,2 + A33v,3 + A34v

)
n3
]

L = 0.
(13)

4. EXPLICIT HOMOGENIZED EQUATION IN MATRIX FORM

Following Bensoussan et al. [15] we suppose that v(x1, x2, x3, ε) = U(x1, y, x2, x3, ε),
and we express U as follows (see Vinh et al. [4–6, 8])

U = V + ε
(

N1V + N11V,1 + N12V,2 + N13V,3

)
+ ε2(N2V + N21V,1 + N22V,2 + N23V,3

+ N211V,11 + N212V,12 + N213V,13 + N222V,22 + N223V,23 + N233V,33
)
+ O(ε3),

(14)

where V = V(x1, x2, x3) (being independent of y), N1, N11, N12, N13, N2, N21, N22, N23,
N211, N212, N213, N222, N223, N233 are 4× 4-matrix valued functions of y and x3 (not de-
pending on x1, x2), and they are y-periodic with period 1. Since y = x1/ε, we have
v,1 = U,1 + ε−1U,y.

Following the same procedure as the one carried out by Vinh et al. [9], one can derive
the explicit homogenized equation (equation for V) in matrix form of Eq. (8), namely
- For x3 > 0:

A(+)
hk V,kh +

(
A(+)

14 + B(+)
)
V,1 +

(
A(+)

24 + G(+)
)
V,2

+
(
A(+)

34 + D(+)
)
V,3 + E(+)V + F(+) = 0.

(15)

- For x3 < −A:

A(−)
hk V,kh +

(
A(−)

14 + B(−))V,1 +
(
A(−)

24 + G(−))V,2

+
(
A(−)

34 + D(−))V,3 + E(−)V + F(−) = 0.
(16)

- For −A < x3 < 0:

〈A−1
11 〉
−1V,11 +

[
〈A−1

11 〉
−1〈A−1

11 A12〉+ 〈A21A−1
11 〉〈A

−1
11 〉
−1
]
V,12 + 〈A−1

11 〉
−1〈A−1

11 A13〉V,13

+
[
〈A31A−1

11 〉〈A
−1
11 〉
−1V,1

]
,3
+
[
〈A21A−1

11 〉〈A
−1
11 〉
−1〈A−1

11 A12〉 − 〈A21A−1
11 A12〉+ 〈A22〉

]
V,22

+
[
〈A21A−1

11 〉〈A
−1
11 〉
−1〈A−1

11 A13〉 − 〈A21A−1
11 A13〉+ 〈A23〉

]
V,23 +

[(
〈A31A−1

11 〉〈A
−1
11 〉
−1〈A−1

11 A12〉

− 〈A31A−1
11 A12〉+ 〈A32〉

)
V,2

]
,3
+
[(
〈A33〉+ 〈A31A−1

11 〉〈A
−1
11 〉
−1〈A−1

11 A13〉 − 〈A31A−1
11 A13〉

)
V,3

]
,3

+
[
〈BA−1

11 〉〈A
−1
11 〉
−1 + 〈A−1

11 〉
−1〈A−1

11 A14〉
]
V,1 +

[
〈A21A−1

11 〉〈A
−1
11 〉
−1〈A−1

11 A14〉 − 〈A21A−1
11 A14〉

+ 〈A24〉+ 〈BA−1
11 〉〈A

−1
11 〉
−1〈A−1

11 A12〉 − 〈BA−1
11 A12〉+ 〈G〉

]
V,2 +

[
〈D〉+ 〈BA−1

11 〉〈A
−1
11 〉
−1〈A−1

11 A13〉

− 〈BA−1
11 A13〉

]
V,3 +

[(
〈A31A−1

11 〉〈A
−1
11 〉
−1〈A−1

11 A14〉 − 〈A31A−1
11 A14〉+ 〈A34〉

)
V
]

,3

+
[
〈E〉+ 〈BA−1

11 〉〈A
−1
11 〉
−1〈A−1

11 A14〉 − 〈BA−1
11 A14〉

]
V + 〈F〉 = 0.

(17)
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The associate continuity conditions are of the form

[V ]L∗ = 0, [Σ0
3 ]L∗ = 0, L∗ : x3 = 0, x3 = −A, (18)

where

Σ0
3 =

[
〈A31A−1

11 〉〈A
−1
11 〉
−1〈A−1

11 A14〉 − 〈A31A−1
11 A14〉+ 〈A34〉

]
V

+ 〈A31A−1
11 〉〈A

−1
11 〉
−1V,1 +

[
〈A32〉+ 〈A31A−1

11 〉〈A
−1
11 〉
−1〈A−1

11 A12〉

− 〈A31A−1
11 A12〉

]
V,2+

[
〈A33〉+ 〈A31A−1

11 〉〈A
−1
11 〉
−1〈A−1

11 A13〉−〈A31A−1
11 A13〉

]
V,3,

(19)

and

〈ϕ〉 =
∫ 1

0
ϕdy = (y2 − y1)ϕ+ + (1− y2 + y1)ϕ−. (20)

It is readily to verify that, when the motion of the poroelastic solids is the same along the
generatrix direction 0x2, i.e. V does not depend on x2, the homogenized equation (17) is
simplified to Eq. (27) in Vinh et al. [10]. It should be noted that the matrices Aik, B, D
and E in Eq. (17) (corresponding to Biot’s model) are not equal to the matrices Aik, B, D
and E, respectively, in Eq. (27) in Vinh et al. [10] (corresponding to Auriault’s model), in
general.

5. REFLECTION AND REFRACTION OF SH WAVE WITH A VERY ROUGH
INTERFACE OF TOOTH-COMB TYPE

In this section we consider the reflection and transmission of SH waves (u1 ≡ u3 ≡
p ≡ 0, u2 = u2(x1, x3)) at a very rough interface of tooth-comb type separating two
orthotropic poroelastic half-spaces. By the meaning of homogenization, this problem
is reduced to the reflection and transmission of SH waves (V1 ≡ V3 ≡ P ≡ 0, V2 =
V2(x1, x3)) through a homogeneous material layer occupying the domain −A ≤ x3 ≤ 0
(see Fig. 2). For orthotropic poroelastic materials, we have [16]

ck4 = ck5 = ck6 = 0, k = 1, 2, 3, c45 = c46 = c56 = 0,
α12 = α13 = α23 = 0, k12 = k13 = k23 = 0.

(21)

In view of (21), from (5) we have

α̂12 = α̂13 = α̂23 = 0, k̂12 = k̂13 = k̂23 = 0, ρ̂12 = ρ̂13 = ρ̂23 = 0. (22)

From Eqs. (15)–(17) and taking into account (21), (22) (without the body forces), the
motion of SH waves is governed by the equations

c66+V2,11 + c44+V2,33 + (re+ − i im+)V2 = 0, for x3 > 0, (23)

c66−V2,11 + c44−V2,33 + (re− − i im−)V2 = 0, for x3 < −A, (24)

〈c−1
66 〉
−1V2,11 + 〈c44〉V2,33 +

[
〈re〉 − i〈im〉

]
V2 = 0, for −A < x3 < 0 (25)
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where

re+ = ω2
[
ρ+ −

ω2ρ2
L+ρw+k2

22+

1 + ω2ρ2
w+k2

22+

]
, im+ =

ω3ρ2
L+k22+

1 + ω2ρ2
w+k2

22+
,

re− = ω2
[
ρ− −

ω2ρ2
L−ρw−k2

22−
1 + ω2ρ2

w−k2
22−

]
, im− =

ω3ρ2
L−k22−

1 + ω2ρ2
w−k2

22−
,

〈re〉 = ω2
[
〈ρ〉 − ω2〈ρ2

Lρwk2
22〉

1 + ω2〈ρ2
wk2

22〉

]
, 〈im〉 = ω3〈ρ2

Lk22〉
1 + ω2〈ρ2

wk2
22〉

.

(26)

In addition to Eqs. (23)–(25), are required the continuity conditions on lines L∗: x3 =
−A, x3 = 0, namely [

V2
]

L∗ = 0,
[
σ0

23
]

L∗ = 0, (27)

where σ0
23 = 〈c44〉V2,3.

Fig. 2. The reflection and refraction of SH wave with the homogenized layer

Assume that a homogeneous incident SHI wave with the unit amplitude, the in-
cident angle θ, propagates in the half-space Ω+ (Fig. 2). When striking at the layer it
generates a reflected SHR wave propagating in the half-space Ω+ and a refracted SHT
wave traveling in the half-space Ω−. Following Borcherdt [17], the homogeneous inci-
dent SHI wave, the reflected SHR wave, the (transmitted) refracted SHT wave are of the
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form

V2I = e−(A1I x1+A3I x3)e−i(P1I x1+P3I x3), (28)

V2R = R e−(A1Rx1+A3Rx3)e−i(P1Rx1+P3Rx3), (29)

V2T = T e−(A1T x1+A3T x3)e−i(P1T x1+P3T x3), (30)

where R is the reflection coefficient, T is the refraction coefficient, PI(P1I , P3I), PR(P1R, P3R),
PT(P1T, P3T) represent the propagation vectors and AI(A1I , A3I), AR(A1R, A3R),
AT(A1T, A3T) represent the attenuation vectors of the homogeneous incident SHI wave,
reflected SHR wave, refracted SHT wave, respectively and (see Vinh et al. [10])

P1I = PI sin θ, P3I = −PI cos θ, PI = |PI |,
A1I = AI sin θ, A3I = −AI cos θ, AI = |AI |.

(31)

Substituting (28) into Eq. (23) yields

AI =

√√√√ −re+ +
√

re2
+ + im2

+

2(c66+ sin2 θ + c44+ cos2 θ)
, PI =

√√√√ re+ +
√

re2
+ + im2

+

2(c66+ sin2 θ + c44+ cos2 θ)
. (32)

Snell’s law gives immediately

P1I = P1R = P1T, A1I = A1R = A1T. (33)

Substituting Eq. (29) into Eq. (23) and using equalities (33) yield

P3R = −P3I , A3R = −A3I . (34)

Equalities (31), (33) and (34) say that the refracted SHR wave is a homogeneous wave
with the reflection angle θR = θ (Fig. 2). Introducing Eq. (30) into Eq. (24) and using
equalities (33) lead to

A3T = −

√√√√−[re− − c66−(P2
1I − A2

1I)] +
√
[re− − c66−(P2

1I − A2
1I)]

2 + [im− − 2c66−P1I A1I ]2

2c44−
,

P3T = −

√√√√ [re− − c66−(P2
1I − A2

1I)] +
√
[re− − c66−(P2

1I − A2
1I)]

2 + [im− − 2c66−P1I A1I ]2

2c44−
.

(35)

In view of Snell’s law, one can see that the general solution of Eq. (25) is given by

V2 = (B1e−iK̂3x3 + B2eiK̂3x3)e−i(P1I−iA1I)x1 , (36)

where B1 and B2 are constants to be determined and

K̂3 =

√
〈re〉 − 〈c−1

66 〉−1(P2
1I − A2

1I)− i[〈im〉 − 2〈c−1
66 〉−1P1I A1I ]

〈c44〉
. (37)
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It is easy to verify that K̂3 = P̂3 − iÂ3 where (real numbers) P̂3, Â3 are given by

P̂3 =

√√√√ [〈re〉 − 〈c−1
66 〉−1(P2

1I − A2
1I)] +

√
[〈re〉 − 〈c−1

66 〉−1(P2
1I − A2

1I)]
2 + [〈im〉 − 2〈c−1

66 〉−1P1I A1I ]2

2〈c44〉
,

Â3 =
〈im〉 − 2〈c−1

66 〉−1P1I A1I

2〈c44〉P̂3
.

(38)
Using (28)–(30), (36) and the continuity conditions (27) yields a system of four equations
for B1, B2, R and T, namely

B1 + B2 = R + 1,

B1 − B2 = − c44+(A3I + iP3I)(1− R)
〈c44〉(Â3 + iP̂3)

,

B1e−(Â3+iP̂3)A + B2e(Â3+iP̂3)A = Te(A3T+iP3T)A,

B1e−(Â3+iP̂3)A − B2e(Â3+iP̂3)A = − c44−(A3T + iP3T)

〈c44〉(Â3 + iP̂3)
Te(A3T+iP3T)A.

(39)

Solving the system (39) for R and T we obtain closed-form analytical expressions for the
reflection and transmission coefficients, namely

R =
pr− sn
mr− qn

, T =
ms− pq
mr− qn

, (40)

where

m = a1e−(Â3+iP̂3)A + a2e(Â3+iP̂3)A, n = −2e(A3T+iP3T)A,

p = −{a2e−(Â3+iP̂3)A + a1e(Â3+iP̂3)A}, q = a1e−(Â3+iP̂3)A − a2e(Â3+iP̂3)A,

r = 2
c44−(A3T + iP3T)

〈c44〉(Â3 + iP̂3)
e(A3T+iP3T)A, s = −{a2e−(Â3+iP̂3)A − a1e(Â3+iP̂3)A},

a1 = 1 +
c44+(A3I + iP3I)

〈c44〉(Â3 + iP̂3)
, a2 = (2− a1).

(41)

From (40) and (41) one can see that R and T depend on 13 dimensionless parameters,
namely

ε1 =
a

a + b
, ε2 =

c44−
c44+

, ε3 =
c66+

c44+
, ε4 =

ω2ρ+A2

c44+
, ε5 = ωρ+k22+, ε6 =

ρL+

ρ+
,

ε7 =
c66−
c44−

, ε8 =
ω2ρ−A2

c44−
, ε9 = ωρ−k22−, ε10 =

ρL−
ρ−

, θ, f1, f2.
(42)

Using formulas (40), (41) we consider the dependence of the moduli |R| and |T| of the
reflection and refraction coefficients on some dimensionless parameters.

It can be seen from Fig. 3 that:
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(i) When the incident angle θ0 increases, moduli |R|, |R0| increase and moduli |T|,
|T0| decrease, |R| < |R0|, |T| > |T0| in which |R|, |T|, (|R0|, |T0|) are the reflection, refrac-
tion coefficients with the rough interface, (without the rough interface) (see Fig. 3(a)).

(ii) The increasing of ε1, ε2 makes the reflection coefficient increasing and makes the
transmission coefficient decreasing (see Figs. 3(b), 3(c)).

(iii) In contrast, the increasing of ε4 makes the reflection coefficient decreasing and
makes the transmission coefficient increasing (see Fig. 3(d)).
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Fig. 3. The dependence of the moduli |R| and |T| of the reflection
and transmission coefficients on θ0 (a), ε1 (b), ε2 (c), ε4 (d)

6. CONCLUSIONS

In this paper the homogenization of a very rough cylindrical interface that separates
two dissimilar generally anisotropic poroelastic solids with time-harmonic motion, and
oscillates rapidly between two parallel planes is investigated. The explicit homogenized
equation in matrix form has been derived by applying the homogenization method. Since
the obtained homogenized equations are fully explicit, they are a powerful tool for inves-
tigating various practical problems. As an example, the reflection and transmission of
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SH waves at a very rough interface of tooth-comb type are considered. The closed-form
analytical expressions of the reflection and transmission coefficients have been obtained.
Employing them, the effect of the incident angle and the material parameters on the re-
flection and transmission coefficients is investigated numerically.
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