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Abstract. An on-off damping radial spring-damper can be attached to a pendulum to sup-
press its nonlinear sway motion. This paper studies the class of on-off damping controller,
which switches the damping level from high to low and back at fixed times every quarter
of period. Among this class, this paper shows the solution of the lower bound controller
producing the lowest amplitude-frequency curve. The lower bound curve shows some
fundamental natures of the system and gives some useful directions for a good on-off
damping controller.
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optimal bound.

1. INTRODUCTION

Residual sway vibration of a pendulum is often met in pendulum-type structures
such as ropeway gondola, crane, floating structures (e.g., ships or tension leg platforms)
or spacecraft. The anti-sway control problem of a single pendulum is often approached
by regulating the movement of the fulcrum point, which can be referred, for example, in
a numerous studies on anti-sway control of crane [1].

However, this paper does not consider the approach of moving the fulcrum point.
In some recent studies, we have introduced the approach of radial spring-damper to re-
duce the sway motion [2, 3]. It works in the principle of nonlinear Coriolis damping [4].
Without adaptability and flexibility, the passive damping, however, has some shortcom-
ings. For example, the too small passive damping can not prevent the resonance motion
but the too large passive damping reduces the damper motion and dissipation energy.
The on-off damping is the simplest way to improve the adaptability of the damping. The
device producing on-off damping is much cheaper and easier to control than the one
producing continuous state damping [5]. The on-off damping, as a method of vibration
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control, has been studied widely from the point of view of both control strategies and
implemented devices, see for example [6–9] and references therein.

The on-off damping strategies have been developed extensively but all the studied
controllers are inapplicable to the problem in this paper because the damper’s radial
force is not codirectional with the sway motion. The novelty in this paper is a clear
derivation of the lower bound of performance index of an on-off damping radial spring-
damper incorporating to a simple pendulum. This lower bound gives a useful analytical
benchmark to evaluate any other practical controller.

2. PROBLEM STATEMENT

In [2, 3], the passive radial spring-damper was proposed to reduce the sway motion
of a pendulum. In this paper, the on-off damping is considered as shown in Fig. 1.
The mechanism of the radial spring-damper is as follows. The sway motion induces
the centrifugal force. Due to the spring-damper connection, the radial motion is excited
and produces the Coriolis damping, which reduces the sway motion. In the passive
damper, the too large damping prevents the radial motion and then the Coriolis damping.
Conversely, the too small damping leads to the resonance motion. The on-off damping
can overcome the shortcomings of too high or too low damping.

radial spring-damper is as follows. The sway motion induces the centrifugal force. Due to the spring-
damper connection, the radial motion is excited and produces the Coriolis damping, which reduces the 
sway motion. In the passive damper, the too large damping prevents the radial motion and then the 
Coriolis damping. Conversely, the too small damping leads to the resonance motion. The on-off 
damping can overcome the shortcomings of too high or too low damping. 

 
Figure 1.  Model of a single pendulum attached with radial spring and on-off damper 

Let us denote q as the sway angle, u as the radial displacement (measured from static position). 
Denote m as the pendulum mass, k and c respectively are the spring and damper coefficients, l is the 
distances from the pendulum center of mass to the pivot in the static condition, g is the acceleration of 
gravity. The structural damping is denoted by cs. The external (non-gravitational) moment Mq acts on 
the pendulum and is considered in the single harmonic form. The motion equations have been derived 
in [3] for the spherical pendulum. In this paper, we only consider the planar pendulum and the 
equations have the following non-dimensional form: 

  (1) 

in which: 

  (2) 

where ws is the natural frequency of pendulum, t is the non-dimensional time with time scale ws
-

1, a is the ratio of two natural frequencies, zs and z respectively are the damping ratios of the spherical 
pendulum and damper, un is the non-dimensional form of radial movement. The dot operator from now 
denotes the differentiation with respect to normalized time t. The external moment Mq have form: 

  (3) 

where b and jf respectively are the excitation normalized frequency and phase, qm is the 
maximum sway angle of the linear pendulum (without spring and damper) at the resonance frequency. 
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Fig. 1. Model of a single pendulum attached with radial spring and on-off damper

Let us denote θ as the sway angle, u as the radial displacement (measured from
static position). Denote m as the pendulum mass, k and c respectively are the spring and
damper coefficients, l is the distances from the pendulum center of mass to the pivot in
the static condition, g is the acceleration of gravity. The structural damping is denoted
by cs. The external (non-gravitational) moment Mθ acts on the pendulum and is con-
sidered in the single harmonic form. The motion equations have been derived in [3] for
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the spherical pendulum. In this paper, we only consider the planar pendulum and the
equations have the following non-dimensional form

(1 + un)
2 (θ̈ + 2ζs θ̇

)
+ (1 + un)

(
sin θ + 2u̇n θ̇

)
= 2ζsθm cos

(
βτ + ϕ f

)
,

ün + 2ζu̇n + α2un − (1 + un) θ̇2 + 1− cos θ = 0,
(1)

in which

ωs =

√
g
l

; ζs =
cs

2l2mωs
; α =

√
k/m
ωs

; ζ =
c

2mωs
; un =

u
l

; τ = ωst, (2)

where ωs is the natural frequency of pendulum, τ is the non-dimensional time with time
scale ω−1

s , α is the ratio of two natural frequencies, ζs and ζ respectively are the damping
ratios of the spherical pendulum and damper, un is the non-dimensional form of radial
movement. The dot operator from now denotes the differentiation with respect to nor-
malized time τ. The external moment Mθ have form

Mθ = 2θmζsω
2
s ml2 cos

(
βτ + ϕ f

)
, (3)

where β and ϕ f respectively are the excitation normalized frequency and phase, θm is
the maximum sway angle of the linear pendulum (without spring and damper) at the
resonance frequency.

Consider the on-off damping radial damper, i.e.

ζ =

[
ζh certain condition
ζl otherwise (4)

in which ζh and ζl , respectively, are the on-value and off-value of the semi-active damp-
ing ratio. The damping is set to a value ζh when a certain condition is met and to a value
ζl otherwise.

3. LOWER BOUND SOLUTION

In the single harmonic vibration, the switching times of many popular on-off con-
trollers such as skyhook or ground hook controller are the roots of the product of two
harmonic functions with the excitation frequency [10]. Therefore, normally, at a given
frequency, the conventional controllers switch the damping level from high to low and
back at fixed times every half period. The interesting lower bound solution for this class
of on-off damping isolation system can be found in [11].

However, the conventional controllers are inapplicable to the problem in this paper
because the damper force is not codirectional with the sway motion. In fact, as pointed
out in [2, 3] the radial motion has the frequency of twice of the pendulum frequency. Be-
cause the damper force also follows this frequency, it is intuitive to consider the class of
on-off damping, which switches the damping level from high to low and back at fixed
times every quarter of period. The full nonlinear differential equation (1) is too compli-
cated to derive the analytical solutions. Some simplifications can be used but retain the
important natures of the system [3]. The order analysis is done by assuming the small
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values of sway angle, radial movement and damping ratio. Retaining the second order
of θ, θ̇, θ̈, un, u̇n, ün, ζs yields

(1 + 2un) θ̈ + 2 (ζs + u̇n) θ̇ + (1 + un) θ = 2ζsθm cos
(

βτ + ϕ f
)

, (5)

ün + 2ζu̇n + α2un − θ̇2 +
θ2

2
= 0. (6)

The equation’s forms (5), (6) are enough to derive the analytical solution but also
retain the second order interaction between the sway motion and the radial motion.

The approximate solutions of the system response are sought in the form of harmonic
functions as

θ = θ0 sin (βτ) , un = hθ2
0 (cos φ sin (2βτ) + sin φ cos (2βτ)) (7)

The three unknown θ0, h and ϕ satisfy the following conditions

θ0 > 0; h > 0; −π < φ < π. (8)

Let us assume

ζ =

[
ζl , τ1 < τ < τ2

ζh, τ2 < τ < τ1 +
π

2β
(9)

In which, π/2/β is the quarter of the (normalized) period of sway motion, τ1 and
τ2 are two fixed switching (normalized) time at the given (normalized) frequency β. To
present the results in a clearer form, let us denote

τ2 − τ1 =
τm

2β
; τ1 + τ2 =

τp

2β
. (10)

The conditions of τ1 and τ2 shown in (9) also give the condition

0 ≤ τm ≤ π. (11)

Use (9) and (10), some integrals relating to the on-off damping ratio are determined
as

τ1+
2π
β∫

τ1

ζdτ = 4

τ1+
π
2β∫

τ1

ζdτ = 4
(

ζl (τ2 − τ1) + ζh

(
τ1 +

π

2β
− τ2

))
=

2
β
(πζh − (ζh − ζl) τm) ,

(12)
τ1+

2π
β∫

τ1

ζ cos (4βτ)dτ = 4

τ1+
π
2β∫

τ1

ζ cos (4βτ)dτ

= 4ζl
sin (4βτ2)− sin (4βτ1)

4β
+ 4ζh

sin
(

4β
(

τ1 +
π
2β

))
− sin (4βτ2)

4β

= −2
ζh − ζl

β
sin τm cos τp,

(13)
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τ1+
2π
β∫

τ1

ζ sin (4βτ)dτ = −2
ζh − ζl

β
sin τm sin τp. (14)

Substituting expression (7) into Eqs. (5)–(6) results in

2βζsθ0 cos (βτ) +
(
1− β2) θ0 sin (βτ)

+
(
1− 2β2) hθ3

0 sin (βτ) (cos ϕ sin (2βτ) + sin ϕ cos (2βτ))

+ 4hβ2θ3
0 cos (βτ) (cos ϕ cos (2βτ)− sin ϕ sin (2βτ)) = 2ζsθm cos

(
βτ + ϕ f

)
,

(15)

4hβθ2
0ζ (cos ϕ cos (2βτ)− sin ϕ sin (2βτ))

+ hθ2
0
(
α2 − 4β2) (cos ϕ sin (2βτ) + sin ϕ cos (2βτ))

− β2θ2
0cos2 (βτ) + θ2

0sin2 (βτ) /2 = 0.

(16)

Multiply Eq. (15) with cos(βτ) and sin(βτ), respectively, then integrate over one
period (from 0 to 2π/β), we have

2βζsθ0 +

(
β2 +

1
2

)
hθ3

0 cos ϕ = 2ζsθm cos
(

ϕ f
)

,

(
1− β2) θ0 −

(
β2 +

1
2

)
hθ3

0 sin ϕ = −2ζsθm sin
(

ϕ f
)

.
(17)

Eliminating the excitation phase ϕ f between two equations of (17) gives a cubic equa-
tion of θ2

0 as (
β2 +

1
2

)2

h2θ6
0 + 2h

(
β2 +

1
2

) (
2ζsβ cos ϕ−

(
1− β2) sin ϕ

)
θ4

0

+
(

4β2ζ2
s +

(
1− β2)2

)
θ2

0 = 4ζ2
s θ2

m.
(18)

Multiply Eq. (16) with cos(2βτ) and sin(2βτ), respectively, then integrate over one
period (from 0 to 2π/β), we have

2hβ

τ1+
2π
β∫

τ1

ζ (cos ϕ (1 + cos (4βτ))− sin ϕ sin (4βτ))dτ

+
(
α2 − 4β2) h sin ϕ

π

β
−
(

2β2 + 1
4

)
π

β
= 0,

2β

τ1+
2π
β∫

τ1

ζ (cos ϕ sin (4βτ)− sin ϕ (1− cos (4βτ)))dτ +
(
α2 − 4β2) cos ϕ

π

β
= 0.

(19)
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The integrals (12), (13) and (14) now are used in Eqs. (19) to gives

4h
(
πζh − (ζh − ζl) τm − (ζh − ζl) cos τp sin τm

)
cos φ

+

(
4 (ζh − ζl) sin τp sin τm +

(
α2 − 4β2) π

β

)
h sin φ−

(
2β2 + 1

4

)
π

β
= 0,

(20)

−4
(
πζh − (ζh − ζl) τm + (ζh − ζl) cos τp sin τm

)
sin φ

−
(

4 (ζh − ζl) sin τp sin τm −
(
α2 − 4β2) π

β

)
cos φ = 0. (21)

Totally we have 3 equations (18), (20) and (21) for 3 unknowns ϕ, h and θ0. Moreover,
h and θ0 are absent in Eq. (21) while θ0 is absent in Eq. (20), that the equations can be
solved sequentially.

The following steps are taken:
- Step 1: Solve (21) to obtain ϕ;
- Step 2: Substitute ϕ to (20), then solve the obtained equation to find h;
- Step 3: Substitute ϕ (found in step 1) and h (found in step 2) to (18) to have the

cubic equation of θ2
0 depending on two parameters τp and τm;

- Step 4: Apply the minimization condition to solve τP as the function of θ0 and τm.
After some manipulations shown in the Appendix, the final relation between θ0 and

τm has following form

a3 (τm, θ0) θ6
0 + a2 (τm, θ0) θ4

0 + a1θ2
0 + a0 = 0, (22)

where

a3 =
1
4

(
β2 +

1
2

)4 π2

β2 ×

(
α2 − 4β2)2 π2

β2 + 16
(
ζ2

1 + ζ2
2
)
+ 8ζ2

(
4ζ1 cos τp − sin τp

(
α2 − 4β2) π

β

)
(
(α2 − 4β2)

2 π2

β2 + 16
(
ζ2

1 − ζ2
2
))2 ,

(23)

a2 =

(
2β2 + 1

)2
π

4β
×

8βζsζ1 −
(
1− β2) (α2 − 4β2) π

β + 4ζ2
((

1− β2) sin τp + 2ζsβ cos τp
)

(α2 − 4β2)2 π2

β2 + 16
(
ζ2

1 − ζ2
2

) ,

(24)
a1 = 4β2ζ2

s +
(
1− β2)2

, (25)

a0 = −4ζ2
s θ2

m, (26)
ζ1 (τm) = πζh − (ζh − ζl) τm; ζ2 (τm) = (ζh − ζl) sin τm, (27)

tan τp =

(
1− β2) ((α2 − 4β2)2 π2

β2 + 16
(
ζ2

1 − ζ2
2
))
− (α2−4β2)π2(2β2+1)

2
θ2

0
8β2

2β

(
ζs

(
(α2 − 4β2)2 π2

β2 + 16
(
ζ2

1 − ζ2
2

))
+

ζ1(2β2+1)2
πθ2

0
4β2

) . (28)

In brief, for a given (normalized) frequency β, the relation (22) gives a curve in the
plane of θ0 and τm. The lowest θ0 of the curve is the lower bound solution for the given
frequency. Figs. 2 and 3 show some typical curves in the plane of θ0 and τm for some
values of β. Other parameters are given as α = 2, ζs = 1%, θm = π/6. The parameter α is
taken of 2, which is near the optimal value of frequency ratio [2, 3]. The on-off dampings
ζh, ζ l are changed to see their effects. It is noted that two end values of τm correspond to
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the passive damping cases. When τm = 0, from (9) we have the passive high damping.
Conversely, τm = π implies the passive low damping case.

 
Figure 2: Typical relation curves (dashed) between q0 and tm and orbit (solid) of minimum 

points for zh=20%, zl=5%, a=2, qm=p/6, zs=1% 

 
Figure 3: Typical relation curves (dashed) between q0 and tm and orbit (solid) of minimum 

points for zh=100%, zl=1%, a=2, qm=p/6, zs=1% 

The following observations of q0 and tm can be drawn from the Figs. 2 and 3: 

Fig. 2. Typical relation curves (dashed) be-
tween θ0 and τm and orbit (solid) of minimum
points for ζh = 20%, ζ l = 5%, α = 2, θm = π/6,

ζs = 1%
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The following observations of q0 and tm can be drawn from the Figs. 2 and 3: 

Fig. 3. Typical relation curves (dashed) be-
tween θ0 and τm and orbit (solid) of minimum
points for ζh = 100%, ζ l = 1%, α = 2, θm = π/6,

ζs = 1%

The following observations of θ0 and τm can be drawn from the Figs. 2 and 3:
- The lower bound of sway angle amplitude θ0 increases when the excitation fre-

quency ratio β is near 1. The behavior is clear because the resonance frequency ratio is 1.
Compare the orbits of minimum points between two Figs. 2 and 3, we see that the larger
ζh and the smaller ζ l give a lower value of lower bound.

- The optimal value of τm increases when the excitation frequency ratio β is near 1.
Observe the on-off damping law (9), we see that increasing τm means the low damping
is used longer. The optimal behavior means that when the frequency ratio β is near 1, the
damping should be tuned longer to lower value to increase the radial motion to dissipate
more energy. The outside region of β requires the larger damping used more frequently
to avoid the resonance motion (see the curves corresponding to β = 0.96 and β = 1.04 in
both Figs. 2 and 3).

4. CONCLUSIONS

This paper considers the anti sway control of a single pendulum by an on-off damp-
ing radial spring-damper. For the single harmonic planar vibration, the theoretical so-
lution of the lower bound of sway amplitude is derived. The lower bound is smaller
with the larger on-damping and the smaller off-damping. The lower bound shows that
when the forced frequency ratio is near 1, the damping should be tuned longer to lower
value to increase the radial motion to dissipate more energy. The outside region of forced
frequency ratio requires the larger damping used more frequently.
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APPENDIX

This appendix derives the relation (22) between θ0 and τm. Solving (21) gives

sin φ = ±
(
α2 − 4β2) π

β − 4ζ2 sin τp√
(α2 − 4β2)2 π2

β2 + 16
(
ζ2

1 + ζ2
2

)
+ 8ζ2

(
4ζ1 cos τp − sin τp (α2 − 4β2) π

β

) ,

cos φ = ±
4
(
ζ1 + ζ2 cos τp

)√
(α2 − 4β2)2 π2

β2 + 16
(
ζ2

1 + ζ2
2

)
+ 8ζ2

(
4ζ1 cos τp − sin τp (α2 − 4β2) π

β

) ,

(29)
where ζ1 and ζ2 are defined in (27). The sign of sinϕ and cosϕ must be chosen to satisfy
the condition h > 0 in (8). Substituting (29) into (20) gives

±h
16
(
ζ2

1 − ζ2
2
)
+
(
α2 − 4β2)2 π2

β2√
(α2 − 4β2)

2 π2

β2 + 16
(
ζ2

1 + ζ2
2
)
+ 8ζ2

(
4ζ1 cos τp − sin τp (α2 − 4β2) π

β

) =

(
2β2 + 1

4

)
π

β
.

(30)
It is not difficult to check that ζ1 > ζ2 when τm satisfies the condition (11). Therefore,

to guarantee the condition h > 0, the plus sign is used in (29) and (30). Substituting
ϕ from (29) and h from (30) to (18), we obtain the equation (22) where the coefficients
ai (i = 0, . . . , 3) are defined in (23)–(26). To eliminate the parameter τP, we use the
minimization condition. Taking the derivative of Eq. (22) with respect to τP gives

∂a3

∂τP
θ6

0 + 6a3θ5
0

∂θ0

∂τP
+

∂a2

∂τP
θ4

0 + 4a2θ3
0

∂θ0

∂τP
+ 2a1θ0

∂θ0

∂τP
= 0. (31)

The minimization condition
∂θ0

∂τP
= 0 applying to (31) gives

∂a3

∂τP
θ2

0 +
∂a2

∂τP
= 0. (32)

Using the forms of a2 and a3 in (23) reduces (24) to a trigonometric equation, which
can be solved for τP. The root obtained is shown in (28).
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