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Abstract. The viscosity of gases plays an important role in the kinetic theory of gases
and in the continuum-fluid modeling of the rarefied gas flows. In this paper we inves-
tigate the effect of the gas viscosity on the surface properties as surface gas temperature
and slip velocity in rarefied gas simulations. Three various viscosity models in the liter-
ature such as the Maxwell, Power Law and Sutherland models are evaluated. They are
implemented into OpenFOAM to work with the solver “rhoCentralFoam” that solves the
Navier-Stokes-Fourier equations. Four test cases such as the pressure driven backward
facing step nanochannel, lid-driven micro-cavity, hypersonic gas flows past the sharp 25-
55-deg. biconic and the circular cylinder in cross-flow cases are considered for evaluating
three viscosity models. The simulation results show that, whichever the first-order or
second-order slip and jump conditions are adopted, the simulation results of the surface
temperature and slip velocity using the Maxwell viscosity model give good agreement
with DSMC data for all cases studied.

Keywords: Sutherland; Power Law; Maxwell viscosity models; rarefied gas flows; slip ve-
locity; surface gas temperature.

1. INTRODUCTION

The accuracy of the Navier–Stokes–Fourier (N–S–F) simulations for rarefied and mi-
croscale gas flows depends on the slip velocity and temperature jump conditions, and
also the constitutive relations supplied, such as the viscosity-temperature relation, ther-
mal conductivity and heat capacity. We did an investigation for the slip and jump con-
ditions in [1] to find the most suitable choice of slip velocity and temperature jump con-
ditions for rarefied gas simulations. Flow regimes in rarefied gas dynamics are charac-
terized by the Knudsen number, Kn, defined as the ratio of gas mean free path (i.e. the
average distance a molecule moves between successive intermolecular collisions) to a
characteristic length of the vehicle body, as free molecular (Kn ≥ 10), transition regime
(0.1 ≤ Kn ≤ 10), slip regime (0.001 ≤ Kn ≤ 0.13), and continuum regime (Kn ≤ 0.001).
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The CFD method, which solves the Navier–Stokes–Fourier (N–S–F) equations with ap-
propriate slip and jump conditions, may simulate successfully rarefied gas flows in the
slip regime, up to a Knudsen number of 0.1. The Direct Simulation Monte Carlo (DSMC)
method is a commonly used to investigate the rarefied gas flows. But this method is also
very expensive both in computational time and memory requirements.

The viscosity affects to the accuracy of the N–S–F simulation results through the
shear stress, heat transfer and the Maxwellian mean free path presented in the slip ve-
locity and temperature jump conditions. In gas microflows, the mean free path of the
gas molecules becomes significant relative to the characteristic dimension of the micro-
devices. The action of viscosity can be achieved from a consideration of the transfer of
molecular momentum between two contiguous layers of the mass flow. Momentum is
carried by the molecules from one layer to the other both by direct translation and by in-
termolecular collisions. If this transfer process is undergone then viscous flow occurs [2].
So the viscosity of gases played an important role in the kinetic theory of gases and rar-
efied gas simulations. Various viscosity models such as the constant viscosity, Power
Law and Maxwell viscosity models were investigated for one-dimensional (1D) shock
structure by the CFD and DSMC methods [3,4]. The Maxwell viscosity model gave good
simulation results of the shock structure in comparing with experimental data [5]. The
Sutherland and Power Law viscosity models have been commonly using in CFD simu-
lations. The viscosity of real gases can be matched by a power law over a small temper-
ature range only, because the long-range attractive forces (the van der Waals forces) are
ignored. More realistic is the Sutherland potential which combines a short-range hard
sphere repulsion with a long-range inverse 6th power attractive potential [6]. So far there
is not yet any comparison between these viscosity models in two-dimensional (2D) rar-
efied gas simulations. In this paper three various viscosity models found in the literature
such as Sutherland, Power Law and Maxwell viscosity models are numerically investi-
gated to evaluate their performance in rarefied gas flows in the slip regime (Kn ≤ 0.1).

Four cases such as the pressure driven backward facing step nanochannel [7], lid
driven micro-cavity, [8], hypersonic gas flow past the sharp 25-55-deg. biconic [9] and a
circular cylinder in cross-flows [10] are considered to investigate the effects of viscosity
on the slip velocity and surface gas temperature. The first-order and second-order slip
conditions in [11–13] are adopted to simulate four cases within the OpenFOAM frame-
work [14]. The simulation results of the surface gas temperature and slip velocity are
compared with the DSMC data published in [11–14] to find out which viscosity model
should be used for predicting the surface quantities in rarefied gas flow simulations.

2. VISCOSITY MODELS

In 2D simulations, the Maxwell viscosity model employed for 1D simulation in [3],
µ = 2

√
mkBT/π/3πd2, is slightly corrected that would be presented below; where m

is mass of a molecule; kB is the Boltzmann constant, d is the molecular diameter and T
is temperature. Whichever model for viscosity, µ, is adopted, the coefficient of thermal
conductivity, k, may be determined from the formula k = cpµ/ Pr where the Prandtl
number, Pr, is assumed to be constant and cp is the constant pressure specific heat.
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When two molecules collide with each other, energy, momentum and mass are all
conserved. If we examine the transport of momentum it means we have been studying
viscosity of a gas [15]. The phenomena of viscosity occur in a gas when it undergoes
a shearing motion. It is found experimentally that the stress acts in the gas across any
plane perpendicular to the direction of the velocity gradient is not only the nature of a
simple pressure normal to the plane but also contains a tangential or shearing component.
The net transfer of momentum of molecules crossing the plane appears as the effect of
viscosity for a two-dimensional gas and is computed by [15]

µ =

√
mkB

π

1
πd2 T0.5. (1)

This equation of gas viscosity was inspired by Maxwell, so-called the Maxwell vis-
cosity model. In comparison with the Maxwell viscosity model mentioned-above in 1D
simulation, the factor (2/3) vanishes in the 2D Maxwell viscosity model. Observing that
according to the kinetic theory of gases, µ is proportional to T0.5, and molecular diameter.

In the other approach, the viscosity also depends on the intermolecular force that
determines how molecules interact in collision with each other. The Power Law viscosity
model is simple and expressed in the well-known relation,

µ = APTs, where s =
1
2
+

2
v− 1

, (2)

where AP is a constant of proportionality and depends on the reference temperature.
The accuracy of the Power Law model depends on the exponent s over the range of
temperature. The values v and s for the intermolecular force law can be determined from
the limiting theoretical cases [15, 16]. The values s and v for the intermolecular force
law for hard-sphere molecules are v = ∞, s = 0.5, and v = 5, s = 1 corresponding
to Maxwellian molecules. Real molecules generally have v ranging from 5 to 15 [15].
Moreover, the values s is suitably chosen to satisfy experimental data [5]. However, the
viscosity can match by a power law over a small temperature range only, because the
attractive forces are ignored. It is seen that the Maxwell viscosity model above (Eq. (1))
can be re-written in the Power Law form µ = AMTs, with AM =

(√
mkB/π

)
/πd2 and

s = 0.5.
The Sutherland viscosity model is more complicated than Power Law viscosity model.

It adds a weak attractive force to the intermolecular force which is more realistic. This
law is valid only if the attractive force of the intermolecular force is small. The Sutherland
model is expressed as.

µ = As
T1.5

T + Ts
, (3)

where AS and TS are constant. The coefficient AS depends on the reference temperature,
and TS is a measure of strength of the attractive force [6]. These constants are interpreted
from experimental data and taken in [3,5,6] to fit the viscosity as accurate as possible. The
values AS and TS for different gases in the range of gas temperature from 58 to 1000 K are
given in [3,17]: for argon AS = 1.93× 10−6 (Pa.s/K−1/2) and TS = 142 K, and for nitrogen
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AS = 1.41× 10−6 (Pa.s/K−1/2) and TS = 111 K. Finally, the macroscopic viscosity model
using for DSMC simulations [10] is expressed as follows,

µ = µref

(
T

Tref

)ω

, where µref =
15
√

πmkBTref

2πd2
ref(5− 2ω)(7− 2ω)

, (4)

where ω is the variable-hard-sphere temperature exponent. This model requires a refer-
ence temperature, Tref, reference diameter, dref and the exponent, ω. Eq. (4) can be written
in the power-law form µ = ATs if we set the constant A = µref/T−ω

ref and s = ω.
The open source CFD software, OpenFOAM [11], is used in the present work. It

uses finite volume numeric to solve systems of partial differential equations ascribed on
any 3-dimensional unstructured mesh of polygonal cells. The Maxwell viscosity model
presented in the form of µ = AMTs, the Power Law and the Sutherland viscosity models
are implemented into OpenFOAM to work with the CFD solver “rhoCentralFoam” that
solves the N–S–F equations.

3. SLIP VELOCITY AND TEMPERATURE JUMP CONDITIONS

In this paper, we focus on the numerical evaluation of viscosity models in rarefied
gas flows in slip regime (Kn ≤ 0.1). So the simple slip and jump conditions are selected
in the present work. The first-order conventional Maxwell slip boundary condition can
be expressed in vector form as [11]

u +

(
2− σu

σu

)
λ∇n(S · u) = uw −

(
2− σu

σu

)
λ

µ
S · (n ·Πmc)−

3
4

µ

ρ

S · ∇T
T

, (5)

where Πmc = µ

(
(∇u)T −

(
2
3

)
I tr(∇u)

)
. The right hand side of Eq. (5) contains 3

terms that are associated with (in order): the surface velocity, the so-called curvature
effect, and thermal creep; p is the gas pressure; u and uw is the velocity and the wall
velocity, respectively; n is the unit outward normal vector; S = I− nn where I is the
identity tensor, removes normal components of any non-scalar field; T is the transpose
and tr is the trace. The tangential momentum accommodation coefficient, (0 ≤ σu ≤ 1),
determines the proportion of molecules reflected from the surface specularly (equal to
1− σu) or diffusely (equal to σu). The Maxwellian mean free path is calculated by [15]

λ =
µ

ρ

√
π

2RT
. (6)

Experimental observations show that the temperature of a rarefied gas at a surface is
not equal to the wall temperature, Tw. This difference is called the “temperature jump”
and is driven by the heat flux normal to the surface. The Smoluchowski boundary con-
dition can be written [12]

T +
2− σT

σT

2γ

(γ + 1)Pr
λ∇nT = Tw, (7)

where γ is the specific heat ratio; σT is thermal accommodation coefficient (0 ≤ σT ≤ 1).
Perfect energy exchange between the gas and the solid surface corresponds to σT = 1,



Effect of viscosity on slip boundary conditions in rarefied gas flows 207

and no energy exchange to σT = 0. The second order velocity slip boundary condition
for a planar surface can be expressed as follows [13]

u = −A1λ∇n(S · u)− A2λ2∇2
n(S · u) + uw, (8)

where A1 and A2 are the first and second order coefficients. It was assumed there is no
more heat flux along the surface. The values A1 and A2 are proposed either from theory
or from experiment. Recently we suggested the second order jump condition in a new
form as follows [13]

T = − 2γ

γ + 1
1
Pr
(
C1λ∇nT + C2λ2∇2

nT
)
+ Tw, (9)

where C1 and C2 are the first and second order coefficients.
The first-order and the second-order slip and jump conditions were also implemented

into OpenFOAM presented in our previous work [1, 14, 17] to employ with the solver
“rhoCentralFoam” for running all CFD simulations. In this solver, the laminar N–S–F
equations are numerically solved using a finite volume discretization and high-resolution
central schemes to simulate high-speed viscous flows, and a calorically perfect gas for
which p = ρRT is assumed.

4. NUMERICAL RESULTS AND DISCUSSIONS

Four cases such as the pressure driven backward facing step nanochannel, Kn =
0.025 [7], lid driven micro-cavity, Kn = 0.05 [8], hypersonic gas flows past the sharp 25-55-
deg. biconic with Mach number Ma = 15.6 [9], and past a circular cylinder in cross-flow,
Ma = 10, Kn = 0.01 [10] are considered in the present work. The characterized lengths to
calculate the Kn numbers for cases are 1) the height of the channel, H, 2) the length of cav-
ity, L, 3) diameter of the biconic base, 2R, and 4) the diameter of cylinder, D. Their values
are found in Tab. 1. In all CFD simulations at the walls, the slip and jump boundary con-
ditions are applied for (T, u), and zero normal gradient condition is set for p. For the step
nanochannel case, pin and Tin are set at the entrance, and pout is set at the outlet. The gas
flow is driven by the pressure gradient, and the velocity of gas flow depends on the pres-
sure gradient. The velocity is then calculated explicitly, and the Neumann type is used
for both inlet and outlet for velocity. Zero normal gradient condition is applied for u at
the entrance and exit, and for T at the exit of channel, seen in Fig. 1(a). For the lid-driven
micro-cavity case, initial pressure and temperature are set as initial values in the com-
putational domain, shown in Fig. 1(b). For the two-dimensional axisymmetric biconic

Table 1. Gas properties and characterized lengths of all cases

Cases ω Tref (K) dref (m) m (kg) Gas Characterized lengths

Step nanochannel 0.74 273 4.17× 10−10 46.5× 10−27 Nitrogen H = 17.09 nm
Micro-cavity 0.81 273 4.17× 10−10 66.3× 10−27 Argon L = 1µm

Biconic 0.74 273 4.17× 10−10 46.5× 10−27 Nitrogen 2R = 261.8 mm
Cylinder 0.734 1000 3.595× 10−10 66.3× 10−27 Argon D = 304.8 mm
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case, the geometry is specified as a wedge of one cell thickness running along the plane
of geometry. The axisymmetric wedge planes must be specified as separated patches of
type “wedge”, seen in Fig. 1(c). For the sharp 25-55-deg. biconic and cross-flow cylin-
der cases, at the inflow boundary, the freestream (p, T, u) conditions were maintained
throughout the computational process. At outflow boundary for these both cases, zero
normal gradient condition are applied for (p, T, u). At the bottom boundary of the biconic
and cylinder, a symmetry boundary condition is applied to all flow variables, shown in
Figs. 1(c) and 1(d).
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Fig. 1. Numerical setups, input parameters and geometry dimensions of four cases

The geometry dimensions, numbers of cells for blocks in computational domain,
input parameters and working gases of all cases are given in Fig. 1. Numbers of cells are
60× 60, 140× 60 and 140× 60 for blocks of the backward facing step nanochannel case,
seen in Fig. 1(a). Those are 120× 120 for the cavity case, and 256× 256 for the biconic
case (i.e. 256 cells in the axial, streamwise direction and 256 cells in the radial, surface
normal direction). For the circular cylinder case, the computational structured mesh is
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constructed to wrap around the leading bow shock with the smallest cell sizes grading
near the surface ∆x = 0.1 mm, ∆y = 1.196 mm.

The second-order slip and jump conditions obtained good results for simulating rar-
efied gas microflows. So they are adopted for simulating two nano/micro-flow cases in
the present work with the coefficient values A1 = C1 = 1.3 and A2 = C2 = 0.23 pro-
posed in our previous work [13]. The first-order Maxwell/Smoluchowski conditions are
selected for simulating hypersonic cases with the coefficients σT = σu = 1. In the present
work the CFD results would be compared with DSMC data using the values σT = σu = 1.
For a fair comparison, the viscosity should be treated as equivalent as possible between
the DSMC and CFD simulations. This means the parameters (m, ω, dref, Tref), that are
chosen to calculate the constant A = µref/T−ω

ref of the DSMC macroscopic viscosity, will
be adopted for viscosity models in CFD as 1) s = ω for the Power Law viscosity model,
and 2) the constant AM =

(√
mkB/π

)
/πd2

ref for the Maxwell viscosity model. These
parameters of gas properties are shown and characterized lengths in Tab. 1.

4.1. Pressure driven backward facing step nanochannel case
In the pressure driven backward facing step nanochannel, Kn = 0.025 [7], we present

the simulation results on the wall-3 of the step channel only in the streamwise direction
because the separation zone is located over this wall. The surface gas temperatures in-
crease to the peak temperature and then gradually decrease along the wall-3, seen in
Fig. 2. The prediction of the Maxwell viscosity model for the gas surface temperature
gives good agreement with the DSMC data [7] while the CFD other results do not. Slip
velocities on the wall-3 consist of negative and positive components shown in Fig. 3. Neg-
ative ones represent the separation zone, and the distance, where indicates the negative
slip velocities, is defined as the length of the separation zone. It is seen that the prediction
using the Maxwell viscosity model gives better slip velocity than the CFD other results
in comparing with DSMC data [7].
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4.2. Lid driven micro-cavity case
For the lid driven micro-cavity case, Kn = 0.05 [8], the gas flow expands at the lo-

cation x/L = 0 as it is driven by the moving lid, and it is compressed at the location
x/L = 1. Considering the surface gas temperature along the lid wall, the Power Law and
the Sutherland viscosity models underpredicts the temperature in the range x/L < 0.1
in comparing with DSMC data [8] and that with the Maxwell viscosity model, seen in
Fig. 4. The simulation result obtained with the Maxwell viscosity model give good agree-
ment with DSMC data along the lid surface. At the location x/L = 1 the gas flow
is reattachment, and all simulation results show that the temperature increasing with
T > Tw = 300 K. It means there is viscous heat generation which results in the heat
transfer from the gas to the wall toward the location x/L = 1 of the cavity case.

                                                       Effect of viscosity on slip boundary conditions in rarefied gas flows 
 

Fig. 4. Surface gas temperature along the lid wall, 
Kn = 0.05 [17]. 

 

Fig. 5. Slip velocity along the lid wall, Kn = 0.05 
[17]. 
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For the slip velocity along the lid wall in Fig. 5, all simulations showed that the
slip velocities are very slow at the locations x/L = 0 and x/L = 1, and obtained the
peak value around the location x/L = 0.5. The Power Law and the Sutherland viscosity
models underpredict the slip velocities along the lid surface in comparing DSMC data [8].
The simulation result using the Maxwell viscosity model is close to DSMC data while
those of the Power Law and Sutherland viscosity models are not.

4.3. Sharp 25-55-deg. biconic case
An oblique shock forms from the tip of the first cone and locates along towards near

the end of this cone, and then separates creating a shock. Latter one interacts with the
oblique shock and meets the detached bow shock being formed over the second cone. A
low speed recirculation zone forms at the junction between the first and the second cones
in the range 0.0754 m ≤ x ≤ 0.1021 m where presents the negative slip velocity, seen in
Fig. 6.

Fig. 7 compares the CFD surface gas temperatures with those of DSMC data [9].
The surface gas temperature with the Maxwell viscosity model is close to the DSMC
data [9] near the tip of biconic. The surface gas temperatures obtain the peak values at
the biconic tip, and thereafter rapidly decrease in the range x ≤ 0.754 m. In this range the
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surface gas temperature predicted by the Maxwell viscosity model give good agreement
with the DSMC data. There is a drop of temperature in the recirculation zone. All CFD
temperatures and DSMC data are close together in 0.0754 m ≤ x ≤ 0.02 m.
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Fig. 7. Surface gas temperature distribution
over the biconic surface [9]

Fig. 6 compares the CFD and DSMC [9] slip velocities along the biconic surface. Slip
velocities on the biconic surface consist of negative and positive components. Negative
ones represent the recirculation zone, and the distance, where indicates the negative slip
velocities, is defined as the length of the recirculation zone. The slip velocities obtain
the peak values at the biconic tip and then quickly decrease along the forecone until the
locations x = 0.075 m. The CFD results using the Maxwell viscosity model are close to
the DSMC data. Past this zone the slip velocities increase and oscillate along the second
55-deg. cone, and there is good agreement between all CFD results and the DSMC data in
the range 0.105 m≤ x ≤ 0.02 m. Overall, the Maxwell viscosity model predicts better slip
velocity than the Sutherland and the Power Law models in comparing with DSMC data.

4.4. Cross-flow circular cylinder cases
In the cylinder cases, various values of accommodation coefficients σu = σT = 1,

σu = σT = 0.8, σu = σT = 0.6 and σu = σT = 0.4 are conducted for all simulations. The
solver “dsmcFoam” is used to run the DSMC simulations, and generates the DSMC data.
The surface gas temperatures and slip velocities are plotted against with the cylinder
angle. All CFD simulations predict a higher slip velocity than the DSMC data, as seen
in Figs. 8–11 for the cases σu = σT = 1, σu = σT = 0.8, σu = σT = 0.6 and σu = σT = 0.4,
respectively. The DSMC and CFD slip velocities increase gradually from 0≤ θ ≤ 13-deg.,
reaching peak normalized values around the location θ = 13-deg., and then gradually
decrease in 13-deg. ≤ θ ≤ 180-deg. The slip velocity using the Maxwell viscosity model
obtains the lowest values, and are relatively close to the DSMC data. Considering the
surface gas temperature, all the CFD and DSMC results are shown in Figs. 12–15 for the
cases σu = σT = 1, σu = σT = 0.8, σu = σT = 0.6 and σu = σT = 0.4, respectively, in which the
one using the Maxwell viscosity model is close to the DSMC data. There are differences
between the CFD and DSMC temperatures along the cylinder surface. These differences
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may be explained by the calculation of the translational surface gas temperature in DSMC
depending on the components of gas velocity and the slip velocity only. While that in
CFD is calculated by the normal gradient of gas temperature, and is independent of the
gas velocity. This leads to the profile of the DSMC temperature being very similar to that
of the DSMC slip velocity.
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Fig. 9. Slip velocity distribution around the
cylinder surface, σu = σT = 0.8
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Fig. 12. Temperature jump distribution around the 
forebody cylinder surface, σu = σT = 0.6. 

 

Fig. 13. Slip velocity distribution around the 
cylinder surface, σu = σT = 0.6. 

 

Fig. 14. Temperature jump distribution around the 
forebody cylinder surface, σu = σT = 0.4. 

 

Fig. 15. Slip velocity distribution around the 
cylinder surface, σu = σT = 0.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Average errors between the CFD and DSMC simulations of the cylinder cases. 

Cases Maxwell 
viscosity model 

Sutherland 
viscosity model 

Power Law 
viscosity model 

T u T u T u 
σu = σT = 1 15.12% 16.84% 28.98% 34.01% 35.65% 33.81% 
σu = σT = 0.8 2.84% 13.56% 20.90% 34.82% 55.34% 61.81% 
σu = σT = 0.6  1.15% 16.44% 9.56% 29.50% 53.39% 58.78% 

Fig. 10. Slip velocity distribution around the
cylinder surface, σu = σT = 0.6
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Fig. 12. Temperature jump distribution around the 
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Table 2: Average errors between the CFD and DSMC simulations of the cylinder cases. 

Cases Maxwell 
viscosity model 

Sutherland 
viscosity model 

Power Law 
viscosity model 

T u T u T u 
σu = σT = 1 15.12% 16.84% 28.98% 34.01% 35.65% 33.81% 
σu = σT = 0.8 2.84% 13.56% 20.90% 34.82% 55.34% 61.81% 
σu = σT = 0.6  1.15% 16.44% 9.56% 29.50% 53.39% 58.78% 

Fig. 11. Slip velocity distribution around the
cylinder surface, σu = σT = 0.4

Finally, the average errors between all CFD and DSMC simulations are shown in
Tab. 2. The CFD simulations using the Maxwell viscosity model obtain the smallest av-
erage errors in comparing with those of the CFD simulations with the Power Law and
Sutherland viscosity models. The reduction of thermal accommodation coefficient affects
the factor (2− σT)/σT in the jump temperature condition that results in the increases of
the surface gas temperatures. It is also seen that the reduction of the surface accommoda-
tion effectively decreases the effect of viscosity on the flow field, and leads to the increases
of the slip velocity.
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Fig. 12. Temperature jump distribution
around the cylinder surface, σu = σT = 1
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Fig. 13. Temperature jump distribution
around the cylinder surface, σu = σT = 0.8
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Table 2: Average errors between the CFD and DSMC simulations of the cylinder cases. 

Cases Maxwell 
viscosity model 

Sutherland 
viscosity model 

Power Law 
viscosity model 

T u T u T u 
σu = σT = 1 15.12% 16.84% 28.98% 34.01% 35.65% 33.81% 
σu = σT = 0.8 2.84% 13.56% 20.90% 34.82% 55.34% 61.81% 
σu = σT = 0.6  1.15% 16.44% 9.56% 29.50% 53.39% 58.78% 

Fig. 14. Temperature jump distribution
around the forebody cylinder surface,

σu = σT = 0.6
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Table 2: Average errors between the CFD and DSMC simulations of the cylinder cases. 

Cases Maxwell 
viscosity model 

Sutherland 
viscosity model 

Power Law 
viscosity model 

T u T u T u 
σu = σT = 1 15.12% 16.84% 28.98% 34.01% 35.65% 33.81% 
σu = σT = 0.8 2.84% 13.56% 20.90% 34.82% 55.34% 61.81% 
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Table 2. Average errors between the CFD and DSMC simulations of the cylinder cases

Cases
Maxwell

viscosity model
Sutherland

viscosity model
Power Law

viscosity model

T u T u T u

σu = σT = 1 15.12% 16.84% 28.98% 34.01% 35.65% 33.81%
σu = σT = 0.8 2.84% 13.56% 20.90% 34.82% 55.34% 61.81%
σu = σT = 0.6 1.15% 16.44% 9.56% 29.50% 53.39% 58.78%
σu = σT = 0.4 8.87% 6.70% 16.43% 17.55% 49.36% 36.53%
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4.5. Discussion
Although the Sutherland viscosity model has been currently using mostly in the CFD

rarefied gas simulations but the simulation results show that the Maxwell viscosity model
give the good agreement with DSMC data for both the first-order and second-order slip
velocity and temperature jump conditions, and with various accommodation coefficients
in all cases considered. This may be explained that the Maxwell viscosity model was de-
rived based on the net transfer of momentum since the gas molecules across any plane
perpendicular in direction of velocity gradient resulting in the fixed coefficient s = 0.5,
and did not depend on the reference temperature. While the Power Law and the Suther-
land viscosity models were developed based on the intermolecular force law and attrac-
tive force, in which the exponent, s, and constants (AS, TS, AP) are determined from the
limiting theoretical cases or the limited ranges of temperatures in experiments. Com-
paring Eqs. (1) and (4), both of the DSMC and Maxwell viscosity models depend on the
molecular mass and diameter leading to the simulation results of the Maxwell viscosity
model are close to those of DSMC data while two other viscosity models do not.

5. CONCLUSIONS

From the simulation results obtained, whichever the slip and jump boundary con-
ditions are adopted, the viscosity models effect the accuracy of the simulation results of
surface gas temperature and slip velocity. The simulation results show that the Maxwell
viscosity model provides better predictions of the surface gas temperature and slip veloc-
ity than the Sutherland and Power Law viscosity models in comparing with the DSMC
data, and pointed out the importance of the viscosity in rarefied gas flow simulations. A
good viscosity model will increase the accuracy of the N–S–F simulations for rarefied gas
flows, and gives better prediction the peak surface gas temperature to design the thermal
protection system in hypersonic vehicles.
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