
Vietnam Journal of Mechanics, VAST, Vol. 41, No. 4 (2019), pp. 301 – 317
DOI: https://doi.org/10.15625/0866-7136/13356

DIFFERENTIAL EQUATIONS OF MOTION
IN MATRIX FORM OF MULTIBODY SYSTEMS DRIVEN

BY ELECTRIC MOTORS

Nguyen Quang Hoang1,∗, Vu Duc Vuong2

1Hanoi University of Science and Technology, Vietnam
2Thai Nguyen University of Technology, Vietnam
∗E-mail: hoang.nguyenquang@hust.edu.vn

Received: 25 April 2019 / Published online: 20 October 2019

Abstract. This paper presents the dynamic model of multibody systems driven by elec-
tric motors, the so-called electromechanical systems. The mechanical systems considered
in this study include an open loop and/or a closed loop, a full-actuated and an under-
actuated one. The dynamic model of this electromechanical systems is established in ma-
trix form by applying the Lagrangian equation with and without multipliers and sub-
structure method. With this approach it is easy to obtain the differential equation of
motion of the electro-mechanical systems based on the corresponding differential equa-
tions of the purely available mechanical system. These obtained equations describe the
electromechanical systems in engineering better in case the systems are purely described
by mechanical equations. The differential equations of serial and parallel manipulators,
slider-crank mechanism, and overhead crane driven by electric motors are established as
illustrated examples. In addition, a simplified dynamic model obtained by neglecting of
current variation is also validated by numerical simulations.

Keywords: multibody system, electromechanical system, equations of motion, dynamic
models, underactuated system.

1. INTRODUCTION

Most of the industrial electromechanical systems may be considered as mechanical
multibody systems driven by electric motors - also called actuators. The inputs of these
systems are normally voltage or currents applied to motors and its output are the motion
of the mechanical multibody systems (MBS). Some of examples of electromechanical sys-
tems can be listed as overhead cranes, serial or parallel robotic manipulators. Dynamic
models of this system are an important base for analysis, simulation, controller design as
well as numerical testing with different excitations, testing control laws, and optimiza-
tion.
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The mechanical part of an industrial motion system is normally described by an
open-loop or a closed-loop MBS, which is a set of bodies interconnected by joints. Mod-
elling and simulation of an MBS has attracted numerous researchers. Many works deal
with modelling of MBS [1–20]. There are some approaches proposed in literature to for-
mulate dynamic equations of an MBS including Newton-Euler equations, Lagrangian
formulation, principle of virtual work, Jourdain principle, and Kane equation [1–17]. In
most of the mentioned works, gear transmission and dynamics of actuators are neglected.
Thus, the equations describing industrial electromechanical systems using only the MBS
model are not really close to real systems.

There are only a few studies showing the construction of dynamic models for the
electromechanical system [21–28]. In [21, 22], two methods of linear graph and bond
graph theories were presented for modelling of electromechanical systems. Even though
bond graphs could be obtained for the system, their complexity and their nature prevent
us from easily generating the equations. Bond graphs are interesting for showing energy
interactions between the different parts of the model. However, they suffer from obvious
limitations as soon as complex 3D mechanical systems are considered. In [24], authors
combined a linear graph theory with symbolic programming to model the flexible multi-
body mechatronic systems. In the study [23], authors extended the recursive dynamic
formulation to model a mechanical system containing an electric DC motor. In [25], the
driving torque is assigned to be proportional to the voltage applied to the motor, where
the damping due to the armature resistance of the motor is ignored. In the work [26],
methodologies for the development of formalisms and software for modelling and simu-
lation of multibody and mechatronic systems was presented and illustrated by examples
from the field of automobile and robotics.

The present paper highlights the dynamic modelling of MBS with a closed loop
and/or an open loop driven by electric DC motors, one of the most popular electrical mo-
tors. The whole system is divided into three parts: an MBS, massless gear transmissions,
and electric motors. For the multiboby system the generalized coordinates and the La-
grangian formulation are used to establish the equations of motion. In the cases of closed
loop MBS, the differential equations are combined with the constraint equations, the dy-
namic model of a system is presented in differential algebraic equations form (DAEs).
The equation describing the massless gear transmission is obtained by the power balance
at input and output of the gearbox. And the dynamic equations of electric motors are
derived, mainly based on the angular momentum law combined with the Kirchoffs laws.
The obtained equations are then simplified with the assumption that the electrical time
constant is much smaller than the mechanical time constant.

The main contributions of this paper are to provide the matrix form of equations of
motion for a closed loop MBS driven by electric motors by introducing a matrix Z, that
describes the relation between redundant and active coordinates. In this way, it is easy
to obtain the equation of motion for electromechanical systems from pure mechanical
ones. Equations describing subsystems are written in matrix form. Therefore, they are
easy to transform by matrix multiplication and addition, and it is also easy to simulate
on the computer by software tools such as Maple. In addition, the paper also validated a
simplified dynamic model by using numerical simulations.
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The remaining of this paper is organized as follows: Section 2 presents a dynamic
modelling of mechanical systems actuated by electric motors. Section 3 presents some ex-
amples of modelling of systems in industrial application such as overhead cranes, robotic
manipulators, a slider-crank mechanism and a 3RRR planar parallel manipulator. Section
4 shows the validation of simplified model by numerical simulations. Finally, the conclu-
sion is given in Section 5.

2. DYNAMIC MODEL OF MECHANICAL SYSTEMS DRIVEN BY
ELECTRIC MOTORS

This section presents a method for establishing motion equations of electromechan-
ical systems in engineering by substructure method and Lagrangian formulation. The
whole system is split into mechanical sub-systems and electric motors which are coupled
by massless gear-box transmission. Firstly, the equations for each subsystem are given.
Then they are combined by using matrix multiplication and addition to obtain the final
equations that describe the relationship between input voltages and the motion of the
systems.

2.1. Dynamic model of mechanical systems
Structurally, mechanical systems can be classified into a tree/serial and a closed-loop

type. Closed-loop systems can be split into two or more tree structures by joint cutting.
When the controlling issue is considered, a mechanical system can be classified into full-
actuated systems if the number of motors is equal to the number of degrees of freedom
and under-actuated one if the number of motors is less than the number of degrees of
freedom. There are many methods for establishing equations of motion of mechanical
systems presented in some references [1, 2, 4, 5].

Lets consider an open-loop mechanical system having n DOFs with holonomic con-
straints. Let q = [q1, q2, . . . , qm]

T, m = n, be generalized coordinates of the system. By
using Lagrangian formulation, the equations of motion of this system are given by

d
dt

(
∂T
∂q̇

)T

−
(

∂T
∂q

)T

= Q−
(

∂Π
∂q

)T

. (1)

Eq. (1) are rewritten in matrix form as

M(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q)= Bτ2. (2)

In above equations, T = 1
2 q̇TM(q)q̇ is the kinetic energy; M(q) the m× m mass matrix

that is hessian matrix of kinetic energy T with respect to q̇; M(q) = ∂[T/∂q̇]T/∂q̇; Π =
Π(q) the potential energy; g(q)=[∂Π/∂q]T; D is the damping matrix; Q is the vector of
generalized forces of non-conservative forces.

Similarly, for a closed loop mechanical system having n DOFs with holonomic con-
straints, let q = [q1, q2, . . . , qm]

T, m > n be redundant generalized coordinates of the
system. By using Lagrangian formulation with multipliers, the equation of motion of
this system and the constrained equations are given by
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d
dt

(
∂T
∂q̇

)T

−
(

∂T
∂q

)T

= Q−ΦT
q (q)λ−

(
∂Π
∂q

)T

,

φ(q) = 0.
(3)

Eq. (3) is rewritten in matrix form as:

M(q)q̈ + C(q, q̇)q̇ + Dq̇ + g(q) + ΦT(q)λ= Bτ2, (4)

φ(q) = 0, (5)

where Q = Bτ2, B is the matrix related to the control input arrangement and τ2 the vector
force/torque in the actuated joints. τ2 = [τ2,1, τ2,2, . . . , τ2,n]

T - torque/force at the output
of transmission. λ = [λ1 λ2 . . . λr]

T is the vector of Lagrangian multipliers, r = m− n;
φ(q) = 0, with φ = [φ1 φ2 . . . φr]

T including m− n constraint equations; Φ(q) = ∂φ/∂q
is the r×m Jacobian matrix.

Matrix C(q, q̇) can be determined from the mass matrix M(q) using the Kronecker
product [17] or the Christoffel formula [5] as follows

C(q, q̇) =
{

cij(q, q̇)
}

, cij(q, q̇) =
1
2

m

∑
k=1

(
∂mij

∂qk
+

∂mik

∂qj
−

∂mjk

∂qi

)
q̇k. (6)

Noting that the mass matrix M(q) is a symmetric one, and the matrix C(q, q̇) determined
by (6) guarantees the skew-symmetric property of the matrix Ṁ(q)− 2C(q, q̇) [5]. This
property plays an important role in control design for the system.

So, with the Lagrangian equation the differential equation of motion of the system is
obtained if we know the kinetic energy, the potential energy of the system, and the gener-
alized forces. In order to distinguish fully- and under- actuated system, the generalized
coordinates are split into groups q = [q1, q2, . . . , qm]

T = [qT
a , qT

p ]
T

, in which qa is active co-
ordinates and qp is passive coordinates. In all cases of open and closed loop systems, they
are fully-actuated if dim qa = dim τ2 = n and underactuated if dim qa = dim τ2 < n.

2.2. Dynamic model of electric motors and gear transmission
Neglecting the mass and power loss, the constraint equations of the gear transmis-

sion of n motors are written as follows

RGq̇a ≡ RGθ̇ = θ̇m, τ2 = RGτ1. (7)

3 
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       
− = − −     

       
=

Q q
q q q

q 0




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   ( , ) ( , ) ,ijc=C q q q q   
1

1
( , )

2

m
ij jkik

ij k
k k j i

m mm
c q

q q q=

  
= + − 

    
q q . (6) 
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motors are written as follows: 

 2 1,G a G m G = =R q R R    . (7) 

Dynamics of actuators (electric motors - Fig. 

1) is described by the mechanical and electrical 

equations [15, 23]. By applying the angular 

momentum theorem for rotor and Kirchhoff 

voltage law of n motors, ones obtain: 

 0 1m m m m+ = −I D     ,         (8) 

 a a e

d

dt
+ = −L i R i u u  .           (9) 

The mechanical and electrical interaction of n  

motors is shown by the relationship between current and motor torque [15, 23]; between motor 

speed and EMFs voltages as follows: 

Fig. 1. Diagram of a motor and gear reducer 
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Fig. 1. Diagram of a motor and gear reducer
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Dynamics of actuators (electric motors - Fig. 1) is described by the mechanical and
electrical equations [15, 26]. By applying the angular momentum theorem for rotor and
Kirchhoff voltage law of n motors, ones obtain

Imθ̈m + Dmθ̇m = τ0 − τ1, (8)

La
d
dt

i + Rai = u− ue. (9)

The mechanical and electrical interaction of n motors is shown by the relationship
between current and motor torque [15, 26]; between motor speed and EMFs voltages as
follows

τ0 = Kmi, ue = Keθ̇m. (10)

In the above equations the following notations are used: τ1 = [τ1,1, τ1,2, . . . , τ1,n]
T

- Torque/force at the input of transmission; τ0 = [τ0,1, τ0,2, . . . , τ0,n]
T - Torque/force of

the DC motor; RG = diag(r1, r2, . . . , rn),ri = θi/θm,i - Matrix of gear reduction ratio;
Im = diag(Im,1, Im,2, . . . , Im,n) - Moment of inertia of rotors; La = diag(La,1, La,2, . . . , La,n)
- Motor coil inductances; Ra = diag(Ra,1, Ra,2, . . . , Ra,n) - Motor coil resistances; Ke =
diag(Ke,1, Ke,2, . . . , Ke,n) - Back-emf constants; Km = diag(Km,1, Km,2, . . . , Km,n) - Motor
torque constants; u = [U1, U2, . . . , Un]

T - Motor input voltages; i = [i1, i2, . . . , in]
T - Cur-

rents in electric motors; Dm = diag(b1, b2, . . . , bn) - Viscous coefficients of motor shafts.

2.3. Dynamic model of electromechanical systems
In order to get the dynamic model in compact form the constraint forces/moment

τ1, τ2 will be eliminated from Eqs. (2), (8). By substituting (7) and (10) into (8) one gets

Imθ̈m + Dmθ̇m = Kmi− τ1, (11)

La
d
dt

i + Rai = u−Keθ̇m. (12)

Multiplying from left (11) with matrix RG yields

RGImθ̈m + RGDmθ̇m = RGKmi−RGτ1. (13)

By substituting θ̇m = RGq̇a = RGθ̇ from (7) into (13) and (12) ones obtain

RGImRGq̈a + RGDmRGq̇a = RGKmi− τ2, (14)

La
d
dt

i + Rai = u−KeRGq̇a. (15)

Noting that, the matrix B has the form

B =

[
En×n

0m−n,n

]
,

so, this matrix can be multiplied to equation (14) from left. This leads to

BRGImRGq̈a + BRGDmRGq̇a = BRGKmi− Bτ2. (16)

To eliminate the vector τ2 from Eqs. (2) and (16), the matrix Z = [En×n 0m,m−n] is used.
Here, the following relations are satisfied

qa = Zq, q̇a = Zq̇, q̈a = Zq̈. (17)
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with (17), Eqs. (15) and (16) become

La
d
dt

i + Rai = u−KeRGZq̇, (18)

BRGImRGZq̈ + BRGDmRGZq̇ = BRGKmi− Bτ2. (19)
By adding two equations (2) and (19), one obtains

(M(q) + BRGImRGZ) q̈ + C(q, q̇)q̇ + (D + BRGDmRGZ) q̇ + g(q) = BRGKmi. (20)

Similarly, for a closed loop system one gets

(M(q) + BRGImRGZ) q̈ + C(q, q̇)q̇

+ (D + BRGDmRGZ) q̇ + g(q) + ΦT(q)λ = BRGKmi,

φ(q) = 0.

(21)

So, the dynamic model of an open loop MBS driven by electric motors is described by a
set of Eqs. (20) and (18) which is in ordinary differential equations form (ODEs). And the
dynamic model of a closed loop MBS driven by electric motors is described by a set of
Eqs. (21) and (18) which is in DAEs form. These equations show the dynamic relationship
between inputs (voltage u) and outputs (motion q).

2.4. Simplified dynamic model
Normally, the electrical time constant is much smaller than the mechanical time con-

stant, so the approximation Ladi/dt ≈ 0 when ε ≥ t > 0 can be used to simplify the
system of differential equations describing the system. With this approximation, solving
for the current from Eq. (18) one yields

i = R−1
a u−R−1

a KeRGZq̇. (22)

By substituting (22) into Eq. (20) one gets

(M(q) + BRGImRGZ) q̈ + C(q, q̇)q̇

+
(

D + BRG(Dm + KmR−1
a Ke)RGZ

)
q̇ + g(q)= BRGKmR−1

a u.
(23)

Similarly, for a closed loop systems Eq. (21) becomes

(M(q) + BRGImRGZ) q̈ + C(q, q̇)q̇ +
(

D + BRG(Dm + KmR−1
a Ke)RGZ

)
q̇ + g(q)

= BRGKmR−1
a u + ΦT

q (q)λ,

φ(q) = 0.

(24)

By defining the following matrices

Ms(q) = (M(q) + BRGImRGZ) , Cs(q, q̇) = C(q, q̇),

Ds =
(

D + BRG(Dm + KmR−1
a Ke)RGZ

)
, gs(q) = g(q), Bs = BRGKmR−1

a .
(25)

Eq. (24) is rewritten in compact form as

Ms(q)q̈ + Cs(q, q̇)q̇ + Dsq̇ + gs(q) = Bsu + ΦT
q (q)λ. (26)
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Once again, the constraint equations are combined

φ(q) = 0. (27)

Thus, the dynamic model of closed loop MBS driven by electric motors is described by a
set of DAEs (26) and (27). For an open loop MBS driven by electric motors, the dynamic
model is obtained by deleting the last term in Eqs. (26) and ignoring Eq. (27), because in
this case the generalized coordinates q contains independent variable. And it is as

Ms(q)q̈ + Cs(q, q̇)q̇ + Dsq̇ + gs(q) = Bsu. (28)

Noting that BRGImRGZ is the symmetric constant matrix (because Z = BT), so the Cori-
olis matrices Cs(q, q̇) or C(q, q̇) calculating from mass matrices Ms(q) or M(q) are the
same, and skew-symmetric property of matrix N = Ṁs(q)− 2Cs(q, q̇) is still remained.

3. EXAMPLES

In this section, the dynamic models of some electro-mechanical systems in engineer-
ing are presented to illustrate the proposed approach. Four systems considered here in-
clude an overhead crane (a typical underactuated system), a serial manipulator (a typical
open loop MBS and full actuated system), a slider-crank mechanism and a 3RRR planar
parallel robot (a typical closed loop MBS and full actuated systems).

3.1. Overhead crane - an underactuated system
Overhead cranes are widely used in various fields, such as heavy industries, sea-

ports, automotive factories, and construction facilities. An overhead crane is typical un-
deractuated system because of swing motion of the payload. In this example, the length
of the cable is assumed to be constant. The system has two degrees of freedom and is
driven by only one motor for the horizonal motion of the troley (Fig. 2). The parameters
of mechanical system including the mass of the trolley mt, mass of the payload mp, and
length of the cable l. The wheel of the trolley has radius rw and its mass is neglected. Let
q = [q1, q2]

T be generalized coordinates while an active coordinate is qa = q1.
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M q   
2 20 sin
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p

s

m lq q −
=  
  

C q q , 
1 0

0 0

d 
=  
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D     

  2( ) 0 sin
T

pm gl q =
 

g q ,   
1

,
0

 
=  
  
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 a a e m
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For the purpose of comparing the responses of two models: full and simplified dy-
namic dmodel, in this example, the differential equations of motion for these two mod-
els are given. The kinetic and potential energy of the mechanical system are given as
following

T =
1
2
(mt + mp)q̇2

1 + mpl cos q2q̇1q̇2 +
1
2

mpl2q̇2
2,

Π = −mpgl cos q2.
(29)

Full dynamic model
From the kinetic and potential energy of the system, the equation of motion in form

of (3) is given with the following matrices

M(q) =
[

mt + mp mpl cos q2
mpl cos q2 mpl2

]
, Cs(q, q̇) =

[
0 −mplq̇2 sin q2
0 0

]
, D =

[
d1 0
0 0

]
,

g(q) =
[
0 mpgl sin q2

]T, B =

[
1
0

]
, τ2 = τ2.

Eqs. (7), (11) and (12) for this example are written as follows

rq̇1/rw = θ̇m, τ2 = (r/rw)τ1 ⇒ RG = [r/rw], (30)

Im θ̈m + dm θ̇m = Kmi− τ1 or Im(r/rw)
2q̈1 + dm(r/rw)

2q̇1 = (r/rw)Kmi− τ2, (31)

La
d
dt

i + Rai = u− Ke θ̇m or La
d
dt

i + Rai = u− Ke(r/rw)q̇1. (32)

In this case, Z = [1 0]. The combination of Eqs. (18) and (20) is rewritten in matrix form
as follows

A(q)q̈ + h(q, q̇) = Bu, u = U, (33)

with q̇3 = i and q̈3 = i̇ and

q =

q1
q2
q3

 , A(q) =

mt + mp + (r/rw)
2 Im mpl cos q2 0

mpl cos q2 mpl2 0
0 0 La

 ,

h(q, q̇) =

−mplq̇2
2 sin q2 + [d1 + dm(r/rw)

2]q̇1 − (r/rw)Kmq̇3
mpgl sin q2

Ke(r/rw)q̇1 + Raq̇3

 , B =

0
0
1

 .

Simplified dynamic model

By using the approximation La i̇ = Laq̈3 ≈ 0, the simplified model for the crane in the
form of (28) is given as

Ms(q)q̈ + Cs(q, q̇)q̇ + Dsq̇ + gs(q) = Bsu, (34)
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with the following matrices

Ms(q) =
[

mt + mp + r2 Im/r2
w mpl cos q2

mpl cos q2 mpl2

]
, Cs(q, q̇) =

[
0 −mplq̇2 sin q2
0 0

]
,

g(q) =
[
0 mpgl sin q2

]T,

Ds =

[
d1 + dm(r/rw)

2 + r2KmR−1
a Ker−2

w 0
0 0

]
, Bs =

[
rKmR−1

a r−1
w

0

]
, u = U.

3.2. Equations of motion of a serial manipulator: 2-dof open loop MBS
In this example, we consider a 2-dof planar manipulator moving in a vertical plane

(Fig. 3). The manipulator is driven by two electric motors, motor 1 is fixed on the ground
and motor 2 is placed on link 1. The motions of the motor shaft are transmitted to the
link by the gear-box transmission. The parameters of two links including masses, length,
distance from joint to center of mass and moment of inertia about its center are m1, m2,
l1, l2, a1, a2, IC1, IC2, respectively.
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Simplified dynamic model: 

By using the approximation  3 0a aL i L q=  , the simplified model for the crane in the form of 

(28) is given as 

           ( ) ( , ) ( )s s s s s+ + + =M q q C q q q D q g q B u  (34) 

with the following matrices: 
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1 ( / ) 0
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s
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,
0
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s
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  

B       U=u .  

3.2 Equations of motion of a serial manipulator: 2 dof open loop MBS 

In this example, we consider a 2-dof planar manipulator moving in a vertical plane (Fig.  3). The 

manipulator is driven by two electric motors, motor 1 is fixed on the ground and motor 2 is 

placed on link 1. The motions of the motor shaft are transmitted to the link by the gear-box 

transmission. The parameters of two links including masses, length, distance from joint to center 

of mass and moment of inertia about its center are 1 2 1 2 1 2 1 2, , , , , , ,C Cm m l l a a I I , respectively. 

 
Fig.  3. The 2-dof manipulator driven by electric motors 

 

The system has two degrees of freedom and the the generalized coordinates are defined as  

 1 2[ , ]Tq q=q , so 2m n= = . 

The kinetic and potential energy of the system are given as following: 

  
2 2 2 2

1 1 1 2 2 1 2 1 2 2 1

2 2 2
2 2 2 1 2 2 1 2 2 2 2 2

0.5[ ( 2 cos )]

[ ( cos )] 0.5( )
C C

C C

T I m a I m l a l a q q

I m a l a q q q I m a q

= + + + + +

+ + + + +
 (35) 

 1 1 1 2 1 1 2 1 2sin ( sin sin( ))m ga q m g l q a q q = + + + . (36) 

Diagram of a motor 
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Fig. 3. The 2-dof manipulator driven by electric motors

The system has two degrees of freedom and the the generalized coordinates are de-
fined as

q = [q1, q2]
T, so m = n = 2.

The kinetic and potential energy of the system are given as following

T = 0.5[IC1 + m1a2
1 + IC2 + m2(l2

1 + a2
2 + 2l1a2 cos q2)]q̇2

1

+ [IC2 + m2(a2
2 + l1a2 cos q2)]q̇1q̇2 + 0.5(IC2 + m2a2

2)q̇
2
2. (35)

Π = m1ga1sinq1 + m2g(l1sinq1 + a2 sin(q1 + q2)). (36)

Matrices B and Z are B = diag([1, 1]), Z = diag([1, 1]).
From the kinetic, potential energy of the mechanism, the parameters of the electric

motor, gear transmission ratio, the equation of motion in form of (23) is given with the
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following matrices

Ms(q) =
[

IC1 + m1a2
1 + IC2 + m2(l2

1 + a2
2 + 2l1a2 cos q2) + r2 Im IC2 + m2(a2

2 + l1a2 cos q2)

IC2 + m2(a2
2 + l1a2 cos q2) IC2 + m2a2

2 + r2 Im

]
,

Cs(q, q̇) =
[
−m2l1a2q̇2 sin q2 −m2l1a2(q̇1 + q̇2) sin q2
m2l1a2q̇1 sin q2 0

]
,

Ds =

[
d1 + r2KmR−1

a Ke 0
0 d2 + r2KmR−1

a Ke

]
,

gs =

[
m1ga1cosq1 + m2g[l1 cos q1 + a2 cos(q1 + q2)]

m2ga2 cos(q1 + q2)

]
,

Bs =

[
rKmR−1

a 0
0 rKmR−1

a

]
,

u =

[
U1
U2

]
3.3. Equations of motion of the slider-crank mechanism: 1 dof closed loop MBS

Lets consider a slider-crank mechanism moving in the vertical plane, the crank is
driven by an electric motor through gear-box (Fig. 4). This is a closed loop MBS driven
by an electric motor. The mechanism consists of a crank OA with mass m1, moment
of inertia IC1, length l1, and OC1 = a1; a connecting rod AB with mass m2, moment of
inertia IC2, length l2, and AC2 = a2; and a slider B with mass m3. The parameters of
electric motor include Im (kg.m2), Km (Nm/A), Ke (Vs/rad), Ra (Ohm) and transmission
ratio of gear-box is r.
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Matrices B and Z are diag([1,1]), diag([1,1])= =B Z .   

From the kinetic, potential energy of the mechanism, the parameters of the electric motor, gear 

transmission ratio, the equation of motion in form of (23) is given with the following matrices: 
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C q q  

 

2 1
1

2 1
2

0

0
m a e

s
m a e

d r K R K

d r K R K

−

−
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D  

 
1 1 1 2 1 1 2 1 2
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cos( )s

m ga q m g l q a q q

m ga q q

 + + +
=  

+  

g ,  

1

1

0

0
m a

s
m a

rK R

rK R

−

−

 
=  
  

B , 

  
1

2

U

U

 
=  
  

u . 

 

3.3 Equations of motion of the slider-crank mechanism: 1 dof closed loop MBS 

Let’s consider a slider-crank mechanism moving in the vertical plane, the crank is driven by an 

electric motor through gear-box (Fig.  4). This is a closed loop MBS driven by an electric motor. 

The mechanism consists of a crank OA  with mass 1m , moment of inertia 1CI , length 1l , and 

1 1OC a= ; a connecting rod AB  with mass 2m , moment of inertia 2CI , length 2l , and 

2 2AC a= ;  and a slider B with mass 3m . The parameters of electric motor include mI  (kg.m2), 

mK (Nm/A), eK (Vs/rad), aR (Ohm) and transmission ratio of gear-box is r ;  

 
Fig.  4. The slider-crank mechanism driven by an electric motor 

 

The system has only one degree of freedom and the generalized coordinates are defined as  

 1 2 3[ , , ]Tq q q=q , so 3, 1m n= = . 

Matrices B and Z are [1, 0,0] , [1, 0,0]T= =B Z .   

The kinetic and potential energy of the system are given as following: 

 2 2 2 2 2 2
1 1 1 2 1 1 2 1 2 1 2 1 2 2 2 2 2 3 3

1 1 1
( ) cos( ) ( )

2 2 2C CT I m a m l q m l a q q q q I m a q m q= + + − + + + +  (37) 

 1 1 1 2 1 1 2 2sin ( sin sin )m ga q m g l q a q = + −  (38) 

From the kinetic and potential energy of the mechanism, the parameters of the electric motor, 

gear transmission ratio, the equation of motion in form of (26) is given with the following 

matrices: 

q3 

q1 

q2 

O 

A 

B 
2 

C2 

C1 

Ra La 

U 

Im m 

 

2 

0 

Km 

Ke 

Fig. 4. The slider-crank mechanism driven by an electric motor

The system has only one degree of freedom and the generalized coordinates are de-
fined as

q = [q1, q2, q3]
T, so m = 3, n = 1.

Matrices B and Z are B = [1, 0, 0]T, Z = [1, 0, 0].
The kinetic and potential energy of the system are given as following:

T =
1
2
(IC1 + m1a2

1 + m2l2
1)q̇

2
1 −m2l1a2 cos(q1 + q2)q̇1q̇2 +

1
2
(IC2 + m2a2

2)q̇
2
2 +

1
2

m3q̇2
3, (37)

Π = m1ga1sinq1 + m2g(l1sinq1 − a2sinq2). (38)
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From the kinetic and potential energy of the mechanism, the parameters of the elec-
tric motor, gear transmission ratio, the equation of motion in form of (26) is given with
the following matrices

Ms(q) =

 IC1 + m1a2
1 + m2l2

1 + r2 Im −m2l1a2 cos(q1 + q2) 0
−m2l1a2 cos(q1 + q2) IC2 + m2a2

2 0
0 0 m3

 ,

Cs(q, q̇) =

 0 m2l1a2q̇2 sin(q1 + q2) 0
m2l1a2q̇1 sin(q1 + q2) 0 0

0 0 0

 ,

Ds = diag([d + r2KmR−1
a Ke, 0, 0]),

gs(q) = [g(m1a1 cos q1 + m2l1 cos q1), −m2ga2 cos q2, 0]T,

Bs = [rKmR−1
a , 0, 0]T, u = U.

The constraint equations are given in the below form

φ1(q) = l1 cos q1 + l2 cos q2 − q3 = 0,

φ2(q) = l1 sin q1 − l2 sin q2 = 0,

and the Jacobian matrix is

Φq(q) =
[
−l1 sin q1 −l2 sin q2 −1
l1 cos q1 −l2 cos q2 0

]
.

3.4. The 3RRR planar parallel robot: 3 dof closed loop MBS, full-actuated system
Fig. 5 shows the considered 3RRR planar parallel robot moving in a horizontal plane.

The fixed base and the moving platform are the two equilateral triangles O1O2O3 and
B1B2B3; L0 and L1 are the lengths of two triangles, respectively. It also has three legs and
each leg has the same two links Oi Ai = l1,AiBi = l2. Three active joints are actuated
by three electric motors through gear-box transmission. The system has three degrees
of freedom and the redundant generalized coordinates are defined as q = [ θT, xT]

T
=

[θ1, θ2, θ3, xC, yC, ϕ]T, so n = 3, and m = 6.
To make the dynamic model simple, masses m2 of the connecting links AiBi are con-

sidered as concentrated at the end of links. The kinetic and potential energy of the me-
chanical system are given as following

T =
1
2

3

∑
k=1

(IC1 +
1
4 m1l2

1 +
1
2 m2l2

1)θ̇
2
k +

1
2
(m3 + 3 · 1

2 m2)(ẋ2
C + ẏ2

C) +
1
2
(

IC3 + 3 · 1
2 m2b2) ϕ̇2,

Π = 0.
(39)

Matrices B and Z are

B =

[
E3×3
03×3

]
, Z =

[
E3×3 03×3

]
.
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l q l q q

l q l q
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
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= − =
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and the Jacobian matrix is 
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sin sin 1
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l q l q

l q l q
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3.4 The 3RRR planar parallel robot: 3 dof closed loop MBS, full-actuated system 

Fig.  5 shows the considered 3RRR planar parallel robot moving in a horizontal plane. The fixed 

base and the moving platform are the two equilateral triangles 1 2 3OOO  and 1 2 3B B B ; 0L  and 1L  

are the lengths of two triangles, respectively. It also has three legs and each leg has the same 

two links 1i iOA l= , 2i iAB l= . Three active joints are actuated by three electric motors through 

gear-box transmission. The system has three degrees of freedom and the redundant generalized 

coordinates are defined as 1 2 3[ , ] [ , , , , , ]T T T T
C Cx y   = =q x , so 3,n =  and 6m = . 

 

Fig.  5: Model of an electric motor with gearbox and a 3RRR planar parallel robot 

To make the dynamic model simple, masses 2m  of the connecting links i iAB  are considered as 

concentrated at the end of links. The kinetic and potential energy of the mechanical system are 

given as following: 

     ( )
3

2 2 2 2 2 2 21 1 1 1
1 1 1 2 1 3 2 3 24 2 2 2

1

1 1 1
( ) ( 3 )( ) 3

2 2 2C k C C C
k

T I m l m l m m x y I m b 
=

= + + + +  + + +   (39) 
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Fig. 5. Model of an electric motor with gearbox and a 3RRR planar parallel robot

From kinetic, potential energy of the mechanism, the parameters of the electric mo-
tor, gear transmission ratio, the equation of motion in form of (26) is given with the fol-
lowing matrices

Ms = diag([(Imr2 + IC1 +
1
4 m1l2

1 +
1
2 m2l2

1)[1, 1, 1], (m3 + 3 · 1
2 m2)[1, 1], IC3 + 3 · 1

2 m2b2]),

Cs(q, q̇) = 06×6, Ds = diag([1, 1, 1, 0, 0, 0]r2KmR−1
a Ke), gs(q) = 06×1,

Bs =

[
rKmR−1

a E3×3
03×3

]
, u = [U1, U2, U3]

T, ΦT
q (q) =

(
∂f
∂q

)T

, λ = [λ1, λ2, λ3]
T.

The constraint equations are given from distanced conditions between two points Ai
and Bi

fi = (rBi − rAi)
T(rBi − rAi)− l2

2 = 0, i = 1, 2, 3 (40)

where rAi =

[
xOi + l1cosθi
yOi + l1 sin θi

]
, rBi =

[
xC + b cos(ϕ + αi)
yC + b sin(ϕ + αi)

]
, with α1,2,3 =

[
7
6

π,−1
6

π,
1
2

π

]
.

Rewrite the constraint equations (40) as follows

f(q) = f(θ, x) = 0, f ∈ R3,

and the Jacobian matrix is

Φq(q) =
∂f
∂q

.

4. VALIDATION OF SIMPLIFIED DYNAMIC MODEL BY
NUMERICAL SIMULATIONS

To validate the correctness and acceptability of the simplified motion equations of
the electromechanical system, numerical simulations for the models of an overhead crane
and a slider-crank mechanism are carried out. Two numerical simulations for each sys-
tem are implemented in Matlab: one with the full dynamic model and the other with the
simplified one.
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4.1. Numerical simulations for a crane model
The dynamic responses of an overhead crane under applying of a voltage U on the

motor is investigated in this subsection. The response are obtained by solving the or-
dinary differential equations (33) and (34), respectively. The simulations are carried out
with the following parameters:
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Matrices B and Z are:  

 . 

From kinetic, potential energy of the mechanism, the parameters of the electric motor, gear 
transmission ratio, the equation of motion in form of (26) is given with the following matrices: 

   

  

         

The constraint equations are given from distanced conditions between two points Ai and Bi: 

  (40) 

where  , with . 

Rewrite the constraint equations (40) as follows: 

 . 

and the jacobian matrix is: 

   

4 Validation of simplified dynamic model by numerical simulations  
4.1 Numerical simulations for a crane model 
The dynamic responses of an overhead crane under applying of a voltage U on the motor is 
investigated in this subsection. The response are obtained by solving the ordinary differential 
equations (33) and (34), respectively. The simulations are carried out with the following 
parameters: 

Parameters of the overhead crane  
mt  = 2.00;      % kg, mass of trolley 
mp  = 0.85;      % kg, mass of payload 
g   = 9.81;      % m/s2, gravitational acceleration 
d1  = 2.0;       % Ns/m, damping coefficient of the trolley 
L   = 0.70;      % m, length of the cable 
rw  = 0.025;     % m, wheel radius of the trolley 

 
Parameters of the motor 

Im = 0.001;      % kgm^2, rotor inertia  
Km = 1;          % Nm/A, torque constant  
Ke = 0.1;        % Vs/rad, BACK-EMF constant  
Ra = 1;          % W, armature resistance of the motor 
La = 0.001;      % H, armature inductance of the motor  
dm = 0.1;        % Nms/rad, damping coefficient of the motor 
r  = 10;         % -, gearbox ratio  

 
Applied Voltage on the motor 

u = 10;          % V, input voltage  
 

The simulation results are shown in Figs. 6-8 including motor current i(t), velocity of the trolley 
v(t), and swing-angle of the cable q2(t).  

B =
E3×3
03×3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, Z = E3×3 03×3⎡

⎣
⎤
⎦

Ms = diag([(Imr
2 + IC1 + 1

4m1l1
2 + 1

2m2l1
2)[1,1,1],(m3 + 3 ⋅ 12m2)[1,1],IC 3 + 3 ⋅

1
2m2b

2 ]),

Cs(q, !q) = 06×6, Ds = diag([1,1,1,0,0,0]r
2KmRa

−1Ke), gs(q) = 06×1,

Bs =
rKmRa

−1E3×3
03×3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, u = [U1,U2,U3 ]

T , Φq
T(q) = ∂f

∂q
⎛
⎝⎜

⎞
⎠⎟

T

,λ = [λ1,λ2,λ3 ]
T .

fi = (rBi − rAi )
T(rBi − rAi )− l2

2 = 0, i = 1,2,3

r
A
i

=
x
O
i

+ l1 cosθi
y
O
i

+ l1 sinθi

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
, rBi =

xC + b cos(ϕ +α i)
yC + b sin(ϕ +α i)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α1,2,3 =
7
6
π,− 1
6
π, 1
2
π

⎡

⎣
⎢

⎤

⎦
⎥

f(q) = f(θ,x) = 0, f ∈R3

Φq(q) =
∂f
∂q
.

The simulation results are shown in Figs. 6–8 including motor current i(t), velocity
of the trolley v(t), and swing-angle of the cable q2(t).
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The simulation results are shown in Figs. 6-8 including motor current i(t), velocity of the trolley 

v(t), and swing-angle of the cable q2(t).  
 

 
Fig. 6: Time history of current in the motor (full model) 

 
Fig. 7: Time history of velocity of the trolley: solid-black lines (full model) and dashed-red lines (simplified model) 
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The simulation results show that the electric current changes only in a very short
initial time, then it keeps a constant value (Fig. 6). Time responses of trolley and swing-
angle of the cable in two cases (full and simplified model) are almost identical (Figs. 7
and 8).

4.2. Numerical simulations for a slider-crank mechanism
A slider-crank mechanism driven by an electric motor (Fig. 4) is chosen for numer-

ical experiment in this subsection. The length of the crank is smaller than the length of
the connecting rod, L1 < L2. With this choice there is no singular point in the forward
dynamic simulation of the mechanism. In addition, the dynamic simulation of this mech-
anism requires solving a DAEs that is accompanied by the constraint stabilization. In the
dynamic simulation, the method of the Lagrangian multiplier elimination and Baum-
gartes stabilization technique are exploited [29].

Two models of the mechanism, the full and simplified one, are simulated. These
are corresponding to the solving of the DAEs (18) and (21), and DAEs (26) and (27),
respectively. The simulations are carried out with the following parameters:
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The simulation results show that the electric current changes only in the first half second, then it 
keeps the constant value (Fig. 9). The motions of the mechanism in two cases (full and 
simplified model) are almost identical (Fig. 10-12).  
By numerical investigation with two systems: the overhead crane and the slider-crank 
mechanism, it can be concluded that neglecting the change of current is acceptable. Therefore, 
instead of using the full dynamic model, we only need to use the simplified dynamic model with 
a smaller number of equations than the number of equations in case of the full description. 
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The simulation results are shown in Figs. 9–12 including motor current i(t), angu-
lar velocity of the crank q̇1(t), the angular position of the connecting rod q2(t) and the
position of the slider, q3(t).
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The simulation results show that the electric current changes only in the first half
second, then it keeps the constant value (Fig. 9). The motions of the mechanism in two
cases (full and simplified model) are almost identical (Fig. 10–12).

By numerical investigation with two systems: the overhead crane and the slider-
crank mechanism, it can be concluded that neglecting the change of current is acceptable.
Therefore, instead of using the full dynamic model, we only need to use the simplified
dynamic model with a smaller number of equations than the number of equations in case
of the full description.
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5. CONCLUSION

This paper presents a unified and efficient modelling methodology for establishing
of motion equations of electromechanical systems in engineering. The whole system
is split into mechanical sub-system, normally a rigid multibody system with an open
or/and a closed loop, and electric motors. These two subsystems are coupled by mass-
less gear-box transmission. The dynamic equations of each subsystem are written in
matrix form. Therefore, it is easy to get the final equations by matrix multiplications and
additions. The efficiency of the proposed approach is illustrated by the construction of
equations for four electromechanical systems in engineering including under-actuated,
full-actuated, open loop as well as closed loop systems. The obtained model in this study
included electrical and mechanical parts, so it described better the real electromechanical
system than in the case of the mechanical system only. In this way, it is easy to apply to
other mechanical systems driven by electric motors. In addition, the simplified dynamic
model obtained by neglecting variation in current of motors is validated by numerical in-
vestigation with an overhead crane and a slider-crank mechanism. The dynamic models
obtained by the approach in this paper are easily extended for mechatronic systems by
adding feedback controllers.
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