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Abstract. This paper is concerned with the nonlinear dynamic buckling of sandwich func-
tionally graded circular cylinder shells filled with fluid. Governing equations are derived
using the classical shell theory and the geometrical nonlinearity in von Karman–Donnell
sense is taken into account. Solutions of the problem are established by using Galerkin’s
method and Runge–Kutta method. Effects of thermal environment, geometric parameters,
volume fraction index k and fluid on dynamic critical loads of shells are investigated.

Keywords: dynamic buckling; dynamic critical loads; FGM-sandwich; full-filled fluid; cir-
cular cylinder shell.

1. INTRODUCTION

In recent years, functionally graded material (FGM) have been widely used in many
industry due to outstanding characteristics. Plate and shell structures have received con-
siderable attention of scientists in the world. In studies, vibration and dynamic stability
of FGM shells are problems interested and achieved encouraging results.

On vibration of shells, Bich and Nguyen [1] studied nonlinear responses of a func-
tionally graded (FG) circular cylinder shell under mechanical loads. Governing equa-
tions were based on improved Donnell shell theory. Kim [2] used an analytical method
to study natural frequencies of circular cylinder shells made of FGM partially embedded
in an elastic medium with an oblique edge based on the first order shear deformation
theory (FSDT). In recent times, Duc et al. investigated nonlinear dynamic responses and
vibration of imperfect eccentrically stiffened functionally graded thick circular cylindri-
cal shells [3] and the one [4] surrounded on elastic foundation subjected to mechani-
cal and thermal loads. The FSDT and the third order shear deformation theory (TSDT)
were employed to solve problems. Bahadori and Najafizadeh [5] analyzed free vibra-
tion frequencies of two-dimensional FG axisymmetric circular cylindrical shells resting
on Winkler–Pasternak elastic foundations. The Navier-Differential Quadrature solution
methods was employed to survey.
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Regarding to dynamic buckling problems, Bich et al. [6] based on the classical shell
theory and the smeared stiffeners technique to study nonlinear dynamics responses of
eccentrically stiffened FG cylindrical panels. The nonlinear static and dynamic buckling
problems of imperfect eccentrically stiffened FG thin circular cylinder shells under ax-
ial compression load were solved in [7]. Mirzavand et al. [8] studied the post-buckling
behavior of FG circular cylinder shells with surface-bonded piezoelectric actuators un-
der the combined action of thermal load and applied actuator voltage. Duc et al. [9, 10]
used the TSDT to analyze nonlinear static buckling and post-buckling for imperfect ec-
centrically stiffened thin and thick FG circular cylinder shells made of S-FGM resting on
elastic foundations under thermal-mechanical loads. Lekhnitsky smeared stiffeners tech-
nique and Bubnov–Galerkin method were applied in calculation. By using an analytical
approach, based on improved Donnell shell theory with von Karman–Donnell geometri-
cal nonlinearity, Bich et al. [11] investigated the buckling and post-buckling of FG circular
cylinder shells under mechanical loads including effects of temperature. Nonlinear buck-
ling problems of imperfect eccentrically stiffened FG thin circular cylindrical shells sub-
jected to axial compression load and surrounded by an elastic foundation were solved by
Nam et al. [12]. The classical thin shell theory with the von Karman–Donnell geometrical
nonlinearity, initial geometrical imperfection and the smeared stiffeners technique were
employed to study.

For circular cylindrical shells made of FGM filled with fluid, Sheng et al. [13] based
on the FSDT to study free vibration characteristics of FG circular cylinder shells with
flowing fluid and embedded in an elastic medium subjected to mechanical and thermal
loads. This study was expanded to investigate dynamic characteristics of fluid-conveying
FGM circular cylinder shells subjected to dynamic mechanical and thermal loads [14]. Za-
far Iqbal et al. [15] examined vibration frequencies of FGM circular cylinder shells filled
with fluid using wave propagation approach. Vibration frequencies of shell were ana-
lyzed for various boundary conditions taking into account the effect of fluid. Shah et
al. [16] based on Love’s thin-shell theory to investigate natural frequencies of full-filled
fluid FG circular cylinder shells resting on Winkler and Pasternak elastic foundations.
Wave propagation approach was employed to calculate. Silva et al. [17] studied nonlin-
ear responses of fluid-filled FG circular cylinder shell under mechanical load. Recently,
Hong-Liang Dai et al. [18] analyzed thermos electro elastic behaviors of a fluid-filled
functionally graded piezoelectric material cylindrical thin-shell under the combination of
mechanical, thermal and electrical loads. By using the classical shell theory and Galerkin
method, Khuc et al. [19] considered nonlinear vibration of full-filled fluid circular cylin-
der shells made of sandwich-FGM subjected to mechanical loads in thermal environment.

To best of the authors’ knowledge, there is no analytical approach on dynamic buck-
ling of sandwich FGM circular cylinder shells containing fluid. In this paper, nonlinear
dynamic buckling of full-filled fluid sandwich FGM circular cylinder shells subjected
to mechanical loads in the thermal environment is investigated. Governing equations
are derived by using the classical shell theory with the geometrical nonlinearity in von
Karman–Donnell sense. Solution of problem is established by using Galerkin’s method
and Runge–Kutta method. Effects of thermal environment, fluid, structures’ geometric
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parameters and volume fraction index (k) on nonlinear dynamic responses of shell are
considered.

2. GOVERNING EQUATIONS

Consider a sandwich FGM circular cylinder shell with geometric parameters: R, h,
hc, and hm are shown in Fig. 1. Suppose that the full-filled fluid circular cylinder shell
made of FGM sandwich subjected to an axial compression load N01 = −p (t) h and a
uniformly distributed external pressure q (t) varying on time.

Nonlinear dynamic buckling of full-filled fluid sandwich-FGM circular cylinder shells 3 
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The strain components of the circular cylinder shell are  
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Figure.1. Model of FGM-sandwich circular cylinder shell  

 

Fig. 1. Model of FGM-sandwich circular cylinder shell

With configuration of sandwich FGM as Fig. 1, suppose that Vc(z) and Vm(z) are
the volume fractions of ceramic and metal respectively, the volume fraction of ceramic
constituent changes according to the power law and can be expressed as

Vc = 0,−0.5h ≤ z ≤ − (0.5h− hm),

Vc =

(
z + 0.5h− hm

h− hc − hm

)k

,− (0.5h− hm) ≤ z ≤ (0.5h− hc) , k ≥ 0,

Vc = 1, (0.5h− hc) ≤ z ≤ 0.5h.

(1)

Then the elasticity modulus E, the mass density ρ and the Poisson ratio ν of circular
cylinder shell can be evaluated as following

E = EmVm + EcVc = Em + (Ec − Em)Vc,
ρ = ρmVm + ρcVc = ρm + (ρc − ρm)Vc,
νm = νc = const.

(2)

The strain components of the circular cylinder shell are

εx = ε0
x − zkx, εy = ε0

y − zky, γxy = γ0
xy − 2zkxy, (3)
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kx =
∂2w
∂x2 , ky =

∂2w
∂y2 , kxy =

∂2w
∂x∂y

, (5)

in which ε0
x; ε0

y; γ0
xy are the strains at the middle surface; kx, ky and kxy are curvatures and

the twist.
By use of Eq. (4), the deformation compatibility equation can be written as
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For circular cylindrical shell subjected to mechanical load in temperature environ-
ment, the Hooke’s law can be defined as

σx =
E (z)

1− ν2 (εx + νεy)−
E (z) α (z)∆T

1− ν
, σy =

E (z)
1− ν2 (νεx + εy)−
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,

τxy =
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2 (1 + ν)
γxy,

(7)

in which ∆T = T − T0.
Internal forces and moment resultants can be defined by integrating stresses compo-

nents through the shells’ thickness and can be expressed in matrix form as

Nx
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Nxy
Mx
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Mxy


=
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A12 A22 0 B12 B22 0
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0 0 B66 0 0 D66
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0

Φb
Φb
0


, (8)

in which Nx; Ny; Nxy are internal forces, Mx; My; Mxy are moment resultants.
Stiffness coefficients and quantities related to thermal load in Eq. (8) are explained

in Appendix A. From Eq. (8) the expressions of deformation and moment resultants of
sandwich FGM circular cylinder shell can be defined as

ε0
x = A∗22Nx − A∗12Ny + B∗11kx + B∗12ky + Φa (A∗22 − A∗12) ,

ε0
y = −A∗12Nx + A∗11Ny + B∗21kx + B∗22ky + Φa (A∗11 − A∗12) ,

γ0
xy = A∗66Nxy + 2B∗66kxy,

(9)

Mx = B∗11Nx + B∗21Ny − D∗11kx − D∗12ky + [B11 (A∗22 − A∗12) + B12 (A∗11 − A∗12)]Φa −Φb,

My = B∗12Nx + B∗22Ny − D∗21kx − D∗22ky + [B12 (A∗22 − A∗12) + B22 (A∗11 − A∗12)]Φa −Φb,

Mxy = B∗66Nxy − 2D∗66kxy,
(10)

Extended stiffness coefficients in Eq. (9) and Eq. (10) are explained in Appendix B.
According to [20], the motion equations of full-filled fluid circular cylinder shell subjected
to external pressure q (t) and an axial compression can be given as
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in which ε is the linear damping coefficient and

ρ1 =
∫ h/2

−h/2
ρ(z)dz = ρmh + ρcmhc +

ρcm (h− hc − hm)

k + 1
,

pL = −ρL
∂ϕL

∂t
= ML

∂2w
∂t2 is the dynamic pressure of fluid acting on the shell,

where ML =
ρLRIn (λm)

λm I′n (λm)
is the mass of correspondence fluid to the shell vibration and

λm =
mπR

L
[19].

Applying the Volmir’s assumption [21] into Eqs. (11) (because of u� w, v� w), the
equations of motion can be rewritten as follows
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(12)
The first and the second equation of Eqs. (12) are satisfied identically by recommend-

ing the stress function:

Nx =
∂2F
∂y2 , Ny =

∂2F
∂x2 , Nxy = − ∂2F

∂x∂y
. (13)

Substituting Eqs. (9) and (13) into Eq. (6), and Eq. (13) into the third equation of
Eqs. (12) we obtain the system of two equations
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(15)
Eqs. (14) and (15) are governing equations used to investigate nonlinear dynamic

buckling of full-filled fluid circular cylinder shell made of sandwich FGM.

3. DYNAMIC BUCKLING SOLUTION

Suppose that the circular cylinder shell under simply supported at both ends and
subjected to axial compression load N01 = −ph. In which p is average axial stress acting
on the ends of the shell. Therefor boundary conditions are defined as

w = 0, Mx = 0, Nx = N01, Nxy = 0 at x = 0 and x = L.

The shells’ deflection satisfying above conditions can be written as

w = f (t) sin
mπx

L
sin

ny
R

, (16)

where m, n are numbers of half waves in generating line direction and circumference
direction, respectively.

The solution of stress function F in Eq. (14) can be defined as

F = F1 cos 2αx+ F2 cos 2βy− F3 sin αx sin βy−N01
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2
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in which
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Substituting Eq. (16) and Eq. (17) into Eq. (15), then using the Galerkin method we
obtain
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in which
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Eq. (18) is used to investigate the nonlinear dynamic buckling of full-filled fluid FGM
sandwich circular cylinder shells under mechanical load in thermal environment.

Nonlinear dynamic buckling analysis
For dynamic buckling analysis, this paper investigates two cases:
- Case 1. Consider a full-filled fluid sandwich FGM circular cylinder shell under lin-

ear axial compression load varying on time N01 = −ph with p = c1t (c1-loading speed),
q = 0.

- Case 2. Consider a full-filled fluid sandwich FGM circular cylinder shell under a
pre-axial compression load and an external uniformly distributed pressure varying on
time: N01 = const; q = ct (c2-loading speed).

In order to analyze the dynamic buckling problem of the considered shells, firstly
Eq. (18) is solved for each case respectively to determine the nonlinear dynamic responses;
secondarily based on these obtained dynamic responses, the dynamic critical time tcr can
be obtained according to Budiansky–Roth criterion [22]. This criterion is based on that
for large value of loading speed, the amplitude time curve of obtained displacement re-
sponse increases sharply depending on time and this curve obtains a maximum by pass-
ing from the slope point and at the corresponding time t = tcr the stability loss occurs.
Here t = tcr is called critical time and the load corresponding to this critical time is called
dynamic critical buckling load Pcr = c1tcr (case 1) or qcr = c2tcr (case 2).

4. VALIDATION

To the best of the author’s knowledge, there is no any publication on the nonlinear
dynamic buckling of the sandwich-FGM cylindrical shell containing full filled fluid in
thermal environment. Thus, the results in this paper are compared with the fluid-free
shell (hc = hm = 0). Authors compare the dynamic critical stress of fluid-free FGM
cylindrical shell with the one in publication of Huaiwei Huang, Qiang Han [23] (Tab.
1), for FGM shell made of ZrO2/Ti-6Al-4V and material properties: Em = 122.56 e9Pa,
ρm = 4429 kg/m3, νm = 0.288, Ec = 244.27 e9Pa, ρc = 5700 kg/m3, νc = 0.288.

Tab. 1 shows that, the results of this article are slightly different from the above
publication. The cause of this difference is that the authors use different methods, so the
results of this article can be reliable.
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Table 1. Comparison of critical stress of the compressed cylindrical shell (MPa)

k 0.2 1.0 5.0

Huang & Han [23] 194.94 (2, 11) 169.94 (2, 11) 150.25 (2, 11)
Present 193.914 (1, 9) 168.685 (1, 9) 149.167 (1, 9)

5. NUMERICAL RESULTS

Consider a circular cylindrical shell made of FGM-core with geometric dimensions:
h = 0.014 m, hc = h/5, hm = h/5, L/R = 2 and R/h = 200. FGM made of Aluminium
and Alumina with the material properties are Em = 7 × 109 N/m2; ρm = 2702 × 103

kg/m3, αm = 2.3× 10−5 C−1, Ec = 3.8× 1011 N/m2; ρc = 3.8× 103 kg/m3, αc = 5.4×
10−6 C−1, ε = 0.1, the Poisson’s ratio νc = 0.3 the fluid density ρL = 103 kg/m3.

- Case 1. Consider a full-filled fluid sandwich FGM circular cylinder shell under
linear axial compression load varying on time N01 = −ph(p = c1t), q = 0.

In this case, the critical time tcr can be obtained according to Budiansky–Roth crite-
rion. The dynamic critical force pcr = c1tcr. The nonlinear dynamic responses of shell are
shown in Figs. 2–7.

Nonlinear responses of fluid-filled and fluid-free circular cylinder shell in thermal
environment are shown in Figs 2–3. From Fig. 2 we obtain tcr = 0.065 s and Pcr = 68.1
GPa respectively and from Fig. 3, we can see that with fluid-filled cylinder shell, the
dynamic critical force Pcr = 68.1 GPa increased by 4.12 times (318%) compared to the
dynamic critical force of fluid-free ones Pcr = 16.3 GPa, tcr = 0.015 s, respectively.

Doing the same with the next case taking into account the influence of other factors
must be derived from dynamical responses to determine the critical forces.Phu V. K and Doan X. L 8 
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Fig. 3. Effects of fluid on dynamic response of
circular cylinder shell

Fig. 4 shows nonlinear dynamic responses of cylinder shell when volume-fraction
index k changes. It can be seen that, if k increases the dynamic critical force of shell will
decrease. That means the load-bearing capability of cylinder shell decreases.
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Fig. 4. Dynamic response of fluid-filled cylin-
der shell when k changes
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Fig. 5. Temperature effect on nonlinear dy-
namic responses of fluid-filled cylinder shell

The effect of thermal environment on nonlinear dynamic responses of circular cylin-
der shell is shown in Fig. 5. From the graph it is observed that when the temperature
increases, the dynamic critical force of shell will decrease. From Pcr = 76.6 GPa at 0◦C to
Pcr = 65 GPa at 200◦C. That means, the load-bearing capability of the shell will decrease
when temperature increases.

The effect of geometric parameters (L/R ratio) on nonlinear dynamic responses of
cylinder shells made of sandwich-FGM filled with fluid is shown in Fig. 6. The dynamic
critical force of cylinder shell decreases when increasing R/L ratio. That means increas-
ing length of the shell, the stability of the shell structure will decrease.Nonlinear dynamic buckling of full-filled fluid sandwich-FGM circular cylinder shells 9 
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Fig. 6. Effect of geometric parameters on dy-
namic responses of fluid-filled cylinder shell
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Fig. 7. Dynamic responses of FGM and
sandwich-FGM circular cylinder shell

Fig. 7 indicates nonlinear dynamic responses of circular cylinder shell made of FGM
and sandwich-FGM filled with fluid. For the structure made of sandwich-FGM, the crit-
ical force is Pcr = 0.496 GPa, and for FGM ones, the critical force is Pcr = 0.485 GPa. That
means, with the same geometry dimensions, the workability of sandwich-FGM cylinder
shell is better than FGM ones.
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- Case 2. Consider a full-filled fluid sandwich FGM circular cylinder shell under
a uniform pre-axial compression load and an external uniformly distributed pressure
varying on time: N01 = const, q = c2t (c2-loading speed).

The nonlinear dynamic responses of circular cylinder shell are shown in Figs. 8–
13. Nonlinear dynamic responses of fluid-filled and fluid-free sandwich FGM circular
cylinder shell are depicted in Figs. 8–9. From Fig. 8 we obtain tcr = 0.01 s and qcr =
147 MPa respectively, from the Fig. 9, it is observed that fluid remarkably increases the
dynamic critical force of the shell (from qcr = 25 MPa at tcr = 0.002 s in case fluid-fee
shell to qcr = 147 MPa at tcr = 0.01 s in case shell containing fluid, i.e. the critical force
increased by 5.88 times by 488%).

Nonlinear dynamic buckling of full-filled fluid sandwich-FGM circular cylinder shells 9 
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Fig. 8. Nonlinear dynamic responses of full-
filled fluid circular cylinder shell
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Fig. 9. Effect of fluid on dynamic responses of
circular cylinder shell

Similarly, we make other cases when taking into account the influence of other fac-
tors derive from dynamic response curves to determine dynamic critical forces.
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Fig. 10. Dynamic responses of fluid-filled cir-
cular cylinder shell with k changes
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Fig. 11. Effect of thermal on the dynamic re-
sponse of circular cylinder shells
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Figs. 10–11 show dynamic responses of circular cylinder shell filled with fluid with
various volume-fraction index k and the effect of thermal environment on dynamic re-
sponses of circular cylinder shells. From the graph as can see that if temperature increases
the dynamic critical force decreases. That means if the temperature increases then the sta-
bility of the shell structure will decrease.

Effects of geometric parameters on nonlinear dynamic response of full-filled fluid
circular cylinder shells are surveyed and presented in Fig. 12. Dynamic critical force of
the shell decreases with increasing the ratio of length to radius L/R. That means if the
length of shell increases, the stability of the shell will decrease.
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Fig. 12. Nonlinear dynamic responses of circu-
lar cylinder shell with L/R changes
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decreases. That means if the temperature increases then the stability of the shell structure will decrease. 
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Nonlinear responses of FGM and sandwich-FGM circular cylinder shell filled with
fluid are shown in Fig. 13. The critical force of full-filled fluid sandwich-FGM circular
cylinder shell is higher than those of FGM ones. That means, with the same geometry
dimensions, sandwich-FGM cylinder shell structures will work better than FGM ones.

6. CONCLUSIONS

This paper established nonlinear dynamic equations of fluid-filled circular cylinder
shells made of sandwich-FGM under mechanical load including the effect of tempera-
ture. Dynamic responses of the simply supported shell are obtained by using Galerkin
method and Runge–Kutta method. Based on dynamic responses, critical dynamic loads
are obtained by using the Budiansky–Roth criterion. Some conclusions can be obtained
from the present analysis:

- Dynamic critical force of full-filled fluid sandwich-FGM circular cylinder shell is
remarkably higher than those of fluid-free ones. That means, the fluid enhances the sta-
bility of sandwich-FGM cylinder shell.

- Temperature reduces dynamic critical force of sandwich-FGM cylinder shell. That
means, temperature reduces stability of shell.
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- When the volume-fraction index k increases (it means the volume fraction of metal
increases),

the critical force decreases (the stability of the shell structure will decrease) .
- Dynamic critical force of the shell decreases when increasing ratio of length to ra-

dius (L/R). On the other hand, length of shell decreases stability of shell.
- With the same geometry dimensions, sandwich-FGM circular cylinder shell struc-

tures will work better than FGM one.
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APPENDIX A

Stiffness coefficients and quantities related to thermal load in Eq. (8)

A11 = A22 =

h/2∫
−h/2

E
1− ν2 dz =

E1

1− ν2 ; A12 =

h/2∫
−h/2

νE
1− ν2 dz =

νE1

1− ν2 ; A66 =

h/2∫
−h/2

E
2 (1 + ν)

dz =
E1

2 (1 + ν)
;

B11 = B22 =

h/2∫
−h/2

E.z
1− ν2 dz =

E2

1− ν2 ; B12 =

h/2∫
−h/2

νEz
1− ν2 dz =

νE2

1− ν2 ; B66 =

h/2∫
−h/2

Ez
2 (1 + ν)

dz =
E2

2 (1 + ν)
;

D11 = D22 =

h/2∫
−h/2

E.z2

1− ν2 dz =
E3

1− ν2 ; D12 =

h/2∫
−h/2

νEz2

1− ν2 dz =
νE3

1− ν2 ; B66 =

h/2∫
−h/2

Ez2

2 (1 + ν)
dz =

E3

2 (1 + ν)
;

in which

E1 =

h/2∫
−h/2

E (z) dz = Emh + Ecmhc +
Ecmhx

k + 1
;

E2 =

h/2∫
−h/2

E (z) zdz =
Ecmhch

2
− Ecmh2

c
2

+
Ecm

k + 1

(
h
2
− hc

)
hx −

Ecmh2
x

(k + 1) (k + 2)
;

E3 =

h/2∫
−h/2

E (z) z2dz =
Ecm

k + 1

(
h
2
− hc

)2
hx −

2Ecm

(k + 1) (k + 2)

(
h
2
− hc

)
h2

x +
2Ecm

(k + 1) (k + 2) (k + 3)
h3

x

+
Ech3

c
3

+
Echhc

2

(
h
2
− hc

)
+

Em

3

[
h3

m +
3hhm

2

(
h
2
− hm

)]
+

Em

3

[
h3

x − 3 (h/2− hm) (h/2− hc) hx

]
;

Φa =
1

1− ν

h/2∫
−h/2

E (z) α (z)∆Tdz, Φb =
1

1− ν

h/2∫
−h/2

E (z) α (z)∆Tzdz.

If ∆T = const then Φa =
1

1− ν
P∆T.

For FGM-core:

P = Emαmh + Ecαchc + Emαm (h− hc) +
Emαcmhx

k + 1
+

Ecmαmhx

k + 1
+

Ecmαcmhx

2k + 1
,

where hx = h− hc − hm; Ecm = Ec − Em.

APPENDIX B

Extended stiffness coefficients in Eq. (9) and Eq. (10)

A∗11 =
A11

A11 A22 − A2
12

; A∗12 =
A12

A11 A22 − A2
12

; A∗22 =
A22

A11 A22 − A2
12

; B∗11 =
A22B11 − A12B12

A11 A22 − A2
12

;

B∗12 =
A22B12 − A12B22

A11 A22 − A2
12

; B∗21 =
A11B12 − A12B11

A11 A22 − A2
12

; B∗22 =
A11B22 − A12B12

A11 A22 − A2
12

; A∗66 =
1

A66
; B∗66 =

B66

A66
;

D∗11 = D11 − B11B∗11 − B12B∗21; D∗12 = D12 − B11B∗12 − B12B∗22;
D∗21 = D12 − B12B∗11 − B22B∗21; D∗22 = D22 − B12B∗12 − B22B∗22; D∗66 = D66 − B66B∗66.
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