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Abstract. This paper presents the study on the determination of the thermodynamic prop-
erties of Cis-1,3,3,3-tetrafluoropropene (R1234ze(Z)) with the BACKONE equation of state.
The BACKONE’s characteristic temperature T0, characteristic density ρ0, anisotropy fac-
tor α, and reduce quarupole moment Q∗2 were found by fitting the BACKONE EOS to
experimental data of vapor pressure and saturated liquid density. All thermodynamic
properties such as vapor pressure, pressure in gaseous phase, saturated liquid density,
and liquid density can be determined easily from the found molecular characteristic prop-
erties. Thermodynamic properties of the R1234ze(Z) were evaluated with available exper-
imental data. Average absolute deviations between calculated vapor pressure data and
experimental data were 0.43%. Average absolute deviations between calculated saturated
liquid density data and experimental data were 0.43%. In the prediction of the thermo-
dynamic properties, average absolute deviations between calculated liquid density data
and experimental data were 0.68% and average absolute deviations between calculated
gas density data and experimental data were 1.6%.

Keywords: HFO-1234ze(Z), R1234ze(Z), thermodynamic properties, BACKONE equation
of state (EOS).

1. INTRODUCTION

R245fa was considered as the alternative refrigerant of R114 in the past two decades.
However, global warming potential (GWP) of R245fa is 1020 which is much higher than
the recent requirement for the fourth generation of the refrigerants. One of the most
potential alternative refrigerants for R254fa and R114 in medium and high temperature
heat pump applications is Cis-1,3,3,3-tetrafluoropropene (HFO1234ze(Z) or R1234ze(Z))
as its GWP is only 1.4 [1] and its heat of evaporation is similar to that of R245fa, Fukuda
[2], Kondou [3], Longo [4], Petr [5], Brown [6], Zhang [7].

Experimental study on the basic thermodynamic properties of R1234ze(Z) such as
vapor pressure, saturated liquid density, gas pressure, liquid density, speed of sound has
been carried out by various scientists Higashi [8], Fedele [9], Brown [10], Kondo [11],
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Katsuyuki [12], Lago [13]. From the basic experimental data, Akasaka [14] and Brown
[15] developed multiparameter EOS for the R1234ze(Z).

Multiparameter EOS is the most accurate EOS in the available experimental data
range but it is not accurate for outside of the available experimental data range. The
reason is that it is only polynomial model having multiparameters and the parameters
don’t have any physical meanings.

In order to fill the lack of accurate thermodynamic properties where experimental
data are not available, molecular base EOS such as PC-SAFT EOS and BACKONE EOS
should be used. Another advantage of the PC-SAFT EOS and the BACKONE EOS is
that they are easily in extension to mixtures. Recent study shows that the BACKONE
EOS is more accurate than PC-SAFT EOS [16], so the BACKONE EOS is used in the
determination of the thermodynamic properties of R1234ze(Z) in this study.

2. BACKONE EOS

The BACKONE EOS is molecular based EOS constructed from molecular interaction
theory. This EOS can be used to calculate all type of thermodynamic properties accu-
rately such as pvT data and enthalpy, entropy, heat capacity, and so on. In the BACK-
ONE EOS, Helmholtz energy is written as the sum of molecular hard-body contribution
FH, attractive dispersion force contribution FA, dipolar contribution FD and quadrupolar
contribution FQ.

F
RT

=
FH

RT
+

FA

RT
+

FD

RT
+

FQ

RT
. (1)

The BACKONE EOS has only 3 to 5 parameters [17]. For nonpolar fluids, The BACK-
ONE EOS has only three parameters as characteristic temperature T0, characteristic den-
sity ρ0, and anisotropy factor α. For polar fluids, additional reduced quadrupole moment
Q∗2 is used for multipolar fluids and reduced dipole moment µ∗2 is used for dipolar flu-
ids. All of the parameters of the BACKONE EOS can be found by fitting the BACKONE
EOS to experimental data for vapor pressure and saturated liquid density. These param-
eters can be used in calculate state properties in full fluid region, e.g. in liquid phase, in
gas phase, and in two-phase region. If ideal gas heat capacity is available, The BACK-
ONE EOS can also be used to calculate all caloric properties such as enthalpy, entropy,
heat capacity, heat of vaporization.

3. EQUATION OF STATE FOR HFO-1234ZE(Z)

3.1. General information
Molecular structure of R1234ze(Z) is shown in Fig. 1. This substance has 4 fluo-

rine (F) atoms, 3 carbon (C) atoms, and 2 hydrogen (H) atoms thus molecular weight of
R1234ze(Z) is 0.1140416 kg/mol. In the safety classification, R1234ze(Z) is expected to
be A2L as similar to R1234ze(E). In environmental aspect, R1234ze(Z) is environmental
friendly substance having ozone depletion potential (ODP) of 0 and GWP100 of 1.4 [1].
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Fig. 1. Structure of R1234ze(Z). 
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Fig. 1. Structure of R1234ze(Z)

3.2. Available experimental data
Critical temperature (Tc), critical pressure (pc), and saturated liquid density of

R1234ze(Z) were published by Brown et al. [15] and Higashi et al. [8], shown in Tab. 1.
The data published by Brown et al. [15] are predicted one whilst the data published by
Higashi et al. [8] are experimental data. The experimental data are more accurate, e.g.
uncertainty of temperature is 0.03 K and uncertainty of density is 5 kg/m3. Thus, in this
study, experimental data of Higashi et al. [8] were used.

Table 1. Critical properties of R1234ze(Z) and sources

Tc, K pc, MPa ρc, mol/dm3 Sources

423.27 3.533 4.1213 Higashi [8]
426.8 3.970 4.1476 Brown [15]

Table 2. Experimental vapor pressure of R1234ze(Z)

Sources Number experimental data points Tmin – max, K Pmin – max, MPa

Fedele [9] (Lab ITC-CNR) 36 283–353 0.103–0.863
Fedele [9] (Lab UnivPM) 28 238–372 0.012–1.336

Higashi [8] 19 310–420 0.263–3.333
Katsuyuki [12] 22 300–400 0.186–2.309

Available experimental data for vapor pressure (ps) of R1234ze(Z) were given in
Tab. 2. Tab. 2 includes sources, number of experimental data points, temperature ranges
and vapor pressure ranges. In details, a vapor-liquid equilibrium apparatus of the Isti-
tuto per le Tecnologie della Costruzione of the Consiglio Nazionale delle Ricerche (ITC-
CNR) was used to measure the vapor pressure of R1234ze(Z) for temperature ranging
from 283.15 K to 353.16 K [9]. The uncertainty of temperature and pressure were said
to be about 0.03K and less than 1 kPa, respectively. The apparatus was also validated
by measuring vapor pressure of R134a as a reference fluid. The average absolute de-
viation of measured vapor pressure for temperature range from 255.16 K to 337.15 K is
0.02%. Another apparatus, used to measure the vapor pressure in the study of Fedele [9],
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is isochoric apparatus. The uncertainty of temperature and pressure of this apparatus is
similar to that of the vapor-liquid equilibrium apparatus. The average absolute deviation
of measured reference vapor pressure of is 0.03%. Higashi [8] published 19 experimental
vapor pressure data points for temperature ranging from 310 K to 420 K. The uncer-
tainty of the measured pressure was reported to be within ±1 kPa for the temperature
less than 380 K and to be within ±2 kPa for the temperature higher than 380 K. The last
available experimental data of R1234ze(Z) were published by Katsuyuki [12]. Maximum
uncertainty of measured temperature and pressure were said to be 0.01 K and 0.3 kPa,
respectively.

Tab. 3 shows experimental saturated vapor and liquid density. Katsuyuki [12] pub-
lished 22 experimental data points for saturated liquid density with an uncertainty of
density of 0.9 kg/m3. Fedele et al. [18] published 313 experimental data point of liquid
density with an uncertainty of about 0.8 kg/m3. In the study of Higashi et al. [8], the
uncertainty of the measured density ranges from 0.2 kg/m3 to 0.6 kg/m3. In the study of
Fedele et al. [18], stainless steel vibrating tube densimeter was used. The uncertainty of
the measured density was reported to be 0.8 kg/m3.

Table 3. Experimental saturated density and pvT data of R1234ze(Z)

State Sources
Number

experimental
data point

ρmin – max,
mol/dm3

Tmin – max,
K

Pmin – max,
MPa

Saturated liquid Higashi [8] 9 4.391–8.786 368–424 -
Katsuyuki [12] 22 7.397–10.691 300–400 -

Saturated vapor Higashi [8] 9 0.395–4.127 368–424 -

pvT Higashi [8] 71 0.397–8.786 360–440 0.94–6.03
Fedele [18] 313 8.978–11.757 283–364 0.19–34.03

3.3. BACKONE EOS’s parameters for R1234ze(Z)
In this study, BACKONE EOS’s parameters for R1234ze(Z) as characteristic temper-

ature T0, characteristic density ρ0, anisotropy factor α and reduce quarupole moment Q∗2

were found by fitting the BACKONE EOS to experimental data for vapor pressure in
Tab. 2 and saturated liquid density in Tab. 3. The found characteristic temperature T0,
characteristic density ρ0, anisotropy factor α, and reduce quarupole moment Q∗2 were
413.825496 K, 4.057173 mol/l, 1.44052, and 2.755521, respectively. These parameters can
be used to calculate all thermodynamic properties of R1234ze(Z). If ideal gas heat ca-
pacity is known, these parameters can be used to calculate all caloric properties also,
meaning that all thermodynamic properties of R1234ze(Z) can be determined from these
found parameters and from available ideal gas heat capacity. Detail evaluation and in-
vestigation of the BACKONE EOS for R1234ze(Z) will be given in next section.



BACKONE equation of state for Cis-1, 3, 3, 3-tetrafluoropropene (R1234ze(Z)) 391

4. EVALUATIONS

In order to evaluate the accuracy of the BACKONE EOS for R1234ze(Z), molecu-
lar characteristics of R1234ze(Z) in BACKONE EOS were used to calculate the thermo-
dynamic properties of this substance. The calculated data forvapor pressure were then
compared with available experimental data of Fedele [9], Higashi [8], and Katsuyuki [12].
The relative difference between calculated data and experimental data as well as the av-
erage absolute deviation (AAD) were given in Tab. 4. The Tab. 4 shows that BACKONE’s
vapor pressures agree well with all available experimental data. The average absolute de-
viation between calculated data for vapor pressure and all experimental data published
by Fedele et al. [9] are only 0.43%. For the convenience of the reader, all the relative dif-
ferences between calculated data for vapor pressure and experimental data were show
in Fig. 2. Fig. 2 shows that the relative differences are mostly within 1%. There exist the
difference between experimental data of Fedele et al. [9] and those from Higashi [8] and
Katsuyuki [12].

Table 4. Relative difference and ADD between BACKONE’s vapor pressure and experimental
vapor pressure

Experimental data source Relative difference range, % AAD, %

Fedele [9] Lab ITC CNR −0.84 to 0.39 0.43
Fedele [9] Lab UnivPM −0.65 to 1.58 0.54

Higashi [8] −0.79 to 3.72 1.08
Katsuyuki [12] −2.71 to 1.41 0.97
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Deviation between BACKONE’s saturated liquid density data and those from Hi-
gashi [8] and Katsuyuki [12] are shown in Fig. 3. The AAD between calculated values and
experimental data of Katsuyuki [12] are 0.43%. This proves the reliability of the BACK-
ONE EOS for R1234ze(Z). Deviation between calculated saturated liquid density and ex-
perimental data published by Higashi [8] increase with the increase of temperature. The
closer to the critical point the larger the deviation. Similar to the saturated liquid density,
the deviations between calculated vapor density and experimental data increase as the
temperature increase, Fig. 4. In order to investigate the accuracy of the BACKONE EOS
in higher temperature range, comparison between calculated density data and experi-
mental density data in single phase fluid region having temperature higher than critical
temperature are shown in Fig. 5.
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Fig. 5 shows deviations between the BACKONE’s calculated density data and ex-
perimental data of Higashi [8], and Fedele [18]. Deviations of the density around critical
region and for the temperature range higher than critical temperature are within 3%. It
means that the BACKONE EOS is still reliable. In Fig. 3 and Fig. 4, there are some
data having high deviations whilst for these 71 experimental data points, the error in
the critical region are only within 3%. Relative deviations between calculated value and
experimental data for 71 data points range from −5.05% to 15.37%. The AAD for 71
data points are 2.79%. Thus, some experimental data may have something wrong. Fig.
5 also shows some points having high deviation in low temperature range. In order to
investigate this situation, further investigation for the deviations between BACKONE’s
calculated density data and experimental data for low temperature range is shown in Fig.
6 and Fig. 7.

As shown in Fig. 6, relative deviations between BACKONE’s gas density data (ρg,cal)
and experimental gas density data (ρg,exp) of Fedele et al. [18] at different temperature
range from 0.1% to 3.54%. The AAD between the calculated data and experimental ones
for 98 available data points are 1.6%. In the construction of the BACKONE EOS, only
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experimental data for vapor pressure and saturated liquid density were used. The small
AAD prove the predictive power as well as the reliability of the BACKONE EOS for this
R1234ze(Z). All the deviations in Fig. 6 have relative smooth trend and the deviations are
small. However as shown in Fig. 5, there are some experimental data having non-smooth
deviation trend. The strange deviation of some points in Fig. 5 should be evaluated with
other available experimental data sets to confirm the reliability of these data points. At
the moment, no other similar experimental data are available so further evaluation of
these data points are impossible.
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As shown in Fig. 7, the relative deviations between the BACKONE’s calculated liq-
uid density data (ρl,cal) and experimental data (ρl,exp) of Higashi [8] range from −0.36%
to 0.95%. The AAD for 312 data points are 0.68%. It should be notice that, in the construc-
tion of BACKONE EOS, only experimental data for vapor pressure and saturated liquid
density were used. Thus, the prediction of BACKONE EOS with the AAD of only 0.68%
is very good. This proves the accurate and reliability of the BACKONE EOS.

5. CONCLUSION

Equation of state for R1234ze(Z) was developed by using experimental data for va-
por pressure and saturated liquid density. All thermodynamic properties of R1234ze(Z)
in both single phase and two-phase regions can be calculated from the found BACK-
ONE’s parameters. The accuracy of the calculated thermodynamic properties from this
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study was evaluated by comparison with available experimental data. In details, aver-
age absolute deviations between calculated vapor pressure data and experimental data
of Fedele [9] were 0.43%. Average absolute deviations between calculated saturated liq-
uid density data and experimental data of Katsuyuki [12] were 0.43%. In the prediction
of the thermodynamic properties, average absolute deviations between calculated liquid
density data and experimental data were 0.68% and average absolute deviations between
calculated gas density data and experimental data were 1.6%.
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