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Abstract. The natural frequencies or related resonant frequencies have been widely used
for crack detection in structures by the vibration-based technique. However, antiresonant
frequencies, the zeros of frequency response function, are less involved to use for the prob-
lem because they have not been thoroughly studied. The present paper addresses analysis
of antiresonant frequencies of multiple cracked bar in comparison with the resonant ones.
First, exact characteristic equations for the resonant and antiresonant frequencies of bar
with arbitrary number of cracks are conducted in a new form that is explicitly expressed
in term of crack severities. Then, the conducted equations are employed for analysis of
variation of resonant and antiresonant frequencies versus crack position and depth. Nu-
merical results show that antiresonant frequencies are indeed useful indicators for crack
detection in bar mutually with the resonant ones.

Keywords: multi-cracked bar; longitudinal vibration; frequency equation; antiresonant fre-
quency.

1. INTRODUCTION

Natural frequencies of a structure are an important dynamical characteristic that is
usually computed by solving the so-called characteristic or frequency equation of the
structure. Establishing the frequency equation for a structure gets to be crucial for both
the analysis and identification of the structure. Adams et al. [1] are the first authors who
established exact frequency equation for bar with single crack adopted by the spring
model. Narkis [2] and Morassi [3] first obtained closed form solution in locating a crack
using frequency equation of longitudinal vibration. More comprehensive study on both
the forward and inverse problems in free vibration of multiple cracked bar was accom-
plished in References [4–10]. However, the study showed that unique solution of the
crack detection cannot be found by using only natural frequencies. Some efforts have
been made to solve the problem by encompassing other vibration characteristics such
mode shapes [11–13] or frequency response function [14], but it was successful when an-
tiresonant frequencies have been employed [15–17]. Nevertheless, using additionally the
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antiresonant frequencies for crack detection in bar enables to obtain unique solution of
the crack detection problem only for free end bar. This may be caused from that the an-
tiresonant frequencies of cracked bar with different boundary conditions have not been
exhaustively investigated.

The present paper is devoted to study systematically variation of antiresonant fre-
quencies of bar versus crack parameters mutually with resonant frequencies. First, there
is derived a new form of characteristic equations for both resonant and antiresonant fre-
quencies of multiple cracked bars. Then, the established equations are used for investi-
gating change in the frequencies caused by presence of cracks. Numerical results have
been examined to illustration of the proposed herein theory.

2. GENERAL FREQUENCY EQUATION FOR MULTIPLE CRACKED BAR

Let’s consider longitudinal vibration in a bar that is described by the equation [14]

Φ′′(x) + λ2Φ(x) = 0, x ∈ (0, 1), λ = ωL
√

ρ/E, (1)

under general boundary conditions

α0Φ(0) + β0Φ′(0) = 0, α1Φ(1) + β1Φ′(1) = 0, (2)

with the material, geometry and boundary constants E, ρ, L, α0, β0, α1, β1. Suppose that
the bar is damaged to crack at arbitrary number n of positions ej: 0 ≤ e1 < ... < en ≤ 1.
For cracks modeled by transitional spring of stiffness Kj, conditions at the crack positions
are [18]

Φ′(ej + 0) = Φ′(ej − 0), Φ(ej + 0) = Φ(ej − 0) + γjΦ′(ej), (3)

γj = EA/LKj = 2(1− ν2)(h/L)θ(aj/h), j = 1, ..., n,

θ(z) = 0.9852z2 + 0.2381z3 − 1.0368z4 + 1.2055z5 + 0.5803z6 − 1.0368z7 + 0.7314z8. (4)
It can be shown that any solution of equation (1) satisfying the first boundary condition
in (2) at x = 0 and conditions (3) inside the bar is expressed in the form [14]

Φ(x) = CL(x, λ), (5)

where C is a constant and function

L(λx) = L0(λx) +
n

∑
k=1

µkK(x− ek), (6)

K(x) =
{

0 for x < 0
cos λx for x ≥ 0 , K′(x) =

{
0 for x < 0
−λ sin λx for x ≥ 0 ,

L0(λx) = (α0 sin λx− λβ0 cos λx),

µj = γj

[
L′0(λej)− λ

j−1

∑
k=1

µk sin λ(ej − ek)

]
, j = 1, ..., n. (7)

Substituting expression (5) into the second boundary condition in (2) at x = 1 yields

C[α1L(1, λ) + β1L′(1, λ)] = 0,
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that would have nontrivial solution with respect to constants C under the condition

D(λ) ≡ d0(λ) +
n

∑
j=1

H(1− ej)µj = 0, (8)

where d0(λ) = α1L0(λ) + β1L′0(λ); H(x) = α1 cos λx − λβ1 sin λx. The Eq. (8) is gen-
eral form of frequency equation for multiple cracked bar that in combination with Eq.
(7) enables to compute eigenvalues λ1, λ2, λ3, .... dependently on crack parameters. The
obtained equation is implicit regarding crack magnitudes γ1, ..., γn, so that solving that
equation with respect to the eigenvalues or natural frequencies needs to compute the so-
called damage parameters µ1, ..., µn defined by Eqs. (7). It would be much simplified in
solution of both the forward and inverse problems for cracked bar if an explicit expres-
sion of the characteristic equation regarding the crack magnitudes γ1, ..., γn is available.
Indeed, the recurrent relationships (7) can be rewritten as

µ1 = γ1L′0(λe1),

µ2 = γ2L′0(λe2)− λγ1γ2L′0(λe1) sin λ(e2 − e1),

µ3 = γ3L′0(λe3)− λγ1γ3L′0(λe1) sin λ(e3 − e1)− λγ2γ3L′0(λe2) sin λ(e3 − e2)

+ λ2γ1γ2γ3L′0(λe1) sin λ(e2 − e1) sin λ(e3 − e2),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Substituting latter expressions into (8) one obtains

D(λ) ≡ d0(λ) +
n

∑
j=1

γjd1(λ, ej)− λ
n

∑
j=2

j−1

∑
k=1

d2(λ, ej, ek)γjγk

+ λ2
n

∑
j=3

j−1

∑
k=2

k−1

∑
r=1

d3(λ, ej, ek, er)γjγkγr + ... + (−λ)n−1dn(λ, en, ..., e1)γ1γ2...γn

= d0(λ) +
n

∑
k=1

∑
1≤i1<i2<...<ik≤n

(−λ)k−1dk(λ, eik , eik−1 , ..., ei1)γi1 γi2 ...γik = 0,

(9)

where
d0(λ) = α1L0(λ) + β1L′0(λ),

d1(λ, ej) = H(1− ej)L′0(λej),

d2(λ, ej, ek) = H(1− ej) sin λ(ej − ek)L′0(λek),

d3(λ, ej, ek, er) = H(1− ej) sin λ(ej − ek) sin λ(ek − er)L′0(λer),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn(λ, en, ..., e1) = H(1− en) sin λ(en − en−1) sin λ(en−1 − en−2) sin λ(e2 − e1)L′0(λe1).
(10)

The obtained equation (9) is desired explicit form of the characteristic equation that
provides an efficient tool for solving not only the forward but also the inverse problem
of multiple cracked bar. Note, another form of the characteristic equation for multiple
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cracked rod was exactly obtained by Shifrin in [7], but that equation is implicit with
respect to the crack magnitudes, likely, the equation given by Khiem et al. in [14].

In the case of intact bar, Eq. (9) becomes

d0(λ) ≡ (α0α1 + λ2β0β1) sin λ− λ(α1β0 − α0β1) cos λ = 0. (11)

Next, for bar with single, double and triple cracks exact frequency equations get
respectively the forms

D1(λ) ≡ d0(λ) + γ1d1(λ, e1) = 0, (12)

D2(λ) ≡ d0(λ) + γ1d1(λ, e1) + γ2d1(λ, e2)− λγ1γ2d2(λ, e2, e1) = 0, (13)

D3(λ) ≡ d0(λ) + γ1d1(λ, e1) + γ2d1(λ, e2) + γ3d1(λ, e3)− λγ1γ2d2(λ, e2, e1),

− λγ1γ3d2(λ, e3, e1)− λγ2γ3d2(λ, e3, e2) + λ2γ1γ2γ3d3(λ, e3, e2, e1) = 0. (14)

Moreover, if the cracks are small so that asymptotic approximations of first, second
and third order respectively for the frequency equation are

d0(λ) +
n

∑
j=1

γjd1(ej) = 0, (15)

d0(λ) +
n

∑
j=1

γjd1(ej)− λ
n

∑
j=2

j−1

∑
k=1

d2(λ, ej, ek)γjγk = 0, (16)

d0(λ) +
n

∑
j=1

γjd1(ej)− λ
n

∑
j=2

j−1

∑
k=1

d2(λ, ej, ek)γjγk + λ2
n

∑
j=3

j−1

∑
k=2

k−1

∑
r=1

d3(λ, ej, ek, er)γjγkγr = 0.

(17)

Finally, it has to note that general boundary conditions (2) include all the conven-
tional end conditions and the elastic ones in dependence on the specific combinations of
parameters (α0, β0, α1, β1). Namely, for the case of free-free ends, (a) Φ′(0) = Φ′(1) = 0;
fixed ends, (b) Φ(0) = Φ(1) = 0 and fixed-free ends, (c) Φ(0) = Φ′(1) = 0, the parame-
ters get respectively

(a) α0 = α1 = 0, β0 = β1 = 1, (b) α0 = α1 = 1, β0 = β1 = 0, (c) β0 = α1 = 0, α0 = β1 = 1.
(18)

So that, for the listed above boundary conditions one has
(a) Free-Free ends: L0(x) = −λ cos λx, L′0(x) = λ2 sin λx, H1(x) = −λ sin λx, and

therefore

d0(λ) = λ2 sin λ,

d1(λ, e) = −λ3 sin λe sin λ(1− e),

d2(λ, e1, e2) = −λ3 sin λe1 sin λ(e2 − e1) sin λ(1− e2),

(19)
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(b) Fixed-Fixed ends: L0(x) = sin λx, L′0(x) = λ cos λx, H1(x) = cos λx and

d0(λ) = sin λ,

d1(λ, e) = cos λ(1− e) sin λe,

d2(λ, e1, e2) = λ cos λ(1− e2) sin λ(e2 − e1)cosλe1.
(20)

(c) Fixed-Free ends: L0(x) = sin λx, L′0(x) = λ cos λx, H1(x) = −λ sin λx and

d0(λ) = λ cos λx,

d1(λ, e) = −λ2 sin λ(1− e) cos λe,

d2(λ, e1, e2) = −λ2 sin λ(1− e2) sin λ(e2 − e1) cos λe1.

(21)

If both the ends of bar are supported by translational springs of stiffness S0, S1, the pa-
rameters (α0, β0, α1, β1) are defined as α0 = α1 = 1, β0 = −EA/S0, β1 = EA/S1, so that

L0(x) = sin λx+λβ0 cos λx, L′0(x) = λ cos λx−λ2β0 sin λx, H1(x) = cos λx−λβ1 sin λx,

and

d0(λ) = λ(β0 + β1) cos λ + (1− λ2β0β1) sin λ,

d1(λ, e) = λ[cos λ(1− e)− λβ1 sin λ(1− e)](cos λe− λβ0 sin λe),

d2(λ, e1, e2) = λ[cos λ(1− e2)− λβ1 sin λ(1− e2)](cos λe1 − λβ0 sin λe1) sin λ(e2 − e1).
(22)

Moreover, in the case of small cracks first order asymptotic approximations of the
frequency equation for the conventional (Free-Free; Fixed-Fixed; Fixed-Free) boundary
conditions are

sin λ− λ
n

∑
j=1

γj sin λej sin λ(1− ej) = 0, (23)

sin λ + λ
n

∑
j=1

γj cos λej cos λ(1− ej) = 0, (24)

cos λ− λ
n

∑
j=1

γj cos λej sin λ(1− ej) = 0. (25)

Also, assuming λ = λ0 + ∆λ with λ0 being the frequency parameter of intact bar and
small ∆λ, the latter equations yield all those obtained in earlier studies, for example, [8].

3. ANTIRESONANT FREQUENCY EQUATION FOR MULTIPLE CRACKED BARS

As well known in the vibration theory, resonant frequencies of a mechanical system
are poles of the system’s frequency Response Function (FRF) while antiresonant ones
are zeros of the FRF. In case of systems without damping, the resonant frequencies are
identical to natural frequencies determined as roots of the frequency equations. As zeros
of FRF, antiresonant frequencies of a multiple cracked bar are seeking as follows. General



162 P. T. B. Lien, N. T. Khiem

expression of FRF for multiple cracked bars has been obtained by Khiem et al. [12, 13] in
the form

FRF(ω, x0, x)=
L

λEF

sin λ(x− x0)−
g(1− x0)[α0 sin λx− β0λ cos λx +

n
∑

j=1
µjS(x− ej)]

d0(λ) +
n
∑

j=1
µj[α1 cos λ(1− ej)− β1λ sin λ(1− ej)]

 ,

(26)
where g(x) = α1 sin λx + β1λ cos λx and function S(x) = {0 if x < 0; cos λx if x ≥ 0}.
Letting x = x0 = 1, that implies the FRF determined with both the input and output
applied at the right end of bar, Eq. (26) is simplified to

FRF(ω, 1, 1) =
−β1L

EF

[α0 sin λ− β0λ cos λ +
n
∑

j=1
µj cos λ(1− ej)]

d0(λ) +
n
∑

j=1
µj[α1 cos λ(1− ej)− β1λ sin λ(1− ej)]

. (27)

Therefore, antiresonant frequencies can be sought by solving the equation

α0 sin λ̄− β0λ̄ cos λ̄ +
n

∑
j=1

µj cos λ̄(1− ej) = 0,

with respect to λ̄ or

d̄0(λ̄) +
n

∑
j=1

H̄(1− ej)µj = 0, (28)

where d̄0(λ̄) = α0 sin λ̄− β0λ̄ cos λ̄; H̄(x) = cos λ̄x. Eq. (28) has the same form as Eq. (8)
where the functions d0(λ), H(x) are replaced by d̄0(λ), H̄(x) and in both the equations the
parameters µj are expressed by the same equations (7). Thus, equation for antiresonant
frequencies (called herein antiresonant frequency equation) can be derived as

d̄0(λ̄) +
n

∑
k=1

∑
1≤i1<i2<...<ik≤n

(−λ̄)
k−1d̄k(λ̄, ei1 , ei2 , ..., eik)γi1 γi2 ...γik = 0, (29)

where

d̄1(λ, ej) = H̄(1− ej)L′0(λ̄ej),

d̄2(λ̄, ej, ek) = H̄(1− ej) sin λ̄(ej − ek)L′0(λ̄ek),

d̄3(λ, ej, ek, er) = H̄(1− ej) sin λ̄(ej − ek) sin λ̄(ek − er)L′0(λ̄er),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d̄n(λ̄, en, ..., e1) = H̄(1− en) sin λ̄(en − en−1) sin λ̄(en−1 − en−2) sin λ̄(e2 − e1)L′0(λ̄e1).
(30)
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Similarly, the first, second and third order asymptotic approximations of the antiresonant
frequency equation can be obtained respectively as

d̄0(λ̄) +
n

∑
j=1

γjd̄1(λ̄, ej) = 0, (31)

d̄0(λ̄) +
n

∑
j=1

γjd̄1(λ̄, ej)− λ̄
n

∑
j=2

j−1

∑
k=1

d̄2(λ̄, ej, ek)γjγk = 0, (32)

d̄0(λ̄) +
n

∑
j=1

γjd̄1(λ̄, ej)− λ̄
n

∑
j=2

j−1

∑
k=1

d̄2(λ̄, ej, ek)γjγk + λ̄2
n

∑
j=3

j−1

∑
k=2

k−1

∑
r=1

d̄3(λ̄, ej, ek, er)γjγkγr = 0.

(33)

Since the FRF (26) is meaningless at the fixed ends of bar, the antiresonant frequency
equations (29) and (31)–(33) are applied only for free end bar and cantilever bar. In the
latter cases of boundary conditions, the first order approximate antiresonant frequency
equation are

cos λ̄− λ̄
n

∑
j=1

γj cosλ̄(1− ej) sin λ̄ej = 0, (34)

sin λ̄ + λ̄
n

∑
j=1

γj cos λ̄(1− ej) cos λ̄ej = 0. (35)

Eq. (35) shows that antiresonant frequencies of fixed-free bar are resonant frequencies
of fixed end bar (see Eq. (24), so they are the same for symmetric cracks. Nevertheless,
antiresonant frequencies of free-free end bar, likely resonant frequencies of cantilever bar,
have not the symmetric effect. The latter fact has been employed by Rubio et al. [17] to
obtain unique solution in localization of single and double crack in free-free end rod
from given resonant and antiresonant frequencies. However, as shown below, the result
cannot be extended for other cases of boundary conditions, even if other pair of resonant
and antiresonant frequencies are used.

To validate the proposed theoretical development, antiresonant frequencies of the
free end bar that was experimentally examined by the authors of Ref. [15] are computed
and compared to the measured ones (see Tab. 1).

Obviously, calculated and measured antiresonant frequencies are excellently agreed
(descrepancy between them is less than 1%. However, the descrepancy increases with
severity of damage, esspecially, for higher frequencies. Note, deviation between calcu-
lated and measured first antiresonant frequency is of the same order 7% for both the cases
of damage severity D1 and D2. This is perhaps caused by inaccuracy of the crack model
used for representing the saw cut in the experimentation.

4. CRACK-INDUCED CHANGE IN RESONANT AND ANTIRESONANT
FREQUENCIES (NUMERICAL RESULTS)

The problem of single crack detection in free end bar has been thoroughly studied
by Morassi and his coworkers. However, it is necessary to note that the unique solution
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Table 1. Antiresonant frequencies of intact and cracked bar compared to the measured ones

Mode
No

Intact bar Damage senario D1 Damage senario D2

Exp.
[15]

Present
(deviation, %)

Exp.
[15]

Present
(deviation, %)

Exp.
[15]

Present
(deviation, %)

1 468.6 470.6 (0.42) 439.5 470.3 (7.0) 432.9 465.3 (7.48)
2 1411.7 1411.7 (0) 1409.3 1406.4 (0.2) 1365.6 1301.7 (4.67)
3 2328.4 2352.8 (1.05) 2337.0 2339.6 (0.1) 2324.4 2132.9 (8.23)
4 3265.8 3294.0 (0.86) - 3282.1 (-) 3102.5 3134.1 (1.01)
5 4216.6 4235.1 (0.43) - 4232.9 (-) 3722.1 4200.8 (12.86)
6 5145.1 5176.3 (0.67) - 5173.3 (-) 4866.6 5098.5 (4.76)

Damage scenarios D1, D2 correspond to different depth (6 and 15 mm) of crack at position e = 0.55/2.747

in locating single crack was attained in [17] because only first resonant and antireso-
nant frequencies have been used. The unique solution could not be obtained by using a
pair of second or higher resonant and antiresonant frequencies. Obviously, the resonant
and antiresonant frequencies used for obtaining unique solution have no critical point,
crack occurred at which do not change the frequencies. Consequently, it can be expected
that existence of the critical points for resonant and antiresonant frequencies destroys the
uniqueness of solution in crack detection problem by using the frequencies. Therefore,
knowing the critical points, that are called hereby nodes of resonant and antiresonant
frequencies, is important in solving the crack detection problem.

The above equations show that nodes of resonant frequencies can be sought from
equation d1(λ0, x) = 0, where λ0 is solution of frequency equation in case of uncracked
bar. Nodes of five lowest resonant frequencies are given in Tab. 2 for the cases of classical
boundary conditions.

Table 2. Nodes of resonant frequencies for bar with classical boundary conditions

Mode
No

Fixed end bar Free-free end bar Fixed-free end bar

1 1/2 not available not available
2 1/4 3/4 0.5 1/3
3 1/6 1/2 5/6 1/3 2/3 0.2 0.6
4 1/8 3/8 5/8 7/8 0.25 0.5 0.75 1/7 3/7 5/7
5 1/10 3/10 01/2 7/10 9/10 0.2 0.4 0.6 0.8 1/9 3/9 5/9 7/9

For finding nodes of antiresonant frequencies of free-free bar and fixed-free bar one
has the following equations cos λ0(1 − x) sin λ0x = 0 and cos λ0(1 − x) cos λ0x = 0,
respectively. Solutions of the equations for five modes are given in Tab. 3. Evidently,
node of resonant frequencies in fixed end bar exactly coincide with nodes of antiresonant
frequencies in fixed-free end bar. All the calculated nodes of resonant and antiresonant
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frequencies of the fixed-free (Fig. 1) and free-free (Fig. 2) bars can be observed in Figs. 1–2
where there are shown ratios of the frequencies to those of intact bar. The ratios (resonant
on the left and antiresonant – on the right) are plotted versus crack position (from 1 to 1)
in different crack depth (10%–50%).

Table 3. Nodes of antiresonant frequencies for bar with free ends and fixed-free ends

Mode
No

Fixed-free end bar Free-free bar

1 1/2 not available
2 1/4 3/4 2/3
3 1/6 1/2 5/6 2/5 4/5
4 1/8 3/8 5/8 7/8 2/7 4/7 6/7
5 1/10 3/10 1/2 7/10 8/10 2/9 4/9 6/9 8/9
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Fig. 1. Variation of three lowest resonant (left) and antiresonant (right) frequencies of fixed-free
bar versus crack position with different crack depth (10%–50%)
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Fig. 2. Variation of three lowest resonant (left) and antiresonant (right) frequencies of free-free bar
versus crack position with different crack depth (10%–50%)

Observing graphics given in the Figures demonstrates that crack at free end of bar
makes no effect on the resonant frequencies, while it would do significant change in
antiresonant frequencies if the frequency response function is defined at this position.
Likely to the resonant frequencies, antiresonant frequencies are all monotonically re-
duced with increasing depth of crack except the nodes (Tab. 3) where they are unaffected
by the crack presence.

The ratios of resonant and antiresonant frequencies computed for free-free end bar
with two cracks are presented respectively in Figs. 3–4. Obviously, symmetric cracks
make the same effect on resonant frequencies of the bar, but this is not true for antireso-
nant frequencies. Also, the larger number of cracks makes more reduction of antiresonant
frequencies.

 

 
Fig. 3. Variation of first and second resonant frequencies versus position of two cracks with 

equal depth 30% for free end bar. 
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5. CONCLUSIONS

In the present work there has been derived a novel form of characteristic equation for
resonant and antiresonant frequencies of multiple cracked bar that is explicitly expressed
in terms of crack magnitudes. The conducted characteristic equations are general regard-
ing boundary conditions and exact in comparison with the numerous approximate ones
known in the literature. These characteristic equations provide a useful tool for develop-
ing crack detection procedures in bar.

The antiresonant frequencies of bar with single and double cracks have been exam-
ined versus crack position and depth mutually with the resonant ones. The obtained
results show that there exist also nodes for antiresonant frequencies but they are differ-
ent from those of resonant ones. Furthermore, resonant frequencies are defined indepen-
dently upon where frequency response is measured, while antiresonant frequencies are
strongly dependent on the FRF’s measurement. Therefore, effect of crack position on an
antiresonant frequency may be also different if the antiresonant frequency is extracted
from different FRFs. The observed different properties of resonant and antiresonant fre-
quencies may be helpful for detecting cracks in bar by using both of them.

The question that is open in this study is how to determine antiresonant frequencies
of cracked bar with fixed-fixed ends. This problem is easily solved for uncracked bar, but
it is unsolved for a bar with a crack because the points selected for measurement of FRF
may disregard effect of the crack on the FRF. The problem mentioned above is subject for
further study of the authors.
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