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Abstract. In tuning fork micro-gyroscopes, two outer frames are connected by using the
linking elements. The driving vibrations of the two outer frames are required to be ex-
actly opposite to generate the opposite sensing modes perpendicular to driving direc-
tion. These opposite driving vibrations are provided by a mechanical structure named the
diamond-shaped frame. This paper presents mechanical responses of two outer frames in
a proposed model of tuning fork gyroscope when an external force with different types is
applied to them. The results show that the presence of a diamond-shaped frame guaran-
tees the absolute anti-phase mode for the driving vibrations of outer frames.
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1. INTRODUCTION

Gyroscopes are physical sensors that detect and measure the angle or angular ve-
locity of an object which relatively rotates in an inertial frame of reference. The name
“gyroscope” originated from a French Scientist, Lénon Foucault, combining the Greek
word “skopeein” meaning to see and the Greek word “gyros” meaning rotation, during
his experiments to measure the rotation of the Earth [1].

Micro-Electro-Mechanical Systems (MEMSs) are devices and systems integrated with
mechanical elements, sensors, actuators, and electronic circuits on a common silicon sub-
strate through micro-fabrication technology. A normal MEMS device consists of a central
unit that processes data, the microprocessor and several components that interact with
the outside such as micro-sensors and micro-actuators.

MEMS Vibratory Gyroscope (MVG) is a kind of micro-sensor used to detect and
determine the angular velocity or rotational angle of a body into which the MVG is inte-
grated. The operation of this micro-sensor is based on the Coriolis principle to transfer
energy from the primary vibration to a secondary one [1–3]. MVGs have been exten-
sively applied in automotive and aerospace industries and consumer electronics market
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given notable advantages including marked reduction in cost, size, and weight. Indeed,
previous researches into vibrational characteristics of the proof-mass in gyroscopes have
shown that the MVGs have many advantages over traditional gyroscopes for their small
size, low power consumption, low cost, batch fabrication and high performance [1–7].

The MEMS tuning fork gyroscope (TFG), which consists of two identical tines vibrat-
ing in opposite direction (anti-phase), is a widely used class of MVG. The advantage of
the tuning fork structure is the high resistance to the exciting phase deviation in operat-
ing [4–6]. However, the traditional MEMS tuning fork structure with the direct mechan-
ical coupling between two tines likely causes an in-phase vibratory mode [6]. Therefore,
it is necessary to design a novel TFG with a mechanism indirectly connecting two tines
to create an anti-phase state, where connecting mechanism plays an important role for
resisting phase deviation of two tines [7–9]. This mechanism is termed diamond-shaped
frame, and its detailed description can be found elsewhere [10].

This paper focuses on setting up differential equations of motion and studying the
vibrations of two outer frames when they are connected indirectly by a diamond-shaped
frame. These outer frames are expected to vibrate with the absolute anti-phase mode
to create the anti-phase mode for sensing vibrations of proof-masses in proposed TFG
model.

2. CONFIGURATION OF THE PROPOSED TFG

The proposed model consists of two identical tines as shown in Fig. 1. Each tine is
defined as a single gyroscope and includes a proof-mass (1) and an outer frame (2). The
configuration and dynamic characteristics of each single gyroscope are provided in [11].
This outer frame is connected to the proof-mass by four elastic beams (3) and suspended
on substrate thanks to four other elastic beams (4). Each of these beams is linked to the
substrate (not be presented in Fig. 1) by an anchor (5) to allow the outer frame and the
proof-mass to move freely in two perpendicular directions. Two single gyroscopes are
connected through a diamond-shaped frame to create the proposed TFG. This frame has
four rigid bars (7) with length L and the rectangular cross-section b × h, where h and
b are the thickness and width of each bar, respectively. The bars are connected to the
connectors by elastic stems (8) with the width s (s < b). The configuration and dynamics
analysis of this frame was carried out in our previous research [10].
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Fig. 1. 3D model of the proposed TFG with diamond-shaped frame 

Fig. 2 describes a physical model of this TFG, where kx1, kx2, ky1, and ky2 are the equivalent 

stiffness of the elastic beams; cx1, cx2, cy1, and cy2 are damping coefficients in x- and y-direction; mS1 

and mS2 are values of the proof-masses; and mf1 and mf2 are masses of the outer frames. The points 

(e.g. A, B, C, and D) are the nodes of the diamond-shaped frame. 
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Fig. 2 describes a physical model of this TFG, where kx1, kx2, ky1, and ky2 are the
equivalent stiffness of the elastic beams; cx1, cx2, cy1, and cy2 are damping coefficients
in x- and y-direction; mS1 and mS2 are values of the proof-masses; and m f 1 and m f 2 are
masses of the outer frames. The points (e.g. A, B, C, and D) are the nodes of the diamond-
shaped frame.
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3. DIFFERENTIAL EQUATIONS OF MOTION

The four beams of the diamond-shaped frame are assumed to be absolutely rigid.
The displacement at the end of the beams (A, B, C, and D) is carried out by the elasticity
of stems with the smaller section. When the diamond-shaped frame links two single
gyroscopes to create tuning fork structure, points A and B only displace in x-direction
and points C and D only do in y-direction. The displacement of point A is x1, while
point C displaces y1 from the initial position. Points B and D are the same displacements
with A and C except for the direction of motion (Fig. 3(a)). These displacements depend
mutually and have a relation as follows

y1 =
√

L2 − (L1 − x1)2 − L2 ,

y2 =
√

L2 − (L1 − x2)2 − L2 ,
(1)

where L1 = Lcosα0, L2 = Lsinα0, and α0 is the angle to define initial position of rigid bars
of the diamond-shaped frame.

Thence the elastic forces are defined by the followed expressions

FDy = kyyD/2 = kyy1/2, (2)
FCy = kyyC/2 = kyy2/2. (3)
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Fig. 3. Schema of deformation (a) and elastic forces (b) of diamond-shaped frame
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with α is an angular rotation of a rigid beam when diamond-shaped frame operated. 

The Eq. (4) describes the relation between elastic forces in y-direction and the corresponding 

force in x-direction. 

In this issue, both outer frame and proof-mass vibrate in the driving direction. In essence, they

are considered as one element with total mass m1 and m2, respectively (mi = mfi + mSi). The component

forces applying to the masses m1 and m2 are shown in Fig. 4 after splitting them.

In Fig. 4 1F and 2F are external forces applied to the outer frames; 1LF and 2LF are elastic

forces of elastic beams with the stiffness coefficients kx1 and kx2 respectively; 1CF and 2CF are
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The elastic force applied to the outer frames in x-direction is determined as the fol-
lowed expression

Fx =
1
2
(FCy + FDy)cotgα, (4)

with α is an angular rotation of a rigid beam when diamond-shaped frame operated.
The Eq. (4) describes the relation between elastic forces in y-direction and the corre-

sponding force in x-direction.
In this issue, both outer frame and proof-mass vibrate in the driving direction. In

essence, they are considered as one element with total mass m1 and m2, respectively (mi =
m f i + mSi). The component forces applying to the masses m1 and m2 are shown in Fig. 4
after splitting them.

Vu Van The, Tran Quang Dung, and Chu Duc Trinh 4 

damping forces with damping coefficients cx1 and cx2 known as the slide air damping between the 

masses and the substrate, and xF  is elastic force mentioned above. 

 1 1 1 2 2 2;  L x L xF k x F k x    (5) 

 
1 1 1 2 2 2;  C x C xF c x F c x    (6) 

m1 m2

FL1

FC1

FL2

FC2

F2F1

Fx Fx

x1(t) x2(t)
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the differential equations of motion for the system with displacements in x-direction become: 
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Fig. 4. The forces applied to the outer frames

In Fig. 4, ~F1 and ~F2 are external forces applied to the outer frames; ~FL1and ~FL2 are
elastic forces of elastic beams with the stiffness coefficients kx1 and kx2 respectively; ~FC1

and ~FC2 are damping forces with damping coefficients cx1 and cx2 known as the slide air
damping between the masses and the substrate, and ~Fx is elastic force mentioned above.

FL1 = kx1x1; FL2 = kx2x2 , (5)

FC1 = cx1 ẋ1; FC2 = cx2 ẋ2. (6)
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By using the second Newton law, the motion differential equations for the system
are obtained as follows

m1~̈x1 = ~FL1 + ~FC1 + ~Fx + ~F1,
m2~̈x2 = ~FL2 + ~FC2 + ~Fx + ~F2.

(7)

Eqs. (7) are expanded as

m1 ẍ1 + cx1 ẋ1 + kx1x1 +
1
4

ky(y1 + y2)cotgα = F1,

m2 ẍ2 + cx2 ẋ2 + kx2x2 +
1
4

ky(y1 + y2)cotgα = F2.
(8)

Adding some equations describing the geometric relations between the displacements
x1, x2 and y1, y2

L1 = L cos α0; L2 = L sin α0,

y1 =
√

L2 − (L1 − x1)2 − L2,

y2 =
√

L2 − (L1 − x2)2 − L2,

α = arctg
(

y1

x1

)
.

(9)

The differential equations of motion for the system with displacements in x-direction
become
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4
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L2 = L sin α0,

α = atan

(√
L2 − (L1 − x1)2 − L2

x1

)
.

(10)

4. VIBRATIONAL CHARACTERISTICS OF TWO OUTER FRAMES

The result of the vibratory problem is received by using Matlab software with suit-
able initial parameters. In this paper, the research cases consist of: free vibration; forced
vibration with harmonic impulse form. The characteristic parameters of the TFG system
are shown in Tab. 1.

4.1. Free vibration
In order to demonstrate the ability to vibrate in x-direction, a study on free vibration

of the system is carried out firstly. When the system has no exciting force and the initial
parameters are: x1 = 2.5× 10−5 m, x2 = 2.5× 10−5 m, the free vibration of two element
masses is showed in Fig. 5.

The results show that the outer frames are able to oppositely vibrate in the driving di-
rection. Their amplitude seems like a constant in a short time. However, the air damping
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Table 1. The parameters of the TFG

Parameter Value Unit

Mass of the left single gyroscope: m1 2.65×10−7 kg
Mass of the right single gyroscope: m2 2.65×10−7 kg
Driving stiffness of the left single gyroscope: kx1 25.2 N/m
Driving stiffness of the right single gyroscope: kx2 25.2 N/m
Damping coefficient in left drive direction: cx1 2×10−5 kg/s
Damping coefficient in right drive direction: cx2 2×10−5 kg/s
Stiffness of diamond-shaped frame in y-direction: ky 10 N/m
Length of a rigid bar: L 10−4 m
Initial angle of rigid bar: α0 60◦ degree
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Fig. 5. The free vibration of two outer frames 
Fig. 5. The free vibration of two outer frames

causes decreasing slowly in amplitude to time. Two elements vibrate around equilibrium
position (±5 × 10−5 m) with decreased amplitude after every period (initial amplitude
2.5× 10−5 m). These vibrations are symmetric through the centre of the diamond-shaped
frame.

4.2. Force vibration
When applying two external forces to the outer frames with a constant value (3 ×

10−4 N) and their direction from the centre of the diamond-shaped frame to each outer
frame, these outer frames vibrate from their equilibrium position (±5 × 10−5 m) and
outward from the centre (Fig. 6(a)). While vibrations of them are anti-phase mode when
applied forces with opposite direction toward to the centre (Fig. 6(b)). The amplitudes in
both cases of external forces are the same value (23 µm).

According to the results in Fig. 6, the vibrational amplitude appears as constant
through some continuous periods. These vibrations still guarantee anti-phase mode and
symmetry through the centre of the diamond-shaped frame.
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The relation between the vibratory amplitude and the force value in case of changing
the value of ky is shown in Fig. 7. The displacements of outer frames in driving direction
should be smaller than 3 × 10−5 m, hence the value of exciting force should be smaller
than 4 × 10−4 N (Fig. 7).
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The exciting harmonic force applied to outer frames should have a form as follows

F1 = F0 sin 2π f t; F2 = F0 sin(2π f t + π). (11)

Function (11) is defined by the force value F0 and the exciting frequency f . These pa-
rameters are determined by analyzing the amplitude - frequency response of the system.
To reduce the time of the calculation and guarantee the efficiency, the exciting frequency
of the system is assessed from 1400 Hz to 1800 Hz (Fig. 8(a)). According to the result
shown in Fig. 8(a), the exciting frequency should be 1590 Hz. With this frequency, the
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amplitude of driving vibration depends on the value of F0. To match with the configu-
ration of the diamond-shaped frame presented in [10] (i.e. less than 30 µm), the value of
exciting force should be chosen as 1÷6 µN (Fig. 8(b)). In case of the larger exciting force,
the vibrational output increases drastically, and unexpected vibration will appear.
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When applying the exciting forces with the above function (11) to two outer frames,
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5. CONCLUSION

The paper introduces the TFG model with a connecting frame named diamond-
shaped frame to directly link two single gyroscopes in two sides of this frame. The
differential equations of motion of two outer frames in every single gyroscope are set
up following the second Newton law. By using Matlab software, the vibrational form of
two outer frames in some different cases is studied to demonstrate that the driving vibra-
tion of these frames is completely opposite thanks to the diamond-shaped frame. These
results show that the presence of the diamond-shaped frame guarantees the absolute
anti-phase mode for the driving vibrations of outer frames. They are the important basis
for further researches into the sensing mode in proposed TFG for purpose of increasing
the performance of the sensor.
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