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Abstract. This paper presents crack identification in multiple cracked beams made of
functionally graded material (FGM) by using stationary wavelet transform (SWT) of mode
shapes and taking into account influence of Gaussian noise. Mode shapes are obtained
from multiple cracked FGM beam element and spring model of cracks. The theoretical
development was illustrated and validated by numerical examples. The investigated re-
sults show that crack identification method by using SWT of mode shapes is efficient and
realizable.
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1. INTRODUCTION

Functionally graded material (FGM) have been proved to be an advanced material
by its advantaged properties compared to the laminate composites and by the wide ap-
plication in the high-tech industries such as aerospace, automobile, electronics, optics,
chemistry, biomedical engineering etc. Because presence of a crack in a structure usually
leads to reduction of stiffness and change the dynamic characteristics, the crack problem
in FGM is greatly important to evaluate structure’s serviceability and integrity. The most
important result of the fracture mechanics for FGM [1–3] is that a crack in FGM beam can
be modeled by an equivalent massless spring of stiffness calculated from the crack depth.

Determination of dynamic characteristics of cracked FGM beam can be obtained by
using analytical [3–11], Galerkin’s semi-analytical [12], finite element method (FEM) and
dynamic stiffness method (DSM). The FEM has been developed and employed for modal
analysis and identification of FGM beams [13–16]. As the FEM is formulated on the base
of frequency independent polynomial shape function, it could not be used to capture all
necessary high frequencies and mode shapes of interest. An alternative approach called
DSM fulfilled the gap of FEM by using frequency-dependent shape functions that are

c© 2019 Vietnam Academy of Science and Technology

https://doi.org/10.15625/0866-7136/12835
mailto: lientv@nuce.edu.vn


106 Tran Van Lien, Ngo Trong Duc

found as exact solution of vibration problem in the frequency domain [17–21]. Although
exact solutions of the vibration problem are not easily constructed for complete struc-
tures, but they, if were available, enable to study exact response of the beam in arbitrary
frequency range.

The problem of crack identification in FGM structures gets also increasing attention
of either structural engineers or researchers. A lot of procedures have been emerged to
detect and quantify cracks in structures. Banerjee et al. [15] proposed two different two
crack detection techniques for Timoshenko E-FGM beam. In the first technique, the fre-
quency contours with respect to crack location and size are plotted and the intersection
of contours of different modes helps in the prediction of crack location and size. The
second technique based on response surface methodology and genetic algorithm. Nazari
and Abolbashari [22] proposed a procedure for the identification of double cracks E-FGM
cantilever beam using artificial neural network (ANN) based on FEM data. The authors
used FEM for evaluation of first four natural frequencies for different cracks depths and
locations. The trained ANNs are used for identification of cracks locations and depths of
considered beam. The proposed procedure can predict the cracks locations and depths of
double cracked FGM beam accurately. Furthermore, the crack locations were predicted
more accurately than the crack depths using ANNs. Khiem and Huyen [23] proposed
a method to detect a single crack in FGM Timoshenko beam by measurements of three
lowest natural frequencies. The frequency equations are conducted on the base of power
law of FGM, taking into account the actual position of neutral axis and rotational spring
model of crack. Unlikely to the previous studies, where stiffness of only rotational spring
representing severity of crack is calculated not for every composition of FGM, in this
study, new formulas for determining crack magnitude of both the translational and rota-
tional springs are proposed for arbitrary composition of FGM.

Among the numerous proposed Non-Destructive Testing (NDT) methods [24] the
wavelet-based approach shows to be the most effective, especially for detecting the small
local damage such as crack in structures. However, the most of the published works have
been devoted to apply the wavelet transform for crack detection in beam-like structures
made of homogeneous materials. Surace and Ruotolo [25] stated that presence of a crack
in a cantilever beam can be detected by the wavelet coefficient distribution computed
from the time history response measured at free end. Liew and Wang [26] demonstrated
that single crack in a simply supported beam can be localized from spatial wavelet trans-
form of free vibration response measured along the beam length at a given time moment.
This study was then continued by Wang and Deng [27] for the case of impulse response
of beam and plate with different boundary conditions. Douka et al. [28] have achieved
at identifying both the location and size of single crack in a cantilever beam by using the
wavelet coefficient distribution along the beam length of the fundamental mode shape.
The crack depth is estimated by so-called the intensity factor related to the wavelet max-
ima coefficient. Chang and Chen [29] have proposed a method for estimating both the
position and depth of multiple cracks in beam based on the spatial wavelet transform
of mode shapes. The crack depth evaluation has been simplified by using the estimated
crack positions and available natural frequencies. This idea was then extended by Zhang
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et al. [30] to multiple crack detection for stepped beam with involved the transfer ma-
trix method. Zhong and Oyadiji [31] demonstrated that the stationary wavelet transform
(SWT) is a useful tool for crack detection from only the mode shape of cracked beam-like
structure. Gokdag and Kopmaz [32] have proved that the approximation component of
the wavelet decomposition is similar to the mode shape of undamaged structure so that
it can be employed as the base-line data for conducting a damage index based on differ-
ences of the wavelet coefficients. Lien, Khiem and Hao [33] proposed a method based
on the SWT for crack identification in framed structures. First, the DSM was developed
to conduct the more accurate dynamic model of multiple cracked frame structures that
allows for obtaining mode shapes. Then, the SWT was applied for crack detection from
spatial wavelet coefficient of the structure mode shapes. The illustrating numerical re-
sults verify that the developed dynamic model of cracked frame structures combined
with the SWT can be reliably employed for localization of cracks in frame structures with
data contaminated with noise of SNR from 75 dB.

To the best of the authors’ knowledge, the wavelet based approach to the crack iden-
tification of multiple cracked FGM beam is a gap that has to be fulfilled. In this paper,
crack identification of multiple cracked FGM beam by using SWT of mode shapes is ad-
dressed. First, the DSM is presented to conduct the more accurate dynamic model of
multiple cracked P-FGM beam that allows for obtaining mode shapes. Then, the SWT
is applied for crack identification from spatial wavelet coefficient of the structure mode
shapes. The theoretical development was illustrated and validated by numerical exam-
ples. A case study has been accomplished to investigate also the influence of measure-
ment noise on the wavelet coefficients.

2. DETERMINATION OF MODE SHAPES OF A MULTIPLE CRACKED FGM
BEAM ELEMENT BY USING DSM

2.1. Governing equations
Consider a FGM beam of length L, cross sectional area A = b × h (Fig. 1). It is

assumed that the material properties of FGM beam vary along the thickness direction by
the power law distribution (P-FGM) as follows E(z)

G(z)
ρ(z)

 =

 Eb
Gb
ρb

+

 Et − Eb
Gt − Gb
ρt − ρb


(

z
h
+

1
2

)n

; −h/2 ≤ z ≤ h/2, (1)
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Fig. 1. A multiple cracked FGM beam
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where E, G and ρ stand for Young’s, shear modulus and material density; subscripts t
and b denote the top and bottom material; n is power law exponent; z is coordinate of
point from the mid plane of the beam. Assuming small deformation, the displacement at
a point in the section of Timoshenko beam is

u(x, z, t) = u0(x, t)− (z− h0)θ(x, t), w(x, z, t) = w0(x, t), (2)

where u0(x, t), w0(x, t) are axial displacement, deflection of a point on neutral axis, re-
spectively; h0 is the distance from neutral axis to x-axis; θ is the rotation of the cross-
section. Based on the Hamilton’s principle, the free vibration equations of FGM Timo-
shenko beam can be established in the time domain as follow [18]

(I11ü0 − A11u′′0 )− (I12θ̈ − A12θ′′) = 0,
(I12ü0 − A12u′′0 )− (I22θ̈ − A22θ′′) + A33(w′0 − θ) = 0,
I11ẅ0 − A33(w′′0 − θ′) = 0,

(3a)

where

(A11, A12, A22) =
∫
A

E(z)
(

1, z− h0, (z− h0)
2
)

dA, A33 = η
∫
A

G(z)dA,

(I11, I12, I22) =
∫
A

ρ(z)
(

1, z− h0, (z− h0)
2
)

dA.
(3b)

The following notations are introduced

{z} = {U, Θ, W}T =

∞∫
−∞

{u0(x, t), θ(x, t), w0(x, t)}T e−iωtdt, (4)

where {U, Θ, W} are respectively the amplitudes of axial displacement, rotation and de-
flection. We get the free vibration equations of FGM Timoshenko beam in the frequency
domain as follow [

Ã
] {

z′′
}
+
[
Π̃
] {

z′
}
+
[
D̃
]
{z} = {0} , (5a)

where [
Ã
]
=

 A11 −A12 0
−A12 A22 0

0 0 A33

 ,
[
Π̃
]
=

 0 0 0
0 0 A33
0 −A33 0

 ,

[
D̃
]
=

 ω2 I11 −ω2 I12 0
−ω2 I12 ω2 I22 − A33 0

0 0 ω2 I11

 .

(5b)

The solutions of equation (5) can be now rewritten in the form

{z0(x, ω)} = [G(x, ω)] {C} , (6)

where [G(x,ω)] is matrix of dimension 3× 6

[G(x,ω)] =

 α1ek1x α2ek2x α3ek3x α1e−k1x α2e−k2x α3e−k3x

ek1x ek2x ek3x e−k1x e−k2x e−k3x

β1ek1x β2ek2x β3ek3x −β1e−k1x −β2e−k2x −β3e−k3x

 , (7)
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ki, λi, βi(i = 1, 2, 3) are constants determined in Appendix 1 and {C} = (C1, . . . , C6)
T is

unknown constant vector determined from boundary conditions.
It is assumed that the beam has been cracked at position e. The crack is modeled as

two springs: an axial spring of stiffness T and a rotational spring of stiffness R (Fig. 2).
The continuous conditions of the crack are [3, 15]

U(e + 0) = U(e− 0) + γ1U′(e), Θ(e + 0) = Θ(e− 0) + γ2Θ′(e), W(e + 0) = W(e− 0),
U′(e + 0) = U′(e− 0), Θ′(e + 0) = Θ′(e− 0), W ′(e + 0) = W ′(e− 0) + γ2Θ′(e).

(8)
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The magnitudes γ1, γ2 introduced in (8) are functions of material parameters such as
Young’s modulus, power exponent, beam height, Poisson coefficient, . . . included case of
homogeneous beam Et = Eb = E0 or RE = 1

γ1 = A11/T = 2π(1− ν2)hσ1 f1(s) , γ2 = A22/R = 6π(1− ν2)hσ2 f2(s) , s = a
/

h, (9)

where [23]

σ1(RE, n) =
2 (RE + n)

(RE + 1) (1 + n)
,

σ2(RE, n) =
24

RE + 1

(
3RE + n
3(3 + n)

− 2RE + n
2 + n

α +
RE + n
1 + n

α2
)

, RE =
Et

Eb
,

f1(s) = s2(0.6272− 0.17248s + 5.92134s2 − 10.7054s3 + 31.5685s4 − 67.47s5

+ 139.123s6 − 146.682s7 + 92.3552s8),

f2(s) = s2(0.6272− 1.04533s + 4.5948s2 − 9.9736s3 + 20.2948s4 − 33.0351s5

+ 47.1063s6 − 40.7556s7 + 19.6s8).

(10)

The homogeneous solution {ze(x)} of (5) that satisfied left boundary conditions

{ze(0)} =
(
γ1U′x(e), γ2Θ′x(e), 0

)T ,
{

z′e(0)
}
=
(
0, 0, γ2Θ′x(e)

)T , (11)

and
{z′0(e)} =

(
U′0(e) Θ′0(e) W ′0(e)

)T . (12)

We obtain
{ze(x)} = [Φ(x)][Σ]{z′0(e)} = [Gc(x)]{z′0(e)}, (13)
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where [Gc(x)] is matrix of dimension 3× 3

[Gc(x)]=

α1 cosh k1x α2 cosh k21x α3 cosh k3x
cosh k1x cosh k21x cosh k3x

β1 sinh k1x β2 sinh k2x β3 sinh k3x

·
δ11 δ12 δ13

δ21 δ22 δ23
δ31 δ32 δ33

·
γ1 0 0

0 γ2 0
0 γ2 0

,

δ11 = (k3β3 − k2β2)
/

∆, δ12 = (α3k2β2 − α2k3β3)
/

∆, δ13 = (α2 − α3)
/

∆,
δ21 = (k1β1 − k3β3)

/
∆, δ22 = (α1k3β3 − α3k1β1)

/
∆, δ23 = (α3 − α1)

/
∆,

δ31 = (k2β2 − k1β1)
/

∆, δ32 = (α2k1β1 − α1k2β2)
/

∆, δ33 = (α1 − α2)
/

∆,
∆ = k1β1(α2 − α3) + k2β2(α3 − α1) + k3β3(α1 − α2).

(14)

We introduce matrix of crack functions

[Ḡ(x)] =
{

[Gc(x)] : x > 0
[0] : x ≤ 0 (15)

For multiple cracked beam, we can present solutions of Eq. (5) in the form [18, 19]

{zc(x)} = {z0(x)}+
n

∑
j=1

[
Ḡ(x− ej)

]
.
{

µj
}

, (16)

where
{

µj
}

is vector of dimension 3× 1

{
µj
}
=
{

z′0(ej)
}
+

j−1

∑
k=1

[
Ḡ′(ej − ek)

]
. {µk}, j = 1, 2, 3, . . . , n (17)

Suppose that boundary conditions for solution of Eq. (5), are represented by

{B0 (zc) |x=0 } = {0} , {BL (zc) |x=L } = {0} , (18)

where [B0], [BL] differential matrix operators of dimension 3× 3 (see Appendix 2). Since
the second term of solution (16) satisfies any trivial condition at x = 0, the first con-
dition in (18) is only applied for z0(x). Splitting the vector C = {C0, CL}T into C0 =
{C1, C2, C3}T; CL = {C4, C5, C6}T, the boundary condition at the left of the beam can be
rewritten as

[B01] {C0}+ [B02] {CL} = {0} , (19)

with
[B01(ω)] = [B0 (G1(x, ω)) |x=0 ] , [B02(ω)] = [B0 (G2(x, ω)) |x=0 ] . (20)

Eq. (19) allows eliminating one of the vectors {C0} , {CL} and as the result, the solution
{z0(x)} can be reassembled as

{z0(x, ω)} =
(
− [G1(x, ω)] . [B01]

−1 . [B02] + [G2(x, ω)]
)

. {CL} = [G0(x, ω)] {CL} .
(21)

Substituting (21) into (16) we obtain

{zc(x)} =
(
[G0(x)] +

n

∑
j=1

[
Ḡ(x− ej)

]
.
[
χj
])

. {CL} = [GL (x, ω)] . {CL} , (22)
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where

[GL (x, ω)] = [G0(x)] +
n

∑
j=1

[
Ḡ(x− ej)

]
.
[
χj
]

, (23)

and [
χj
]
=
[
G′0(ej)

]
+

j−1

∑
k=1

[
Ḡ′(ej − ek)

]
. [χk] , j = 1, 2, 3, . . . , n (24)

Satisfying boundary condition at right end of the beam leads to

[BLLω)]{CL} = {0} ,

where
[BLL(ω)] = [BL (GL(x, ω)) |x=L ] . (25)

We obtain the frequency equation for FGM beam with arbitrary number of cracks

Λ(ω) = det[BLL(ω)] = 0. (26)

The mode shape relating to natural frequency ωj is{
φj(x)

}
= c̄j

[
GL(x, ωj)

] {
C̄j
}

, (27)

where c̄j is an arbitrary constant and
{

C̄j
}

is the normalized solution of (26) correspond-
ing to ωj.

2.2. Wavelet transform and stationary wavelet transform
Wavelet transform starts by selecting a basis function from wavelet families. This

function is called “mother wavelet” ψ(x). The continuous wavelet transform (CWT) is
then defined as [34–36]

C (a, b) =
1√
a

∞∫
−∞

f (x)ψ

(
x− b

a

)
dx =

∞∫
−∞

f (x)ψa,b (x)dx, (28)

where a > 0 and b are dilation scale and transition parameter; ψa,b(x) is function

ψa,b (x) =
1√
a

ψ

(
x− b

a

)
. (29)

The result of CWT is wavelet coefficients C(a, b) showing the correlations between
the wavelet function and the signal analyzed f (x). Hence, sharp transitions in f (x) create
wavelet coefficients with large amplitude and this precisely is the basis of the proposed
identification method.

The initial signal f (x) can be reconstructed from the wavelet coefficients C(a, b)

f (x) =
1

Kψ

∞∫
−∞

∞∫
−∞

C (a, b) ψa,b (x)
dbda

a2 , (30)

where the constant Kψ depends on wavelet type.
Assuming that wavelet coefficients C(a, b) are valid only for a < a0, appropriate for

high-frequency components in the signal, for a > a0, seen as interference. In this case, the
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signal reconstruction needs the complement corresponding to a > a0. To do this, another
function φ(x) called “scaling function” is used

D (a0, b) =
1√
a0

∞∫
−∞

f (x) φ

(
x− b

a0

)
dx =

∞∫
−∞

f (x) φa0,b (x)dx. (31)

The scaling function is necessary for numerical implementation. Instead of (30), the
initial signal f (x) can be reconstructed from

f (x) =
1

Kψ

a0∫
a=0

∞∫
b=−∞

C (a, b) ψa,b (x)
dbda

a2 +
1

Kψa0

∞∫
b=−∞

D (a0, b) φa0,b (x)db. (32)

One drawback of the CWT is that a very large number of wavelet coefficients C(a, b)
are generated during the analysis. In order to reduce the amount of computation, the dis-
crete wavelet transform (DWT) used discrete scale and translation parameters in dyadic
form: a = 2j, b = k2j where j and k are integers, the integer j is referred to as the dyadic
level. And the DWT is as follows

Cj,k = 2−j/2
∞∫
−∞

f (x)ψ
(

2−jx− k
)

dx =

∞∫
−∞

f (x)ψj,k (x)dx, (33)

where ψj,k(x) is discrete wavelet function

ψj,k (x) = 2−j/2ψ
(

2−jx− k
)

. (34)

Instead of (30), the signal in DWT can be reconstructed from the wavelet coefficients Cj,k

f (x) =
∞

∑
j=−∞

∞

∑
k=−∞

Cj,k2−j/2ψ
(

2−jx− k
)

. (35)

The signal will be passed through a series of filters, the high-pass filters and low-pass
filters, to generate high-frequency and low-frequency components, respectively. Instead
of (32), the signal in DWT can be represented by approximations and details

f (x) =
J

∑
j=−∞

(
∞

∑
k=−∞

cDj (k)ψj,k (x)

)
+

∞

∑
k=−∞

cAJ (k) φj,k (x) =
Dj(x)

∑
j≤J

+Aj (x) , (36)

where Aj(x) is the approximation at level J; Dj(x) is the detail at level j ≤ J

Dj (x) =
∞

∑
k=−∞

cDj (k)ψj,k (x), Aj (x) =
∞

∑
k=−∞

cAJ (k) φj,k (x), (37)

cDj and cAj are detail coefficient and approximation coefficient, respectively

cDJ (k) =
∞∫
−∞

f (x)ψJ,k (x)dx, cAJ (k) =
∞∫
−∞

f (x) φJ,k (x)dx. (38)
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For this study, we are interested in the detail signal. It will be shown with the numer-
ical examples, if f (x) is response signal, typically the deflection curve, the signal Dj(x)
contain the information necessary to detect the cracks in the structure.

But the classical DWT suffers a drawback that is not a time-invariant transform. This
means that, even with periodic signal extension, the DWT of a translated version of the
original signal is not, in general, the translated version of the DWT of the original signal.
To circumvent this problem, one can resort to a redundant decomposition of signal as [31]

D̃j,k = 2−j/2
∞∫
−∞

f (x)ψ

(
x− k

2j

)
dx, Ãj,k = 2−j/2

∞∫
−∞

f (x) φ

(
x− k

2j

)
dx. (39)

The modified approximation and detail coefficients (39) constitute the so-called SWT
that has a great potential in signal processing for structural health monitoring. It should
be noted that the SWT of the origin data is not decimated. That is, the size of the SWT
data does not diminish after the transform. In fact, SWT doubles the number of input
samples at each iteration, which can provide a more accurate estimate of the variances
at each scale and facilitate the identification of salient features in a signal, especially for
recognising noise or signal rupture. Conversely, in DWT, the resulting transformed data
is half of the original signal size. Thus, DWT is a down-sampling process which results
in a poorer representation of the original signal. Conversely, SWT is an up-sampling pro-
cess which leads to redundant representation of the original signal. Therefore, the detail
coefficient of DWT decomposition has less feature information than that of SWT. Conse-
quently, SWT has great potential for feature extraction and facilitates the identification of
salient features in a signal.

2.3. Noise and reduction of noise
In real case, the true mode shape data of a cracked structure can be expressed ap-

proximately as [31]

y = yint act + ynoise + ycrack, (40)

where y is the measured mode shape data; yint act is the mode shape of uncracked struc-
ture without any noise contamination; ynoise is the response noise which is either numer-
ical noise (in the case of numerical computations of mode shape data) or experimental
noise (in the case of experimental measurement of mode shape data) and exists both in
uncracked and cracked beams; ycrack is the additional response due to the crack and exists
only in the cracked beams.

Theoretically, the true mode shape data can be decomposed by SWT into two parts:
one called approximation coefficient contains yint act, which is a smooth curve; the other
called detail coefficient consists of ynoise and ycrack. It is noted here that the response noise
of uncracked beam or cracked beam are both included in the detail coefficient. In order
to reduce the response due to the crack accurately and, thereby facilitate crack detection,
proper methods should be selected to reduce the response noise of uncracked beam or
cracked beam.
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Usually, the SWT de-noising is achieved via thresholding. There are two threshold-
ing methods frequently used: hard-thresholding and soft-thresholding functions. But the
soft-thresholding rule is normally chosen over hard-thresholding in de-noising [37].

The hard-thresholding function is defined as

ηth =

{
x, |x| > th
0, |x| < th where th is the threshold (41)

The general soft-thresholding function is defined as

ηth = sgn(x)max(|x| − th, 0). (42)

The following threshold function th was used in this paper

th = σ
√

2 log N, (43)

where N is the signal length and σ is the standard deviation of the noise.
In case of cracked and uncracked structures, there is noise in both low and high

frequencies. For the cracked structures, noise doesn’t effect to the signal in additional
detail coefficients due to the cracks. So in structure crack identification, effects of noise
level on low frequencies will be ignored and we consider it in approximate coefficients
of wavelet transformation, and it doesn’t effect crack identification by detail coefficients.

To image the experimentally measured data, we add Gaussian noise to mode shapes
of structures [35]

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (44)

Gaussian curvature is normally depended on expectancy value µ and variance σ2, or is
evaluated by SNR (Signal to Noise Ratio)

SNR = 20 log10

(
norm (Signal)
norm (Noise)

)
, (dB) (45)

where norm is measured criterion of signal f (x) with the length of Ns

norm ( f ) =

(
Ns

∑
i=1
| f (xi)|2

)1/2

, (46)

Ns are shift points of the signal pattern f (x). High SNR values correspond to small noise
and vice versa. So the noise signal vector in the form of

ynoise =
ynr

norm (ynr)
.
norm (yint act)

10(0.05×SNR)
, (47)

where Ynr = Rand(size(yint act,std)) is random imaged vectors evenly distributed in (0, 1),
with the length of base-line signal.

3. NUMERICAL RESULTS AND DISCUSSION

Consider a simply suppored FGM beam with material parameters: Et = 70 GPa;
ρt = 2780 kg/m3; µt = 0.33; Eb/Et = 0.5; ρb = 7850 kg/m3; µb = 0.33; n = 0.5 and
geometric parameters: L = 1.0 m, b = 0.1 m, h = 0.1 m.
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3.1. Effects of cracks
Fig. 3 shows wavelet detail coefficients SWT style db4 of the first three mode of FGM

beam that has 1 crack at location x1 = 0.2 m from the left node, crack depths are 10%,
20% and 30% with number of measured points of 50 points (Figs. 3(a)–3(c)), 100 points
(Figs. 3(d)–3(f)), 200 points (Figs. 3(g)–3(i)). From now on, we assume that the number
of measured points are 100 points.
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Fig. 4: Wavelet detail coefficients SWT of the first three mode shapes of FGM beam that has 1 crack at 

0.2m, crack depths are 10%, 20%, 30% with number of measured points of 50(a-c), 100(d-e), 200(g-i). 
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1 crack at 0.2 m, crack depths are 10%, 20%, 30% with number of measured points

of 50(a–c), 100(d–e), 200(g–i)

Fig. 4 shows wavelet detail coefficients SWT style db4 of the first three mode of FGM
beam that has 1 crack at location x1 = 0.2 m from the left node, crack depth is 30% and
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Fig. 4: Wavelet detail coefficients SWT of the first three mode shapes of FGM beam that has 1 crack at 

0.2m, crack depths are 10%, 20%, 30% with number of measured points of 50(a-c), 100(d-e), 200(g-i). 
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c)  

 

Fig. 5: Wavelet detail coefficients SWT of the first three mode shapes of FGM beam that has 1 

crack at 0.2m, crack depth is 30% and power law indexes are n=0.1, 1, 10. 
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Fig. 4. Wavelet detail coefficients SWT of the first three mode shapes of FGM beam that
has 1 crack at 0.2 m, crack depth is 30% and power law indexes are n = 0.1, 1, 10
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Fig. 5: Wavelet detail coefficients SWT of the first three mode shapes of FGM beam that has 1 

crack at 0.2m, crack depth is 30% and power law indexes are n=0.1, 1, 10. 
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c)  

 
Fig. 6: Wavelet detail coefficients SWT of the first three mode shapes of FGM beam that has 1 

crack at 0.2m, crack depth is 30% and Et/Eb are 0.5, 1, 5. 
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Fig. 5. Wavelet detail coefficients SWT of the first three mode shapes of FGM beam that
has 1 crack at 0.2 m, crack depth is 30% and Et/Eb are 0.5, 1, 5

the power law indexes n are n = 0.1, 1, 10. Fig. 5 shows wavelet detail coefficients SWT
style db4 of the first three mode of FGM beam that has 1 crack at location x1 = 0.2 m
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from the left node, crack depth is 30% and Et/Eb are 0.5, 1, 5. Fig. 6 shows wavelet detail
coefficients SWT style db4 of the first three mode of FGM beam that has 4 equivalent
cracks with the distance between cracks are 0.2 m, the crack depths are 10%, 20% and 30%.
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Fig. 6: Wavelet detail coefficients SWT of the first three mode shapes of FGM beam that has 1 

crack at 0.2m, crack depth is 30% and Et/Eb are 0.5, 1, 5. 
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c)  

 
Fig. 7: Wavelet detail coefficients SWT of the first three mode shapes of FGM beam that has 4 

equivalent cracks with the crack depth of 10%, 20%, 30%. 

We have remarks: 

- The graphs of wavelet detail coefficients of all the shape modes change suddenly at crack 

positions. It means that crack position can be more clearly detected using only one mode shape 

of the cracked beam. It is shown that the crack positions can be identified by showing peaks at 

the positions of the crack even though the positions of the cracks are very close. 

- The present method is very sentitive to the crack depth. The maximum values of wavelet detail 

coefficients increase when crack depths are bigger. It means that crack position can be more 

clearly detected with deeper cracks. 

- When the beam containing multiple cracks, the same depth cracks located at different positions 

on beam have different wavelet detail coefficient values. Higher values corresponse to crack 

positions that make the mode shapes changed more. That is because the jumps in slope at 

different crack positions are different even though the crack depths are the same. So the 

maximum value of wavelet detail coefficients not only depend on the crack depths but also 

depend on the crack postions. 

- When the number of measured points increase, the effect of crack depths almost are the same, 

but the absolute value of wavelet detail coefficients increase remarkably and the transformation 

zones become narrower. 

- When power law index n decreases or Et/Eb ratios increases, the beam is more sensitive to 

presence of cracks, wavelet detail coefficients are highly increased. 

We also have the similar remarks for a cracked beam with different boundary condition such as 

cantilever beam, clamped ends,...  

3.2. Effects of different noise level 

Input signals are the first three mode shapes of cracked FGM beam added by different SNR noise 

levels. Fig. 8 shows wavelet detail coefficients SWT of the fundamental mode shape (8a-c), the 

second mode shape (8d-f) and the third mode shape (8g-i) of simply supported FGM beam and 

SNR noise level at 75, 80 and 90dB. Fig. 9 shows wavelet detail coefficients SWT style db4 of the 

first three mode shapes of the simple support FGM beam that has 4 equivalent crack at 0.2m, 0.4m, 
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Fig. 6. Wavelet detail coefficients SWT of the first three mode shapes of FGM beam
that has 4 equivalent cracks with the crack depth of 10%, 20%, 30%

We have remarks:
- The graphs of wavelet detail coefficients of all the shape modes change suddenly at

crack positions. It means that crack position can be more clearly detected using only one
mode shape of the cracked beam. It is shown that the crack positions can be identified by
showing peaks at the positions of the crack even though the positions of the cracks are
very close.

- The present method is very sensitive to the crack depth. The maximum values of
wavelet detail coefficients increase when crack depths are bigger. It means that crack
position can be more clearly detected with deeper cracks.

- When the beam containing multiple cracks, the same depth cracks located at dif-
ferent positions on beam have different wavelet detail coefficient values. Higher values
correspond to crack positions that make the mode shapes changed more. That is because
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of the jumps in slope at different crack positions are different even though the crack
depths are the same. So the maximum value of wavelet detail coefficients depends not
only on the crack depths but also on the crack postions.

- When the number of measured points increases, the effects of crack depths almost
are the same, but the absolute value of wavelet detail coefficients increase remarkably
and the transformation zones become narrower.

- When power law index n decreases or Et/Eb ratio increases, the beam is more sen-
sitive to presence of cracks, wavelet detail coefficients are highly increased.

We also have the similar remarks for a cracked beam with different boundary condi-
tion such as cantilever beam, clamped ends, . . .

3.2. Effects of different noise level
Input signals are the first three mode shapes of cracked FGM beam added by differ-

ent SNR noise levels. Fig. 7 shows wavelet detail coefficients SWT of the fundamental
mode shape (Figs. 7(a)–7(c)), the second mode shape (Figs. 7(d)–7(f)) and the third mode
shape (Figs. 7(g)–7(i)) of simply supported FGM beam and SNR noise level at 75, 80
and 90 dB. Fig. 8 shows wavelet detail coefficients SWT style db4 of the first three mode
shapes of the simple support FGM beam that has 4 equivalent cracks at 0.2 m, 0.4 m,
0.6 m, 0.8 m from the left node with the depth of 30% and noise level of 75, 80 and 90 dB.
It can be seen that the crack position can be clearly detected by using fundamental mode
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that the crack position can be clearly detected by using fundamental mode shape if the SNR exceeds 

80dB (Figs. 8b,9b), using the second and third mode shapes if the SNR exceeds 75dB (Figs. 8d, 9d). 
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Fig. 7. Wavelet detail coefficients SWT of the first three mode shapes of FGM beam that has 1
crack at 0.2 m from the left node with the depth of 30% and noise level 75, 80 and 90 dB

shape if the SNR exceeds 80 dB (Figs. 7(b) and 8(b)), using the second and third mode
shapes if the SNR exceeds 75 dB (Figs. 7(d) and 8(d)).
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Fig. 9: Wavelet detail coefficients SWT of the first three mode shapes of the simple support FGM 

beam that has 4 equivalent crack at 0.2m 0.4m 0.6m 0.8m from the left node with the depth of 30% 

and noise level 75, 80 and 90dB 

(i)

Fig. 8. Wavelet detail coefficients SWT of the first three mode shapes of the simple support FGM
beam that has 4 equivalent cracks at 0.2 m, 0.4 m, 0.6 m, 0.8 m from the left node with the depth

of 30% and noise level 75, 80 and 90 dB

4. CONCLUSIONS

In this paper, crack identification in a multiple cracked FGM beam by using SWT
of mode shapes and taking into account influence of Gaussian noise is addressed. Mode
shapes are obtained from the multiple cracked FGM beam element model using DSM and
spring model of cracks. Hence, SWT is applied for crack identification of the multiple
cracked FGM beam.

Numerical analysis was carried out to validate the proposed method and to investi-
gate effect of cracks, material properties and Gaussian noise on crack identification of a
multiple cracked FGM beam. The illustrating numerical results verify that the multiple
cracked FGM beam element model combined with the SWT can be reliably employed
for localization of cracks in beam-like structures with data contaminated with noise of
SNR from 75 dB. Moreover, crack position can be more clearly detected using only one
mode shape of the cracked beam. The investigated results show that proposed method
is efficient and realizable.
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APPENDIX 1

Frequency equation of (3) is

η3 + aη2 + bη + c = 0.

In case of A12 = 0, coefficients of above equation are

a = ω2
[

I11

A33
+

I11 A22 + I22A11

A11A22

]
, b = ω4

[
I11 I22 − I2

12
A11A22

+
I11

A33

I11 A22 + I22A11

A11A22

]
−ω2 I11

A22
,

c = ω4
[

ω2 I11

A33

I11 I22 − I2
12

A11A22
− I2

11
A11A22

]
.

Roots of cub algebraic equation are η1(ω), η2(ω), η3(ω)

η1 = −a/3 + u− b1/u, η2,3 = −a/3− (u− b1/u)/2± i
√

3(u + b1/u)/2,

where

u = (a1 +
√

b3
1 + c2

1− a3/27)1/3, a1 = ab/6− c/2, b1 = b/3− a2/9, c1 = a3/27− a1.

Constants in formula (6) are

λ1,4 = ±k1, λ2,5 = ±k2, λ3,6 = ±k3, k j =
√

ηj, j = 1, 2, 3,

αj =
ω2 I12

ω2 I11 + λ2
j A11

, β j =
λj A33

(ω2 I11 + λ2
j A33)

, j = 1, 2, . . . , 6.

APPENDIX 2
Differential matrix operators

- Simply supported (S): u(x, t) = M(x, t) = w(x, t) = 0

 24 
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A2. Differential matrix operators 
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• Simply supported beam ends (SS):      SBBB L ==0  

• Pined ends (PP):      PBBB L ==0  

• Simple beam (SP):         PBBBB LS == ;0  

• Cantilevered beam (CF):        FC BBBB L == ;0  

• 
Clamped beam (CC):      CBBB L ==0  

[BS] =

 1 0 0
A12∂x A22∂x 0

0 0 1

.

- Pined (P): N(x, t) = M(x, t) = w(x, t) = 0
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- Clamped (C): 0),(),(),( === txwtxtxu    
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• Simply supported beam ends (SS):      SBBB L ==0  

• Pined ends (PP):      PBBB L ==0  

• Simple beam (SP):         PBBBB LS == ;0  

• Cantilevered beam (CF):        FC BBBB L == ;0  

• 
Clamped beam (CC):      CBBB L ==0  

[BP] =

 A11∂x −A12∂x 0
A12∂x A22∂x 0

0 0 1

.

- Clamped (C): u(x, t) = θ(x, t) = w(x, t) = 0
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- Free (F): 0),(),(),( === txQtxMtxN   
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• Simply supported beam ends (SS):      SBBB L ==0  

• Pined ends (PP):      PBBB L ==0  

• Simple beam (SP):         PBBBB LS == ;0  

• Cantilevered beam (CF):        FC BBBB L == ;0  

• 
Clamped beam (CC):      CBBB L ==0  

[BC] =

 1 0 0
0 1 0
0 0 1

.

- Free (F): N(x, t) = M(x, t) = Q(x, t) = 0
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• Simply supported beam ends (SS):      SBBB L ==0  

• Pined ends (PP):      PBBB L ==0  

• Simple beam (SP):         PBBBB LS == ;0  

• Cantilevered beam (CF):        FC BBBB L == ;0  

• 
Clamped beam (CC):      CBBB L ==0  

[BF] =

 A11∂x −A12∂x 0
A12∂x A22∂x 0

0 −A33 A33∂x

.

- Simply supported beam ends (SS): [B0] = [BL] = [BS].
- Pined ends (PP): [B0] = [BL] = [BP].
- Simple beam (SP): [B0] = [BS] , [BL] = [BP].
- Cantilevered beam (CF): [B0] = [BC] , [BL] = [BF].
- Clamped beam (CC): [B0] = [BL] = [BC].
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