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Abstract. Ultrasonic guided waves propagating in a non-viscous fluid layer of uniform
thickness bonded to an elastic solid half-space is theoretically investigated in this article.
Based on the boundary conditions set for the joined configuration, a characteristic disper-
sion equation is found and new expressions for free guided waves are introduced. Closed-
form solutions of guided waves generated by a time-harmonic load are derived by the use
of elastodynamics reciprocity theorems. Through calculation examples, it is shown that
the obtained computation of the lowest wave mode approaches the result of the Rayleigh
wave in the solid half-space as the layer thickness approaches zero. The aim of the present
work is to improve the understanding of wave motions in layered half-spaces for potential
applications in the area of bone quantitative ultrasound.
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1. INTRODUCTION

Quantitative ultrasound (QUS) has shown a great potential in the assessment of bone
characteristics in the recent research. Compared to X-ray method, QUS is more sensitive
in the determinants of bone strength, non-ionizing and able to give some information
about the elastic properties and defects of bones [1–3]. Various studies have been carried
out to understand ultrasound interaction with the bone structure. Lowet and Van der
Perre [4] studied the simulation of ultrasound wave propagation and the method to mea-
sure velocity in long bones. Numerical simulations of wave propagation and experiment
measurement were used to gain insights into the expected behaviour of guided waves in
bone [3]. Simulation results have made significant steps to improve our understanding
of ultrasound interaction with bone [5]. Our knowledge of wave interaction with bone
is, however, still far from complete because of the lack of analytic solutions.

c© 2019 Vietnam Academy of Science and Technology

https://doi.org/10.15625/0866-7136/12710
mailto: haidangphan.vn@gmail.com


52 Phuong-Thuy Nguyen, Haidang Phan

Bones are normally composed of layers of different materials including cortical bone,
cancellous bone and marrow. Propagation of guided waves in bone is largely influenced
by the presence of overlying soft-tissue layer which is usually mimicked by a fluid layer
of finite thickness. When the soft-tissue is relatively thin compared with the cortical
bone, a fluid-solid layered half-space model can be used to study wave propagation in
bone structures. In the current investigation, the soft tissue layer is considered as a non-
viscous fluid while the cortical bone is assumed to be an isotropic solid half-space. This
work aims to expand our understanding of guided wave propagation in a fluid-solid lay-
ered half-space to explore the potential of using ultrasound-based methods for long-bone
characterization.

Wave motion in layered structures is indisputably one of the most fundamental prob-
lems of elastodynamics that has been widely considered for applications in geophysics,
acoustics, and medicines. Theory of free ultrasonic waves propagating in layered struc-
tures can be found, for example, in the textbooks [6–11]. This classical topic is also ad-
dressed in a large number of research articles available in the literature. Approximate for-
mula for guided wave velocity in an elastic half-space coated by a thin elastic layer with
a smooth contact was considered in [12]. In a similar manner, approximate secular equa-
tions of the waves in an orthotropic half-space coated by a thin orthotropic layer with
sliding contact were also derived and reported in [13] by the same authors. Achenbach
and Keshava [14] analyzed dispersion curves for free waves in a layered half-space while
Tiersten [15] investigated the influence of thin film on the propagation of guided waves in
the film-halfspace structure with comparison to experiment data. Matrix method is used
to investigate the dispersion of Rayleigh waves in orthotropic layered half-space [16].
Dispersion equations for a fluid-solid bilayered plate were derived and a discussion on
the shapes of the wave modes was addressed in [17].

Wave motion generated by a loading is conventionally solved by using integral
transform techniques [7]. The integral transform approach, however, becomes more diffi-
cult for anisotropic solids, and impossible for inhomogeneous solids, for example, solids
whose elastic moduli depend on the depth coordinate, as in geophysical applications and
functionally graded materials. In order to avoid these difficulties, another method has
been proposed in recent years, based on the elastodynamic reciprocity theorem, strictly
to determine the guided waves. Compared to the integral transform, the reciprocity ap-
proach is simpler [18–21] and more general that is able to use for anisotropic and inho-
mogeneous materials [22, 23].

Generally, reciprocity theorem is a relation between displacements, tractions and
body forces for two different loading states of the same body. One of the states is re-
ferred as the actual state, guided waves radiated from a time-harmonic load and the
other is called the virtual state, an appropriately chosen free wave traveling in the struc-
ture. Statements of elastodynamic reciprocity theorems have already presented, and
curious readers can refer to, e.g., [24–26]. Reciprocity relations have been successfully
used in direct applications to calculate wave motions generated by a time-harmonic load,
see [18, 19, 22, 23, 27, 28]. The material to be studied may be inhomogeneous, anisotropic
or viscoelastic. Balogun and Achenbach [22] examined surface waves generated by a line
load on a half-space with depth-dependent properties. The applications of reciprocity
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to surface waves on an inhomogeneous transversely isotropic half-space was discussed
in [23]. Recently, Phan et al. [29] considered the computation of guided waves in structure
of a solid layer joined to a solid half-space. The reciprocity approach was also applied to
study scattering of surface waves by cavities on the surface of a half-space [30–33] and
scattering of Lamb waves by a partial spherical corrosion pit in a plate [34].

In this article, we first find the characteristic dispersion equation and propose new
explicit expressions for free guided waves. The expressions are essential to obtain closed-
form solutions of wave fields generated by a time-harmonic load in the fluid-solid lay-
ered half-space by reciprocity consideration. The next step is choosing an appropriate
virtual state which is a single guided wave mode propagating in the joined structure. The
two loading states are substituted into a reciprocity relation for a two-material body. The
relation is largely simplified due to the characteristics of guided waves in the fluid layer
overlying the solid half-space. After some manipulation, exact solutions of the guided
waves due to the time-harmonic load are derived. The examples of calculation show that
the obtained result of the lowest wave mode approaches the computation of the Rayleigh
wave in the solid half-space as the layer thickness approaches zero.

2. FREE GUIDED WAVES IN FLUID LAYER BONDED TO SOLID HALF-SPACE

Consider a fluid layer Ω of uniform thickness h and a solid half-space Ω̂ which are
bonded together along the plane z = 0. The layered half-space relative to the Cartesian
coordinate system (x, z) is shown in Fig. 1. Free guided waves propagating in the layered
half-space are discussed in this section. For a homogeneous isotropic elastic solid, the
governing equations are the displacement equations of motion [7]

µ̂ui,jj +
(

λ̂ + µ̂
)

uj,ji = ρ̂üi , (1)

where λ̂, µ̂ are the Lame constants and ρ̂ is the mass density. For a non-viscous fluid,
which does not sustain shear stresses, the equations of wave motion given in Eq. (1) can
be used by assuming µ̂ = 0. Instructions for Authors 3 
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where jA  and ˆ ( 1,2)jA j =  are constants to be determined. In Eqs. (2) – (5), 
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The trial solutions in the layered half-space can be expressed as a combination of
partial waves based on the partial wave theory discussed in detail, for example, in [8].
In this case, there are two partial waves in the fluid layer and another two in the solid
half-space. Besides the amplitudes, guided waves in this joined structure are defined by
an angular frequency ω and a wavenumber k, where k = ω/c, c being the phase velocity,
as well as material properties λ, ρ of Ω and λ̂, µ̂, ρ̂ of Ω̂. For the fluid layer, displacement
components may be written as

ux =
(

A1eikαz + A2e−ikαz
)

eik(x−ct), (2)

uz = α
(

A1eikαz − A2e−ikαz
)

eik(x−ct), (3)

and for the half-space, they are of the form

ûx =
(

Â1ekα̂1z + Â2ekα̂2z
)

eik(x−ct), (4)

ûz = −i
(

1
α̂1

Â1ekα̂1z + α̂2Â2ekα̂2z
)

eik(x−ct), (5)

where Aj and Âj (j = 1, 2) are constants to be determined. In Eqs. (2)–(5),

α =
√
−1 + c2/c2

L , (6)

α̂1 =
√

1− c2/ĉ2
T , α̂2 =

√
1− c2/ĉ2

L , (7)

where cL =
√

λ/ρ is longitudinal wave velocity of Ω while ĉT =
√

µ̂/ρ̂ and ĉL =√
(λ̂ + 2µ̂)/ρ̂ are the transverse and longitudinal wave velocities, respectively, of Ω̂. In

Eqs. (6)–(7), α, α̂1, α̂2 are dimensionless quantities and they are generally complex. It is
important to note that guided waves in the fluid-solid layered half-space may not have a
real solution for phase velocity. Therefore, they may not exist for some material combi-
nation. A detailed study of the conditions of the material properties for the existence of
guided waves is, however, beyond the scope of the current work.

From Eqs. (2)–(5), stress components τxx, τzz of the layer Ω and τ̂xx, τ̂xz, τ̂zz of the
half-space Ω̂ can be easily calculated by the use of Hooke’s law. For guided waves in the
layered half-space, there are one free boundary condition at the free surface (z = h) and
three conditions at the interface (z = 0)

τzz = 0 at z = h, (8)
uz = ûz , τ̂xz = 0, τzz = τ̂zz at z = 0. (9)

Eqs. (8) and (9) result in
eikαh e−ikαh 0 0

α −α i/α̂1 iα̂2
0 0 α̂1 + 1/α̂1 2α̂2

1 + α2 1 + α2 2
µ̂

λ

(
α̂2

1 + 1
) µ̂

λ




A1
A2

Â1

Â2

 =


0
0
0
0

 . (10)
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In order to have nontrivial solutions, the determinant of the four-by-four matrix in
Eq. (10) must be zero. It leads to which is referred to as the characteristic dispersion
equation (

1
α
+ α

) (
1− α̂2

1
)

α̂2 tan kαh +
((

α̂2
1 + 1

)2 − 4α̂1α̂2

) µ̂

λ
= 0. (11)

As the thickness of the layer approaches zero in the limit, i.e. tan kαh = 0, Eq. (11)
becomes the famous equation of Rayleigh surface waves in a half-space. Unlike Rayleigh
waves, guided waves in the layered half-space are dispersive because there is a frequency
term via k appearing in Eq. (10). It also means that there is an infinite number of wave
modes propagating in the structure of a layer joined to a half-space.

Table 1. Material properties of water and aluminum

Material ρ (kg/cm3) λ (GPa) µ (GPa)

Water 1000 2.25 0
Aluminum 2700 55.25 25.94
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Fig. 2. Dispersion curves for a water layer of 1𝑚𝑚 thickness and an aluminum half-space Fig. 2. Dispersion curves for a water layer of thickness and an aluminum half-space

As an example of calculation, the dispersion curves of a water layer and an alu-
minum half-space with the material properties tabulated in Tab. 1 are shown in Fig. 2. It
can be seen that the phase velocity values are confined over a certain range. The upper
bound of the phase velocity value is the shear wave velocity in the aluminum half-space
while its lower limit is the longitudinal wave velocity in the water. The wave velocity
approaches the Rayleigh surface wave in aluminum at the low frequency limit where the
layer thickness is much smaller than the wavelength. When the phase velocity is larger
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than the shear wave velocity of the aluminum half-space, wave energy will leak into the
half-space. The guided wave mode with complex phase velocity attenuates and is not
considered here as we are only interested initially in non-leaky wave modes.

Since the determinant of the matrix in Eq. (10) is zero, it has actually three indepen-
dent equations with four unknowns. The process of solving Eq. (10) is straightforward
but quite tedious. Therefore, we propose expressions for free guided waves in the lay-
ered half-space without a detailed proof. The displacements and stress components of
the layer are

ux = AUx(z)eik(x−ct), (12)

uz = AUz(z)eik(x−ct), (13)

τxx = ikλATxx(z)eik(x−ct), (14)

where

Ux(z) = d1eikαz + d2e−ikαz, (15)

Uz(z) = α
(

d1eikαz − d2e−ikαz
)

, (16)

Txx(z) =
(
1 + α2) (d1eikαz + d2e−ikαz

)
. (17)

For the half-space

ûx = AÛx(z)eik(x−ct), (18)

ûz = −iAÛz(z)eik(x−ct), (19)

τ̂xx = ikµ̂AT̂xx(z)eik(x−ct), (20)

τ̂xz = kµ̂AT̂xz(z)eik(x−ct), (21)

where

Ûx(z) = d̂1ekα̂1z + d̂2ekα̂2z, (22)

Ûz(z) =
1
α̂1

d̂1ekα̂1z + α̂2d̂2ekα̂2z, (23)

T̂xx(z) = 2d̂1ekα̂1z +
(
2α̂2

2 − α̂2
1 + 1

)
d̂2ekα̂2z, (24)

T̂xz(z) =
(

α̂1 +
1
α̂1

)
d̂1ekα̂1z + 2α̂2d̂2ekα̂2z. (25)

In Eqs. (15)–(17) and Eqs. (22)–(25), d1, d2, d̂1, d̂2 are dimensionless quantities defined as

d1 =
(
1− α̂2

1
)

α̂2 , (26)

d2 = β2 (α̂2
1 − 1

)
α̂2 , (27)

d̂1 = 2iα
(
1 + β2) α̂1α̂2 , (28)

d̂2 = −iα
(
1 + β2) (1 + α̂2

1
)

, (29)

where β = eikαh. In Eqs. (12)–(14) and Eqs. (18)–(21), there is only one unknown con-
stant A. The explicit expressions of guided waves are essential to direct application of
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reciprocity to obtain closed-form solutions of wave fields generated by a time-harmonic
load in the next section.

3. COMPUTATION OF GUIDED WAVES DUE TO TIME-HARMONIC LOADING

In this section, a reciprocity theorem is applied to obtain the amplitudes of guided
waves due to a time-harmonic line load. We first consider a vertical load applied at
(x0, z0) where x0, z0 are the x-coordinate and the z-coordinate, respectively, of the point
of application. The load is of the form

f A
z = Pδ(z− z0)δ(x− x0)e−ikct. (30)

The load will generate guided waves along the layered half-space in both the positive
x-direction and the negative x-direction with unknown relative scattered amplitudes AP+

m
and AP−

m , respectively. Here, m = 0, 1, . . . , ∞ indicate wave mode. This is the actual state
A whose amplitudes are to be determined by the use of reciprocity consideration. The
expansions for the far-field displacements of state A in the positive direction may be
written as

ux =
∞

∑
m=0

um
x =

∞

∑
m=0

AP+
m Um

x (z)e
ikm(x−cmt), (31)

uz =
∞

∑
m=0

um
z =

∞

∑
m=0

AP+
m Um

z (z)e
ikm(x−cmt), (32)

ûx =
∞

∑
m=0

ûm
x =

∞

∑
m=0

AP+
m Ûm

x (z)e
ikm(x−cmt), (33)

ûz =
∞

∑
m=0

ûm
z = −i

∞

∑
m=0

AP+
m Ûm

z (z)e
ikm(x−cmt). (34)

Reciprocity theorem offers a relation between displacements, tractions and body
forces of two different loading states. Based on the reciprocity relation of the two states,
the scattered amplitudes of guided waves of the actual state are derived. The ideal was
introduced in [24] for a half-space and a plate body and recently developed for layered
structures [28, 29]. For a two-material body, the reciprocity follows from Eq. (38) of [28]∫

Ω

(
f A
j uB

j − f B
j uA

j

)
dΩ+

∫
Ω̂

(
f̂ A
j ûB

j − f̂ B
j ûA

j

)
dΩ̂ =

∫
S

(
τB

ij uA
j − τA

ij uB
j

)
nidS +

∫
Ŝ

(
τ̂B

ij ûA
j − τ̂A

ij ûB
j

)
n̂idŜ,

(35)

where S and Ŝ defines contours around Ω and Ω̂ without the interface, respectively, while
ni and n̂i are normal vectors along S and Ŝ, respectively. Superscripts A and B denote two
elastodynamic states. State A, the actual state, is the field generated by f A

z while state B,
the virtual state, is the field of a free guided wave in the layered half-space.

The first step is choosing a virtual state, i.e., state B based on the explicit expressions
of free guided waves given in Eqs. (12)–(14) and Eqs. (18)–(21). State B is set to include
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only a single wave mode represented by amplitude Bn. If state B is chosen in the negative
x-direction, it is of the form

un
x = −BnUn

x (z)e
−ikn(x+cnt), (36)

un
z = BnUn

z (z)e
−ikn(x+cnt), (37)

ûn
x = −BnÛn

x (z)e
−ikn(x+cnt), (38)

ûn
z = −iBnÛn

z (z)e
−ikn(x+cnt). (39)

We then replace the expressions of states A and B into the reciprocity relation given
in Eq. (35). The left-hand side of Eq. (35) can be simplified since the loading is applied
only at (x0, z0). If state Aand state B propagate in the same direction, the right-hand
side of Eq. (35) vanishes. Thus, there is only contribution from the counter-propagating
waves, see [24, 28] for detail. It can be easily seen that there is no contribution of the
integration along to the top surface of the layered half-space because a free boundary
condition is applied and along the line at z → ∞ since the waves vanish. Moreover,
using the orthogonality condition in Eq. (9.4.23) of [24], the right-hand side of Eq. (35)
cancels out for m 6= n. Note that the time-harmonic loading can be anywhere in the
joined structure. Without loss of generality, the load is applied in the half-space Ω̂. After
some manipulation, we finally obtain the amplitude of guided waves in the positive x-
direction

AP+
n =

−iPÛn
z (z0)e−iknx0

2
(

λIn + µ̂ În

) , (40)

where

In = ikn

∫ h

0
[Tn

xx(z)U
n
x (z)]dz, (41)

În = ikn

∫ 0

−∞

[
T̂n

xx(z)Û
n
x (z) + T̂n

xz(z)Û
n
z (z)

]
dz. (42)

The integrals in Eqs. (41) and (42) can be calculated as

In =
1 + α2

2α

[(
e2ikαh − 1

)
d2

1 −
(

e−2ikαh − 1
)

d2
2 + 4ikαhd1d2

]
, (43)

În = i
[

3α̂2
1 + 1
2α̂3

1
d̂2

1 +
2α̂1α̂2 − α̂2

1 + 3
α̂1

d̂1d̂2 +
4α̂2

2 − α̂2
1 + 1

2α̂2
d̂2

2

]
. (44)

Note that In, În are connected to the guided wave of mode n. Therefore, k, α, α̂1, α̂2, d1,
d2, d̂1, d̂2 are the quantities of mode n although we have ignored subscript n in the expres-
sions of Eqs. (43) and (44). If a virtual wave of mode n in the positive x-direction is chosen,
we find

AP−
n =

−iPUn
z (z0)eiknx0

2
(

λIn + µ̂ În

) . (45)

Similarly, for a horizontal load of the form

f A
x = Qδ(z− z0)δ(x− x0)e−ikct, (46)
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we find

AQ+
n =

−QÛn
x (z0)e−iknx0

2
(

λIn + µ̂ În

) , (47)

AQ−
n =

QÛn
x (z0)eiknx0

2
(

λIn + µ̂ În

) . (48)

4. RESULTS

This section presents calculation of phase velocity and displacement amplitudes of
guided waves due to time-harmonic loading. Consider a water layer and an aluminum
half-space whose material properties are given in Tab. 1. It is discussed in Section 2
that there is only the lowest wave mode propagating in the layered half-space as the
thickness of the water layer is much smaller than the wavelength. As the layer thickness
approaches zero in the limit, the phase velocity c approaches the velocity of Rayleigh
surface wave ĉR in the half-space, see Fig. 2.
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We are now interested in showing that the displacement amplitudes of the lowest
wave mode will approach the amplitudes of Rayleigh waves as the thickness of the layer
h goes to zero in the limit for a fixed finite values of frequency f . The frequency is chosen
as f = 1 MHz and the thickness of the layer varies from h = 0 to h = 0.5 mm. The
magnitude of both vertical and horizontal loads is chosen as P = Q = µ̂/2. The loads
generate the lowest wave modes with scattered amplitudes AP

0 and AQ
0 , respectively.

These amplitudes are compared with the ones of surface waves in an aluminum half-
space, AP

R and AQ
R , obtained by Phan et al. [19]. The amplitude ratios of the lowest mode

to the Rayleigh wave, AP
0 /AP

R due to vertical load P and AQ
0 /AQ

R due to horizontal load
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Q, are displayed in Fig. 3. Clearly, AP
0 /AP

R → 1 and AQ
0 /AQ

R → 1 as the thickness of the
layer approaches to zero. This shows the validation of the reciprocity approach discussed
in the current study.

5. CONCLUSION

We have proposed a theoretical approach for ultrasonic guided waves propagating
in a fluid layer overlying a solid half-space. Based on the boundary conditions, a char-
acteristic dispersion equation has been found and explicit expressions for free guided
waves in the structure have been obtained. One of the main contributions of the present
work is the derivation of exact solutions of wave fields generated by a time-harmonic
load in the fluid-solid layered half-space. It has been shown in calculation examples that
as the layer thickness goes to zero, the computation of the lowest wave mode approaches
the result of the Rayleigh surface wave.

The theoretical solutions obtained in the present research will be useful to build mod-
els for a cortical bone with overlying soft tissue as the cortical bone plate is relatively thick
compared with the soft-tissue layer. The models allow us to discover the relation among
transducer characteristics, frequencies, and geometry and material properties of bone
tissues. They will definitely deliver a fast and computationally inexpensive calculation
of generation, propagation, reflection, refraction, transmission and absorption as ultra-
sound interacts with bone tissue. The analytical simulation could also provide a better
understanding of the experiment signals, improve the data interpretation and acquisi-
tion. The work will ultimately benefit physicians and scientists in developing ultrasonic
methods for diagnosis and treatment of bone diseases and monitoring of bone healing
after surgery.
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