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Abstract. Vibration absorbers are frequently used to suppress the excessive vibrations in
structural systems. In this paper, an imposing nodes technique is applied for vibration
suppression of Euler–Bernoulli beams subjected to forced harmonic excitations by means
of multiple dynamic vibration absorbers. A procedure based on Taguchi’s method is pro-
posed to determine the optimum absorber parameters to suppress the vibration amplitude
of the beams. Numerical tests are performed to show the effectiveness of the proposed
procedure.

Keywords: beam structures, dynamic vibration absorber, Taguchi’s method, harmonic ex-
citations, passive vibration control.

1. INTRODUCTION

Beams are conventional constructions such as house beams, suspended cable in sus-
pension structures, air traffic control towers, wind turbine columns, etc. In the course
of the work, these structures are exposed to the effects of wind exploitation and oper-
ation. Under the influence of changing external frequencies, beam structures appear to
be subjected to forced vibration. Since the frequency of the external force changes over
a wide band, there is the possibility of a resonance which can cause structural damage.
Therefore, the reduction of the amplitude range of the structure at resonant frequency
is a necessary task. In order to determine the resonance frequencies and to investigate
the behavior of the system under the action of external forces, the natural frequencies of
the structure must first be evaluated [1, 2]. Vibration amplitudes at different points in
the structure excited by the external force in a wide frequency band are then calculated.
Dynamic dampers are usually used to reduce the vibrations of the beams.

Besides, undesirable vibrations in mechanical structures have been effectively re-
duced by the application of dynamic vibration absorbers (DVA). The reasons for those
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applications of the DVA are its efficient, reliable and low-cost characteristics [3, 4]. Re-
cently, considerable effort has been devoted to devise effective control strategies for this
task. Jacquot [5] developed a technique to give the optimal parameters of DVA for the
elimination of excessive vibration in sinusoidally forced Bernoulli–Euler beams. Ozgu-
ven and Candir [6] presented a procedure for determining the optimum parameters of
two DVAs attached to a beam to suppress any two resonances. Lin and Cho [7] investi-
gated dynamic characteristics of a simply supported beam traversed by multiple moving
loads and a practical scheme for suppressing the resulting resonant or excessive vibra-
tion by using a damped absorber. In [8] Chtiba and his colleagues have proposed a new
strategy for the optimal design of supplementary absorbers that warrant confinement
with and without suppression of vibration in flexible structures. In [9] Vestroni et al.
studied the pedestrian-induced vibrations in suspension footbridges via multiple tuned
mas dampers. The solutions to H∞ and H2 optimization problems of a variant dynamic
absorber applied to suppress vibration in beam structures are derived analytically by
Noori and Farshidianfar [10]. The calculating results of Samani and his colleagues [11]
show that, for the test cases considered, the DVAs with essentially nonlinear stiffnesses
having higher power are more effective than the linear one in reducing the maximum
beam deflection. In [12] Patil and Awasare have used variable stiffness vibration neutral-
izers to impose zero displacement or nodes to reduce vibration at desired locations on
a Euler–Bernoulli beam subjected to forced harmonic excitation. Latas [13, 14] discussed
the problem of optimal choice of position and parameters of the system of translational
and rotational dynamic absorbers in beams.

The study of optimal design of parameters of dynamic vibration absorber installed
in beam structures becomes an interesting problem in recent years. It is well known
that Taguchi’s method for the product design process may be divided into three stages:
system design, parameter design, and tolerance design [15–22]. Taguchi’s method of pa-
rameter design is successfully applied to many mechanical systems: acoustic muffler,
gear/pinion system, spring, electro-hydraulic servo system, dynamic vibration absorber.
In each system, the design parameters to be optimized are identified, along with the
desired response. The present study deals with the determination of the optimal param-
eters of DVAs for the vibration reduction of Euler–Bernoulli beams subjected to forced
harmonic excitation using Taguchi’s method. The target function is determined by sup-
pressing the resonance vibrations of beams.

2. DERIVATION OF TRANSVERSE VIBRATION EQUATIONS OF BEAM WITH
DYNAMIC VIBRATION ABSORBERS

Let us consider the model of a Euler–Bernoulli beam of the length L and the flexural
rigidity EI, which is attached with a number of DVAs at positions x = ηj (j = 1, . . . , na) as
shown in Fig. 1. For simplicity, it is assumed that the considered beam is homogeneous
with a uniform cross section, where w is the dynamic deflection, uj is vertical coordinate
of j-absorber, k are stiffness, damping coefficients and mass of j-absorber, respectively,
and p(x, t) is the distributed force.

Using the method of substructures, the system is now divided into na + 1 substruc-
tures, namely, the beam structure and na absorbers (Fig. 2).
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Fig. 1. Beam with dynamic vibration absorbers

(a) Beam (b) Absorber

Fig. 2. Substructures

Reaction forces have the following form

Fj(t) = k j(uj − wη j) + dj(u̇j − ẇη j), j = (1, 2, . . . , na), (1)

where

wη j = w(ηj, t), ẇη j =
∂w(ηj, t)

∂t
.

Using Newton’s second law, the equation describing the vibration of j-absorber can
be expressed in the form

mjüj = −Fj ⇒ Fj(t) = −mjüj. (2)

Substitution of Eq. (2) into Eq. (1) yields the vibration equation of j-absorber

mjüj + dju̇j + k juj = k jwη j + djẇη j , (j = 1, 2, . . . , na). (3)
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Applying the basic principles of dynamics, the equation that describes transverse
vibration of beam including internal friction is [1, 2]

µ(
∂2w
∂t2 + c(e)

∂w
∂t

) + EI
[

∂4w
∂x4 + c(i)

∂5w
∂x4∂t

]
= p(x, t) +

na

∑
j=1

Fjδ(x− ηj). (4)

In Eq. (4), µ denotes mass per length unit, c(e), c(i) are damping coefficient and inter-
nal friction coefficient per length unit of beam, respectively, and the Delta-Dirac function
δ(x− ηj) is defined by

δ(x− ηj) =

{
1 when x = ηj
0 when x 6= ηj

(5)

The vibration equations according to Eqs. (3) and (4) are a mixed set of ordinary and
partial differential equations. Four boundary conditions, two at x = 0 and two at x = L,
and the initial conditions must be specified to find the solution of this set.

Using Ritz–Galerkin method, the solution of Eqs. (3) and (4) can be found in the
form

w(x, t) =
nb

∑
r=1

Xr(x)qr(t), (6)

where Xr(x) denotes the mode shape of the beam and qr(t) is the generalized displace-
ment to be determined. Substituting Eq. (6) into Eqs. (4) and (3), we find

q̈k(t) + (c(e) + c(i)ω2
k)q̇k(t) + ω2

k qk(t)

=

l∫
0

p(x, t)Xk(x)dx

µ

l∫
0

X2
k (x)dx

+

na

∑
j=1

l∫
0

Fj(t)Xk(x)δ(x− ηj)dx

µ

l∫
0

X2
k (x)dx

, (k = 1, . . . , nb)
(7)

and

mjüj(t) + dju̇j(t) + k juj(t)− dj

nb

∑
r=1

Xr(ηj)q̇r(t)− k j

nb

∑
r=1

Xr(ηj)qr(t) = 0, (j = 1, 2, . . . , na)

(8)
where ωk is eigenfrequency of the beam [1, 2]. Using the notations

2δk = (c(e) + c(i)ω2
k), Dk = µ

l∫
0

X2
k (x)dx = const. (9)

it follows from Eq. (7) that

q̈k(t) + 2δk q̇k(t) + ω2
k qk(t) = hk(t) +

1
Dk

na

∑
j=1

l∫
0

Fj(t)Xk(x)δ(x− ηj)dx. (10)
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αk(t) =
l∫

0

p(x, t)Xk(x)dx, hk(t) =
αk(t)

Dk
(11)

Substitution of Eq. (6) into Eq. (1) yields

Fj(t) = dj
[
u̇j(t)− ẇη j

]
+ k j

[
uj(t)− wη j

]
= dju̇j(t) + k juj(t)− dj

nb

∑
r=1

Xr(ηj)q̇r(t)− k j

nb

∑
r=1

Xr(ηj)qr(t),
(12)

in which dj, k j, Xr(ηj) (j = 1, 2, . . . , na) are the known constants. According to the prop-
erty of the Delta–Dirac function we have

na

∑
j=1

l∫
0

Fj(t)Xk(x)δ(x− ηj)dx =
na

∑
j=1

Fj(t)Xk(ηj). (13)

Substitution of Eq. (12) into Eq. (13) one obtains
na

∑
j=1

Fj(t)Xk(ηj) =
na

∑
j=1

dju̇j(t)Xk(ηj) +
na

∑
j=1

k juj(t)Xk(ηj)

−
na

∑
j=1

nb

∑
r=1

djXr(ηj)Xk(ηj)q̇r(t)−
na

∑
j=1

nb

∑
r=1

k jXr(ηj)Xk(ηj)qr(t)

=
na

∑
j=1

Xk(ηj)
[
dju̇j(t) + k juj(t)

]
−

na

∑
j=1

Xk(ηj)

{
nb

∑
r=1

[
djq̇r(t) + k jqr(t)

]
Xr(ηj)

}
.

(14)
Substitution of Eq. (14) into Eq. (10) yields

q̈k(t) + 2δk q̇k(t) + ω2
k qk(t) = hk(t) +

1
Dk

na

∑
j=1

Xk(ηj)
[
dju̇j(t) + k juj(t)

]
− 1

Dk

na

∑
j=1

Xk(ηj)

{
nb

∑
r=1

[
djq̇r(t) + k jqr(t)

]
Xr(ηj)

}
, (k = 1, 2, . . . , nb) .

(15)

It follows from Eq. (8) that
nb

∑
r=1

[
djq̇r(t) + k jqr(t)

]
Xr(ηj) =mjüj(t) + dju̇j(t) + k juj(t) (16)

By substituting Eq. (16) into Eq. (15) leads to

q̈k(t) + 2δk q̇k(t) + ω2
k qk(t) = hk(t) +

1
Dk

na

∑
j=1

Xk(ηj)
[
dju̇j(t) + k juj(t)

]
− 1

Dk

na

∑
j=1

Xk(ηj)
{

mjüj(t) + dju̇j(t) + k juj(t)
}

, k = 1, 2, . . . , nb.
(17)
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Eqs. (17) and (8) consist of a system of n = na + nb ordinary differential equations
that describes the vibration of the beam with dynamic vibration absorbers.

We consider now the vibration of the beams under harmonic excitation p(t) = p0
sin Ωt. According to Eqs. (8) and (11) we have

αk(t) =

p0

l∫
0

Xk(x)dx

 sin Ωt, hk(t) =

p0

l∫
0

Xk(x)dx

Dk
sin Ωt.

It follows that

hk(t) = ĥk sin Ωt, ĥk =

p0

l∫
0

Xk(x)dx

Dk
. (18)

In this case, Eq. (17) has the following form

q̈k(t) + 2δk q̇k(t) + ω2
k qk(t) = ĥk sin Ωt− 1

Dk

na

∑
j=1

mjXk(ηj)üj , k = (1, 2 . . . , nb). (19)

Using the notations
dj

mj
= 2δjc ,

k j

mj
=ω2

jc ,

it follows from Eq. (8) that

üj(t) + 2δjcu̇j(t) + ω2
jcuj(t) = 2δjc

nb

∑
r=1

Xr(ηj)q̇r(t) + ω2
jc

nb

∑
r=1

Xr(ηj)qr(t) , (j = 1, 2, . . . , na).

(20)
Eqs. (19) and (20) are a system of n = na + nb differential equations describing the

transverse vibration of beam with a lot of dynamic vibration absorbers under the har-
monic distributed force, in which Xk(x) is the eigenfunction of beam. The concrete form
of Xk(x) depends on the boundary conditions of beam.

3. THE COMPLEX FREQUENCY RESPONSE FUNCTION

In this section, we consider cases that often occur in structural, when the excitation
frequency Ω is approximately equal to the fundamental frequency ω1 of the beam (Ω ≈
ω1). It follows from Eq. (19) and Eq. (20) that

q̈1(t) + 2δ1q̇1(t) + ω2
1q1(t) = ĥ1 sin Ωt− 1

D1

na

∑
j=1

mjXk(ηj)üj , (21)

üj(t) + 2δjcu̇j(t) + ω2
jcuj(t) = 2δjcX1(ηj)q̇1(t) + ω2

jcX1(ηj)q1(t), (j = 1, 2, . . . , na). (22)

We use the following notations

xs = q1 , ωs = ω1 , δs = δ1 , ĥs = ĥ1 , (23)
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Eq. (21) can be written in the following form

ẍs(t) + 2δs ẋs(t) + ω2
s xs(t) = ĥ1 sin Ωt− 1

D1

na

∑
j=1

mjX1(ηj)üj. (24)

The solution of Eqs. (22) and (24) can now be found using the method of frequency
response function. We note that cos Ωt = Re eiΩt, sin Ωt = Im eiΩt, Eq. (24) can thus be
written as follows

ẍs(t) + 2δs ẋs(t) + ω2
s xs(t) = ĥseiΩt − 1

D1

na

∑
j=1

mjX1(ηj)üj. (25)

We find the solutions of Eqs. (22) and (25) in the form

xs(t) = HseiΩt, uj(t) = HjceiΩt . (26)

Substitution of Eq. (26) into Eqs. (25) and (22) lead to the system of linear algebraic
equations [

ω2
s −Ω2 + i2δsΩ

]
Hs = ĥs +

Ω2

D1

na

∑
j=1

mjX1(ηj)Hjc , (27)

[
ω2

jc −Ω2 + 2iδjcΩ
]

Hjc =
[
ω2

jc + 2iδjcΩ
]

X1(ηj)Hs , (j = 1, 2, . . . , na). (28)

From Eq. (28) one has

Hjc =

[
ω2

jc + i2δjcΩ
]

[
ω2

jc −Ω2 + i2δjcΩ
]X1(ηj)Hs , (j = 1, 2, . . . , na). (29)

Substitution of Eq. (29) into Eq. (27) yields

[
ω2

s −Ω2 + i2δsΩ
]

Hs = ĥs + Hs
Ω2

D1

na

∑
j=1

mjX2
1(ηj)

[
ω2

jc + i2δjcΩ
]

[
ω2

jc −Ω2 + i2δjcΩ
]
. (30)

By introducing

a11 =
na

∑
j=1

mjX2
1(ηj)

[
ω2

jc + i2δjcΩ
]

[
ω2

jc −Ω2 + i2δjcΩ
] . (31)

Eq. (30) can be written in the following form([
ω2

s −Ω2 + i2δsΩ
]
+

Ω2

Dk
a11

)
Hs = ĥs. (32)

From Eq. (32) one has

Hs =
ĥs

[ω2
s −Ω2 + i2δsΩ] +

Ω2

D1
a11

, (33)
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in which

a11 =
na

∑
j=1

mjX2
1(ηj)

[
ω2

jc + i2δjcΩ
]

[
ω2

jc −Ω2 + i2δjcΩ
]

=
na

∑
j=1

mjX2
1(ηj)

[
ω2

jc + i2δjcΩ
] [

ω2
jc −Ω2 − i2δjcΩ

]
[(

ω2
jc −Ω2

)2
+ 4δ2

jcΩ2

]

=
na

∑
j=1

mjX2
1(ηj)

[
ω2

jc

(
ω2

jc −Ω2
)
+ 4δ2

jcΩ2 − 2iδjcΩ3
]

[(
ω2

jc −Ω2
)2

+ 4δ2
jcΩ2

] .

(34)

The denominator in Eq. (33) takes the form

[
ω2

s −Ω2 + i2δ1Ω
]
+

Ω2

D1
a11 =

[
ω2

s −Ω2 + i2δsΩ
]

+
Ω2

D1

na

∑
j=1

mjX2
1(ηj)

[
ω2

jc

(
ω2

jc −Ω2
)
+ 4δ2

jcΩ2
]

[(
ω2

jc −Ω2
)2

+ 4δ2
jcΩ2

] − i
na

∑
j=1

mjX2
1(ηj)

2Ω3δjc[(
ω2

jc −Ω2
)2

+ 4δ2
jcΩ2

] .

By introducing the following notations

a =
[
ω2

s −Ω2]+ Ω2

D1

na

∑
j=1

mjX2
1(ηj)

[
ω2

jc

(
ω2

jc −Ω2
)
+ 4δ2

jcΩ2
]

[(
ω2

jc −Ω2
)2

+ 4δ2
jcΩ2

] , (35)

b = 2δsΩ−
Ω2

D1

na

∑
j=1

mjX2
1(ηj)

2Ω3δjc[(
ω2

jc −Ω2
)2

+ 4δ2
jcΩ2

] , (36)

function Hs can be written in the form

Hs =
ĥs

a + ib
=

ĥs(a− ib)
a2 + b2 . (37)

The modulus of the complex frequency response function Hs can now be calculated
by the following formula

H =
∣∣∣H̃s

∣∣∣ = ĥs√
a2 + b2

. (38)

The optimum problem is stated as follows: Find the parameters of dynamic vibration
absorbers mj, cj , k j (j = 1, 2, . . . , na) which minimize the objective function according to
Eq. (38).
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4. USING THE TAGUCHI METHOD FOR DETERMINATION OF THE OPTIMUM
ABSORBER PARAMETERS

4.1. The idea of Taguchi method
Taguchi developed his methods in the 1950s and 1960s. Taguchi’s approach to the

product design process may be divided into three stages: system design, parameter de-
sign, and tolerance design [14–16]. System design is the conceptual design stage where
the system configuration is developed. Parameter design, sometime called robust design,
identifies factors that reduce the system sensitivity to noise, thereby enhancing the sys-
tem’s robustness. Tolerance design specifics the allowable deviations in the parameter
values, loosening tolerances if possible and tightening tolerances if necessary. Taguchi’s
objective functions for robust design arise from quality measures using quadratic loss
functions. In the extension of this definition to design optimisation. Taguchi suggested
the signal-to-noise (SNR), −10 log10 (MSD), as a measure of the mean squared deviation
(MSD) in the performance. The use of SNR in system analysis provides a quantitative
value for response variation comparison.

The mathematical basis of the Taguchi method is mathematical methods of statis-
tics. The Taguchi method allows determining the optimal condition of many parameters
of the research object. This method is applied to solve the multi-objective optimization
problem in mechanical engineering, civil engineering, and transportation engineering.
In this paper, Taguchi’s method is applied to optimize the parameters of DVA to reduce
the vibration amplitude of primary system. By using the Taguchi method, we must note
the following two important points. The first is that we need to determine the quality
characteristics of the problem. The second option is that we need to select the orthogonal
arrays. The Taguchi’s methods begin with the definition of the word quality. Taguchi em-
ploys a revolutionary definition: “Quality is the loss imparted to society from the time
a product is shipped” [20]. In this paper the quality characteristics are also called the
signal-to-noise ratio (SNR). It is defined for a nominal-the-best procedure as [15, 16]

η = SNR = −10 log10(Hactual − Hmin)
2,

where Hactual is the target function in experiment j, and Hmin is desired value of tar-
get function. Taguchi developed the orthogonal array method to study the systems in
a convenient and rapid way, whose performance is affected by different factors when
the considered system becomes more complicated with increasing number of influence
factors.

4.2. A procedure for optimal design
This subsection aims to present numerical results that verify the procedure discussed

above by using Taguchi’s method [22]. Fig. 3 shows a beam with three dynamic transla-
tional vibration absorbers with damping placed at the points η1 = 3L/8, η2 = 4L/8, η3 =
5L/8. The parameters of the beam are listed in Tab. 1.

Form Tab. 1 we can calculate ω1 = 110.3005 rad/s, mb = 245 kg. In which mb is the
mass of the beam, and ω1 = 110.3005 rad/s is the fundamental frequency of the beam.
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Fig.3. Beam simply supported at both ends with three absorbers  
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Fig. 3. Beam simply supported at both ends with three absorbers

Table 1. Parameters of beam

Parameters Variable Value Unit

Fexural rigidity EI 3.06× 107 Nm2

Length of beam L 10 m
Mass per length unit µ 24.5 kg/m
Damping coefficient c(e) 0.4 1/s
Internal friction coefficient c(i) 0.0005 s/m
Distributed force p = p0 sin Ωt p0 = 100 N/m
Coordinate of j-absorber η1, η2, η3 3L/8, 4L/8, 5L/8 m

Step 1: Selection of control factors and target function
In the design experience, the engineer normally selects that the mass of DVAs is

equal to 1% of the mass of beam. Accordingly, the masses of the DVAs can be chosen as
follows

m1 =
0.1
100

mb = 0.245 kg, m2 =
0.8
100

mb = 1.960 kg, m3 =
0.1
100

mb = 0.245 kg.

The control factors are chosen as follows

x = [x1 x2 x3 x4 x5 x6]
T = [d1 k1 d2 k2 d3 k3]

T .

The target function H is chosen according to the formula (64)

H = |Hs| =

∣∣∣ĥs

∣∣∣
√

a2 + b2
.

Three levels of each control factor are given in Tab. 2.
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Table 2. Control factors and levels of each control factor

Levels
Control factors

d1 [Ns/m] k1 [N/m] d2 [Ns/m] k2 [N/m] d3 [Ns/m] k3 [N/m]

1 0.005 1.0× 104 0.1 2.0× 104 0.004 0.5× 104

2 0.010 1.5× 104 0.2 2.5× 104 0.006 1.0× 104

3 0.015 2.0× 104 0.3 3.0× 104 0.008 1.5× 104

Step 2: Selection of orthogonal array and calculation of signal-to-noise ratio (SNR)
Three levels of each control factor are applied, necessitating the use of an L18 orthog-

onal array (Tab. 3) [15, 16]. Coding stage 1, stage 2, stage 3 of the control parameters by
the symbols 1, 2, 3. By performing the experiments and then calculating the correspond-
ing response results, we have the values of the target function H as shown in the Tab. 3,
in which a target value of Hmin = 0 is selected.

Table 3. Experimental design using L18 orthogonal array

Trial
Control factors Results

d1 k1 d2 k2 d3 k3 H SNR

1 1 1 1 1 1 1 0.0044340966 47.0638969423
2 1 2 2 2 2 2 0.0012036545 58.3899629081
3 1 3 3 3 3 3 0.0042376395 47.4575198849
4 2 1 1 2 2 3 0.0012017250 58.4038977293
5 2 2 2 3 3 1 0.0041602303 47.6176524925
6 2 3 3 1 1 2 0.0043690768 47.1922063525
7 3 1 2 1 3 2 0.0043767090 47.1770466279
8 3 2 3 2 1 3 0.0012067156 58.3679013846
9 3 3 1 3 2 1 0.0041617143 47.6145548175
10 1 1 3 3 2 2 0.0042128399 47.5085009203
11 1 2 1 1 3 3 0.0043474735 47.2352611858
12 1 3 2 2 1 1 0.0011980787 58.4302931033
13 2 1 2 3 1 3 0.0042203721 47.4929851721
14 2 2 3 1 2 1 0.0044391926 47.0539202335
15 2 3 1 2 3 2 0.0012021408 58.4008931815
16 3 1 3 2 3 1 0.0011986789 58.4259426044
17 3 2 1 3 1 2 0.0042176774 47.4985327364
18 3 3 2 1 2 3 0.0043506134 47.2289902086

The experimental results are then analyzed by means of the mean square deviation
of the target function for each control parameter, namely the calculation of the SNR of
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the control factors according to the formula

ηj = (SNR)j = −10 log(Hj − Hopt)
2, j = 1, . . . , 18, (39)

where Hj is the target function in experiment j, and Hopt is desired value of target func-
tion.

Step 3: Analysis of signal-to-noise ratio (SNR)
From Tab. 3 we can calculate the mean value of the SNR of the control parameter of

d1 = x1 corresponds to the levels 1, 2, 3

SNR(x1
1) = (SNR(1) + SNR(2) + SNR(3) + SNR(10) + SNR(11) + SNR(12)) /6 = 51.0142391574,

SNR(x2
1) = (SNR(4) + SNR(5) + SNR(6) + SNR(13) + SNR(14) + SNR(15)) /6 = 51.0269258602,

SNR(x3
1) = (SNR(7) + SNR(8) + SNR(9) + SNR(16) + SNR(17) + SNR(18)) /6 = 51.0521613966.

In which SNR(x1
1), SNR(x2

1), SNR(x3
1) are the mean square deviation of the control

parameter d1 at the levels 1, 2, 3, respectively. Similarly we calculate the mean square
deviation of the SNR for the levels 1, 2, 3 of the control parameter k1 = x2, d2 = x3, k2 =
x4, d3 = x5, k3 = x6

SNR(x1
2) = (SNR(1) + SNR(4) + SNR(7) + SNR(10) + SNR(13) + SNR(16)) /6 = 51.0120449994,

SNR(x2
2) = (SNR(2) + SNR(5) + SNR(8) + SNR(11) + SNR(14) + SNR(17)) /6 = 51.0272051568,

SNR(x3
2) = (SNR(3) + SNR(6) + SNR(9) + SNR(12) + SNR(15) + SNR(18)) /6 = 51.0540762581,

SNR(x1
3) = (SNR(1) + SNR(4) + SNR(9) + SNR(11) + SNR(15) + SNR(17)) /6 = 51.0361727655,

SNR(x2
3) = (SNR(2) + SNR(5) + SNR(7) + SNR(12) + SNR(13) + SNR(18)) /6 = 51.0561550854,

SNR(x3
3) = (SNR(3) + SNR(6) + SNR(8) + SNR(10) + SNR(14) + SNR(16)) /6 = 51.0009985634,

SNR(x1
4) = (SNR(1) + SNR(6) + SNR(7) + SNR(11) + SNR(14) + SNR(18)) /6 = 47.1585535918,

SNR(x2
4) = (SNR(2) + SNR(4) + SNR(8) + SNR(12) + SNR(15) + SNR(16)) /6 = 58.4031484852,

SNR(x3
4) = (SNR(3) + SNR(5) + SNR(9) + SNR(10) + SNR(13) + SNR(17)) /6 = 47.5316243373,

SNR(x1
5) = (SNR(1) + SNR(6) + SNR(8) + SNR(12) + SNR(13) + SNR(17)) /6 = 51.0076359485,

SNR(x2
5) = (SNR(2) + SNR(4) + SNR(9) + SNR(10) + SNR(14) + SNR(18)) /6 = 51.0333044696,

SNR(x3
5) = (SNR(3) + SNR(5) + SNR(7) + SNR(11) + SNR(15) + SNR(16)) /6 = 51.0523859962,

SNR(x1
6) = (SNR(1) + SNR(5) + SNR(9) + SNR(12) + SNR(14) + SNR(16)) /6 = 51.0343766989,

SNR(x2
6) = (SNR(2) + SNR(6) + SNR(7) + SNR(10) + SNR(15) + SNR(17)) /6 = 51.0278571211,

SNR(x3
6) = (SNR(3) + SNR(4) + SNR(8) + SNR(11) + SNR(13) + SNR(18)) /6 = 51.0310925942.

In which SNR(x1
1), SNR(x2

1), SNR(x3
1) are the mean square deviation of the control

parameter d1 at the levels 1, 2, 3, respectively. Similarly we calculate the mean square
deviation of the SNR for the levels 1, 2, 3 of the control parameter k1 = x2, d2 = x3, k2 =
x4, d3 = x5, k3 = x6. Then SNR Ratio can be plotted to use for optimization of seat
displacement as shown in Fig. 4.
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Fig. 4. SNR Ratio plot for optimization of seat displacement
of control parameters d1, k1, d2, k2, d3, k3

From Fig. 4 the optimal signal-to-noise ratio of the control parameters can be derived
as follows

(SNR)x1 = 51.0521613966, (SNR)x2 = 51.0540762581,
(SNR)x3 = 51.0561550854, (SNR)x4 = 58.4031484852,
(SNR)x5 = 51.0523859962, (SNR)x6 = 51.0343766989.

(40)

Step 4: Selection of new levels for control factors
From Eq. (40) it can be seen that the optimal SNR of the control parameters is dif-

ferent. This makes it easy to perform iterative calculation. Firstly new levels for control
parameters are selected. Based on the level distribution diagram of the parameter as
shown in Fig. 4, we choose the new levels of control parameters as follows. The optimal
parameters are levels with the largest value of the parameters, namely, d1 level 3, k1 level
3, d2 level 2, k2 level 2, d3 level 3, k3 level 1. Therefore, we have the values of the new
levels as follows:
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Then the analysis of signal-to-noise ratio (SNR) is performed as the step 2. 

Step 5: Check the convergence condition of the signal-to-noise ratio and determine the optimal 

parameters of the DVA 

New level 3 New level 2 New level 1 

level 2 level 3 
level 1 

New level 3 

New level 2 New level 1 

level 2 level 1 level 3 


level2 new = level3 old

level1 new = level3 old− level3 old− level2 old
2

level3 new = level3 old +
level3 old− level2 old

2
According to the above rule, we have the new levels of control parameters as shown

in Tab. 4.

Table 4. Control factors and new levels of control factors

Levels
Control factors

d1 [Ns/m] k1 [N/m] d2 [Ns/m] k2 [N/m] d3 [Ns/m] k3 [N/m]

1 0.0125 1.75× 104 0.1500 2.25× 104 0.0700 0.25× 104

2 0.0150 2.00× 104 0.2000 2.50× 104 0.0800 0.50× 104

3 0.0175 2.25× 104 0.2500 2.75× 104 0.0900 0.75× 104

Then the analysis of signal-to-noise ratio (SNR) is performed as the step 2.

Step 5: Check the convergence condition of the signal-to-noise ratio and determine the optimal
parameters of the DVA

After 24 iterations, we obtain the optimal noise values of the control parameters. The
calculation results are recorded in Tab. 5.

If the optimal signal-to-noise ratio of the control parameters is equal (or approxi-
mately equal) we move on to step 5. If otherwise we return to step 2. According to
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Table 5. Noise values of the control parameter (SNR)i of the control parameters

Trial
Optimal noise values (SNR)i

(SNR)x1 (SNR)x2 (SNR)x3 (SNR)x4 (SNR)x5 (SNR)x6

1 51.052161 51.054076 51.056155 58.403148 51.052386 51.034377
2 54.879695 54.866990 54.859337 58.311646 54.865234 54.870096
3 63.488241 63.473320 63.495179 78.961093 63.496090 63.533600

. . . . . . . . . . . . . . . . . . . . .
23 91.588713 91.588713 91.588714 91.588713 91.588713 91.588713
24 91.588714 91.588714 91.588714 91.588714 91.588714 91.588714

the above analysis, we obtain the optimal values of the parameter of absorber after 24
iterations as

m1 = 0.2450 (kg), d1 = 0.0145 (Ns/m), k1 = 1.9652× 104 (N/m),

m2 = 1.960 (kg), d2 = 0.2125 (Ns/m), k2 = 2.3846× 104 (N/m),

m3 = 0.2450 (kg), d3 = 0.0779 (Ns/m), k3 = 0.4470× 104 (N/m).

(41)

Step 6: Determine the vibration of the primary system and of the DVA
Knowing the parameters of the DVAs, using Eq. (41) we can easily calculate the vi-

bration of the beam with DVAs and without DVAs. Fig. 5 shows the response of the beam
at the x = L/2 with DVAs and without DVAs. It can be clearly seen that the vibration
amplitude of the beam at x = L/2 without DVAs is 7.267 (mm), and reduces to 0.03068
(mm) with 3 DVAs at 3L/8, 4L/8, 5L/4 and the reducing rate is 99.57% at the excitation
frequency equal to the first natural frequency of the beam.

4.3. Problem formulation for determining optimal parameters of DVAs in frequency
domain
When a primary system is damped, the “fixed-points” feature no longer exists. How-

ever, as shown in the work of Pannestri [23], when a DVA with a small mass ratio is
attached to lightly or moderately damped primary systems, the normalized amplitude
curves roughly join at two points. When the damping ratio of the primary system ap-
proaches zero, these two points converge to the “fixed-points”. Therefore, it is justified
to assume that the “fixed-point” theory also approximately holds even for the case when
a DVA is attached to a lightly or moderately damped primary system. Based on this as-
sumption, it is reasonable to assume that H(Ω) has two distinct resonance points, Liu and
Coppola [24]. These are denoted by A and B with frequencies ΩA and ΩB (ΩA < ΩB),
respectively. This leads to the equations

H(ΩA) = max |H(Ω)| and H(ΩB) = max |H(Ω)| . (42)

It is well recognized that each fixed point very close to the corresponding resonance
point, and that the trade off relation between H(ΩA) = max |H(Ω)| and H(ΩB) =
max |H(Ω)| can be postulated. On this assumption, it is guaranteed that the optimum
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Figure 5.  The response of the beam at x = L/2 = 5m without and with 3 DVAs  at 3L/8, 4L/8, 5L/8 
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Fig. 5. The response of the beam at x = L/2 = 5 m without and with 3 DVAs at 3L/8, 4L/8, 5L/8

design is derived using equivalent resonance magnification factors

max |H(Ω)| = |H(ΩA)| = |H(ΩB)| . (43)

The problem can also be formulated as the one that minimizes the following two
functions

f1 =
1
2
|H (ΩA)− H (ΩB)| ,

f2 =
1
2
|H (Ωs) + H (ΩB)| .

(44)

A target function can be defined as

f = ε1 f1 + ε2 f2 → min, (45)

where ε1 and ε2 are weighting factors used to impose different emphasis on each of the
target functions.

Using the optimal parameters of the DVAs in Eq. (41), we can plot the amplitude-
frequency curve as shown in Fig. 6. Figs. 5 and 6 show the response of the beam at
x = L/2 = 5 m without DVAs is 7.267 mm and reduces to 1.721 mm with three DVAs
in in a narrow band of the resonance frequency. The reducing rate is 76.32% .It can be
seen form Fig. 6 that three resonance nodes at the frequencies ΩA, Ωs, ΩB . From there
we have ΩA = 0.94Ωs, ΩB = 1.1053Ωs.

According to Eq. (41), we define the new optimal parameters of DVAs by Taguchi’s
method. Thus the amplitude-frequency curves with the weighting factors ε1 = 0.8, ε2 =
0.3 with will be drawn as in Fig. 7. The amplitude-frequency curve is also called the com-
pliance curve. From Fig. 7, it is found that the maximum vale of the vibration amplitude
corresponds to the case of the beam having installed 3 DVAs is 1.67 mm. The vibration
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amplitude of the beam without DVAs at x = L/2 = 5 m is 7.267 mm. The vibration
amplitude of the beam decreased by 77.02%.
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5. CONCLUSIONS

When a damped primary system is excited by a harmonic force, its vibration can
be suppressed by attaching a DVA. The DVA has the effect of reducing vibrations in the
resonance region, and has almost ineffective far out of the resonance region. In this paper,
the performance of the optimal design of parameters of a number of DVAs installed in
an Euler–Bernoulli beam was investigated from the viewpoint of suppressing vibration
amplitude of the beam. Based on the obtained results, the following concluding remarks
can be reached.

- A general method for derivation of transverse vibration equations of beam with
dynamic vibration absorbers is presented.

- A procedure based on the Taguchi’s method for designing the optimal parameters
for the DVAs attached to the beam is proposed. The use of the Taguchi’s method to design
the optimal parameters of the DVAs installed in damped primary system is relatively
simple and convenient.

- The Taguchi’s method has the good effect of reducing vibration in a narrow band
of the resonance frequency (the ratio is approximately 80%).
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