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Abstract. Depending of the shape of the crack tip e.g. with or without curvature, the
size of the phase transformation surface between a mother phase A (austenite) and a pro-
ducted phase M (martensite) is different. The presentation is focussed to the modes I and
II (opening and shearing modes). The elastic stress field around the crack tip without cur-
vature is known in the litterature and the use of “Linear Elastic Mechanical Theory” is
consistent with the deformations amplitude associated the beginning of the phase trans-
formation (A⇒ M). In order to take into account the curvature at the crack tip, one uses
the approximated expressions of Creager and Paris (1967). A special attention is devoted
to take into account the asymmetry between tension and compression behavior in the sur-
faces prediction.

Keywords: Crack detection, damage detection, multi-cracks detection, stiffness method,
element stiffness, element stiffness index distribution.

1. INTRODUCTION

Shape Memory Alloys (SMA) are potential materials for use in smart structures,
actuators, medical devices and aeronautical materials. This is because of the very large
recoverable strains (on the order of 8% for equi-atomic Ni-Ti) associated with their su-
perelastic or pseudoelastic behavior. The extended use of SMA elements which are some-
times subjected to rather complex loading, raises the issue of service life of the systems
and leads us to investigate SMA fracture and/or fatigue damage. As discussed by Daly
et al. [1], fatigue and fracture behaviours and their possible consequences on “patients
health” are of great concern in medical industry where Ni-Ti is widely used for medicals
devices like stents.

For instance, Yi and Gao [2] investigated numerically the SMA fracture toughening
mechanism under mode I loading and showed that the martensitic phase transformation
(MPT) increases the toughness and decreases the crack tip intensity factor. Wang et al. [3]
examined the stress induced martensite near the crack tip of a CT specimen by a FEM
calculation.

c© 2017 Vietnam Academy of Science and Technology

http://dx.doi.org/10.15625/0866-7136/11026
mailto: christian.lexcellent@univ-fcomte.fr


376 Christian Lexcellent

Moreover, we can cite experimental work about the fracture behavior of Ni-Ti
tubes [4]. Robertson and Ritchie measured in-situ three dimensional strains, phases and
crystallographic alignment ahead of a growing fatigue crack (after 100 cycles). Their
measurements reveal that the majority of austenite grains were subjected to only 0.5–
1.0% elastic strain despite a macroscopic superelastic strain of 6–8% recovery associated
with the MPT.

Daly et al. [1] performed a tensile test on an edge crack specimen of austenitic Ni-
Ti for a tip with curvature, using an in-situ optical technique to examine the shape and
the size of the phase transformation zones. They measured the fracture toughness K1c at
room temperature for fine grained polycrystalline nitinol sheets.

2. PROBLEM WITH A CRACK TIP TO SOLVE

2.1. Stress field around the crack tip
Let the tensor σ (M (r, θ)) expressed in Cartesian coordinates

σ (M (r, θ)) =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 . (1)

Remember that
σyz = σzx = 0,
σzz = 0, for plane stress (CP),

σzz = ν
(
σxx + σyy

)
, for plane strain (DP),

(2)

with ν Poisson ratio.
Let the tensor σ and Sσ its deviatoric part

Sσ ≡ σ − 1
3

tr (σ) 1.

In a classical way, the Huber-Von Mises equivalent stress is defined by: σ ≡ κ |Sσ |,

where κ ≡
√

3
2

a normalisation parameter and |Sσ | ≡
√

tr
(

ST
σSσ

)
the norm of tensor Sσ .

In order to take into account the asymmetrical behavior between tension and com-
pression in the yield phase transformation surface prediction, a parameter called “Lode
parameter” is introduced [5, 6].

yσ ≡
6κ

|Sσ |3
det Sσ . (3)

Now, the problem is to give the equation of the elastic austenitic domain yield
surface which is called F (σ). In this aim, tools coming from plasticity are used.

As the phase transformation process is independent of the pressure, one suggests
to write F (σ) as

F (σ) = σ f (yσ)− σc (T) = 0. (4)
The choice of the “shape functions” f is twofold:
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- A simple expression of f (yσ) can be chosen in the form

f (yσ) = 1 + byσ. (5)

The convexity of F (σ) can be assured if and only if 0 ≤ b ≤ 1
8

[7].
- In reference to the work of Bouvet et al. [8], we have also chosen

f (yσ) = arccos
(

1
3

arccos (1− a (1− yσ))

)
, (6)

which ensures that F (σ) is convex for 0 ≤ a ≤ 1 as also demonstrated by Laydi and
Lexcellent [7].

3. THE ELASTIC STRESS FIELD AROUND A CRACK TIP
WITHOUT CURVATURE

We choose the calculations performed by J. B. Leblond [9] knowing that they have
become classics of literature items.

Consider a straight crack in plane strain. Look for the stress field near the crack tip.
To do this, define the landmark (O, x1, x2) with O confused with the tip and Ox1 located
in the extension of the crack, and the corresponding coordinates (Fig. 1).

One obtains classicaly the polar coordinates for mode I (stress intensity factor KI)
plus mode II (stress intensity factor KI I)

σrr =
KI

4
√

2πr

(
5 cos

θ

2
− cos

3θ

2

)
+

KI I

4
√

2πr

(
−5 sin

θ

2
+ 3 sin

3θ

2

)
,

σθθ =
KI

4
√

2πr

(
3 cos

θ

2
+ cos

3θ

2

)
+

KI I

4
√

2πr

(
−3 sin

θ

2
− 3 sin

3θ

2

)
,

σrθ =
KI

4
√

2πr

(
sin

θ

2
+ sin

3θ

2

)
+

KI I

4
√

2πr

(
cos

θ

2
+ 3 cos

3θ

2

)
,

(7)

Figure 1: Crack in plane situation (reference diagram in polar
coordinates).[8].

In any case,

σ (M (r, θ)) = χ (r)q (θ) (8)

that renders the calculations easy.
For mode I, the boundary radius expression for phase transformation forward
yield surface (A =⇒M) is :

r(θ) = 1
4π

(
Kt

σc

)2

︸ ︷︷ ︸
LAmf


2κ2 |Sq(θ)|2︸ ︷︷ ︸

R(θ)


 f

2 (yσ) .

Hence, finally,an adimensional term is obtained rL :

rL (θ) ≡ r (θ)
LAmf

= R (θ) f 2 (yσ) (9)

for

R (θ) = 3 |Sq (θ)|2

LAmf = 1
4π

(
Kt

σc

)2

If one introduces the parameter β in order to make the distinction between
plane stress (CP ) and plane strain (DP ).

β =
(

1 for CP
1− 2ν for DP

)
(10)

5

Fig. 1. Crack in plane situation (reference diagram in polar coordinates) [9]

In any case,

σ (M (r, θ)) = χ (r)q (θ) , (8)

that renders the calculations easy.
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For mode I, the boundary radius expression for phase transformation forward
yield surface (A⇒M) is

r (θ) =
1

4π

(
Kt

σc

)2

︸ ︷︷ ︸
LAm f

2κ2∣∣Sq (θ)
∣∣2︸ ︷︷ ︸

R(θ)

 f 2 (yσ) .

Hence, finally, an adimensional term is obtained rL

rL (θ) ≡
r (θ)
LAm f

= R (θ) f 2 (yσ) , (9)

for

R (θ) = 3
∣∣Sq (θ)

∣∣2,

LAm f =
1

4π

(
Kt

σc

)2

.

If one introduces the parameter β in order to make the distinction between plane
stress (CP) and plane strain (DP).

β =

(
1 for CP

1− 2ν for DP

)
. (10)3.1 Mode I loading without curvature

Figure 2: Mode I - Phase transformation surface for stress plane condition .

As it was shown on figures 2 and 3, rL (θ)was plotted for the two expressions
of f with β = 1 for plane stress condition and ν = 0.4 for plane strain .
NThe size of the surfaces is on about twofold in CP than in DP.
NThe effect of the asymmetry between tension and compression is more ev-
ident in CP than in DP.
NThe correction with affine function yσ provides a field of transformation a
bit larger than the function of Bouvet.[1]

4 Problem with a crack tip with curvature ρ
to solve

4.1 Stress field around the crack tip for mode I

Let a plate of length l , width w, thickness e and a fracture length a (figure
1) .The sample dimensions are chosen to comply with the instructions of the
«stress intensity factor handbook» of Murakami et al.[12].

6

Fig. 2. Mode I - Phase transformation surface
for stress plane condition

Figure 3: Mode I-Phase transformation surface for strain plane condition .

In agreement with Irwin [4], the stress intensity factor KI , under the ratio
condition a/w<0.6 can be written as:

KI = g
(
a

w

)
σ0
√
πa (11)

with the empirical g (a/w) expression [12]:

g
(
a

w

)
= 1.122−0.231

(
a

w

)
+10.55

(
a

w

)2
−21.72

(
a

w

)3
+30.39

(
a

w

)4
(12)

One has to note that an expression of g function integrating the curvature ρ
in our knowledge does not exist in the litterature .
Starting from the classical stress field around the crack tip for mode I (with-
out curvature radius) ,Creager and Paris [2] extend the solution for finite
curvature ρ as:

σxx = KI√
2πr (cos

θ
2

(
1− sin θ2sin

3θ
2

)
−
(
ρ
2r

)
cos3θ

2 )
σyy = KI√

2πr (cos
θ
2

(
1 + sin θ2sin

3θ
2

)
+
(
ρ
2r

)
cos3θ

2
σxy = KI√

2πr (sin
θ
2cos

θ
2cos

3θ
2 −

(
ρ
2r

)
sin3θ

2 )
) (13)

7

Fig. 3. Mode I - Phase transformation surface
for strain plane condition

As it was shown on Figs. 2 and 3, rL(θ) was plotted for the two expressions of f
with β = 1 for plane stress condition and ν = 0.4 for plane strain.

- The size of the surfaces is on about twofold in CP than in DP.
- The effect of the asymmetry between tension and compression is more evident in

CP than in DP.
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- The correction with affine function yσ provides a field of transformation a bit
larger than the function of Bouvet [8].

4. PROBLEM WITH A CRACK TIP WITH CURVATURE σ TO SOLVE

4.1. Stress field around the crack tip for mode I
Let a plate of length l, width w, thickness e and a fracture length a (Fig. 4). The

sample dimensions are chosen to comply with the instructions of the “stress intensity
factor handbook” of Murakami et al. [10].

In agreement with Irwin [11], the stress intensity factor KI , under the ratio condi-
tion a/w < 0.6 can be written as

KI = g
( a

w

)
σ0
√

πa, (11)

with the empirical g(a/w) expression [10]

g
( a

w

)
= 1.122− 0.231

( a
w

)
+ 10.55

( a
w

)2
− 21.72

( a
w

)3
+ 30.39

( a
w

)4
. (12)

One has to note that an expression of g function integrating the curvature ρ in our
knowledge does not exist in the litterature.

Figure 4: Standard plate with a crack with curvature ρ under mode I loading.

Note again that r has a finite value on the crack with equation r = ρ
2 and

therefore,the stresses have a finite value, so there is not singularity.
For a given boundary value σc(T )>0 , we seek to calculate the distance r :

r : θ ∈ [0, 2π]→ r (θ) ≥ 1
2ρ > 0 (14)

solution of the non linear equation ( 4 )
The calculations are more complicated because we cannot separate directly
σ (M (r, θ))in the product of a r function and a θ function as we did before
for a tip without curvature (Equation 8)

4.2 Huber-von Mises particular case

One begin with the Huber-Von Mises simple case where f = 1 in the yield
surface equation ( 4 ). It means that :

σ = σc. (15)

The tensor σis written as function of an auxiliary variable :

z = ρ

2r (16)

8

Fig. 4. Standard plate with a crack with curvature ρ under mode I loading
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Starting from the classical stress field around the crack tip for mode I (without
curvature radius), Creager and Paris [12] extend the solution for finite curvature ρ as

σxx =
KI√
2πr

(
cos

θ

2

(
1− sin

θ

2
sin

3θ

2

)
− ρ

2
cos

3θ

2

)
,

σyy =
KI√
2πr

(
cos

θ

2

(
1 + sin

θ

2
sin

3θ

2

)
+

ρ

2
cos

3θ

2

)
,

σxy =
KI√
2πr

(
sin

θ

2
cos

θ

2
cos

3θ

2
− ρ

2
sin

3θ

2

)
.

(13)

Note again that r has a finite value on the crack with equation r =
ρ

2
and therefore,

the stresses have a finite value, so there is not singularity.
For a given boundary value ρc(T) > 0, we seek to calculate the distance r

r : θ ∈ [0, 2π]→ r (θ) ≥ 1
2

ρ > 0, (14)

solution of the non linear equation (4).
The calculations are more complicated because we cannot separate directly

σ(M(r, θ)) in the product of a r function and a θ function as we did before for a tip
without curvature (Eq. (8)).

4.2. Huber-von Mises particular case
One begin with the Huber-Von Mises simple case where f = 1 in the yield surface

equation (4). It means that
σ = σc. (15)

The tensor σ is written as function of an auxiliary variable

z =
ρ

2r
. (16)

This delivers the condition on the z variable

0 ≤ z ≤ 1, (17)

and with
KI√
2πr

=
Ki√
πρ

√
z under the shape

σ =
Ki√
πρ

√
zΣθ (z) where Σθ (z) ≡ Aθ − zBθ , (18)

with

Aθ = cos
θ

2


1− sin

θ

2
sin

3θ

2
sin

θ

2
cos

3θ

2
0

sin
θ

2
cos

3θ

2
1 + sin

θ

2
sin

3θ

2
0

0 0 1− β

 , (19)
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and

Bθ =


cos

3θ

2
sin

3θ

2
0

sin
3θ

2
− cos

3θ

2
0

0 0 0

 . (20)

A simple calculation delivers the eigenvalues of SΣθ
(deviatoric part of Σθ(z))

λ1 = −2
β

3
cos

θ

2
, λ2 =

β

3
cos

θ

2
−
√

z2 +
1
4

sin2θ, λ3 =
β

3
cos

θ

2
+

√
z2 +

1
4

sin2θ, (21)

and the Huber-von Mises expression

σ =
Ki√
πρ

√
zΣθ (z) with Σθ (z) = 3

1
2

√
z2 + 3pθ , (22)

where

pθ ≡
1
9

(
β2 + 3sin2 θ

2

)
cos2 θ

2
6 4

27
∀θ. (23)

As a consequence, Eq. (15) is equivalent to

ϕp(z) = χ with χ =
1
6

πρ

(
σc

KI

)2

, (24)

where ϕp is defined whatever p ≥ 0, by

z ∈ R+ → ϕp (z) ≡
1
2

z
(
z2 + 3p

)
∈ R+ (25)

This function admits as reciprocal one ψp ≡ ϕ−1
p (obtained by the Cardan method)

defined on R+ by

ψp (χ) =

(√
χ2 + p3 + χ

) 1
3

−
(√

χ2 + p3 − χ

) 1
3

. (26)

Hence by inversion, Eq. (15) admits, whatever χ > 0, one solution and only one

z =
ρ

2r
, such that

z = ψp(χ). (27)
However, Eq. (14) imposes the condition

0 ≤ ψp(χ) ≤ 1, (28)

i.e.

χ 6 ϕp (z = 1) =
1
2
(1 + 3p) ∀p ∈

[
0,

4
27

]
. (29)

Hence

χ ≤ 1
2

(30)

In brief, the following result is established.
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Proposal 1: Eq. (15) admits a unique solution

r =
1
2

$

ψp (χ)
. (31)

Verifying condition (14) if and only if χ verifies condition (30).

4.3. General case
This case consists in replacing σc by σc

/
f (yσ) or more simply by σc

/
f (yΣθ

) because

σ =
Ki√
πρ

√
zΣθ (z) and yσ = yΣθ

,

i.e.
σ =

Ki√
πρ

√
zΣθ (z) =

σc

f (yΣθ
)

.

More precisely, one has the equivalences

G (σ) = σ f (yΣθ
) = σc ⇔

√
zG (Σθ) = 2κχ

1
2 ⇔ z = ψ (χαθ (z)) , (32)

where αθ(z) is a continuous function of z and θ defined by

αθ (z) = | f (yΣθ
)|−2. (33)

Its explicit expression is obtained easily by combining in the expression (3) the
value of |SΣθ

|

|SΣθ
| =

(
2β2

3
cos2θ +

sin2θ

2
+ 2z2

) 1
2

. (34)

with

det (SΣθ
) =

2β

3
cos

θ

2

(
z2 +

1
4

sin2θ −
∣∣∣∣β3 cos

θ

2

∣∣∣∣2
)

. (35)

Moreover, one have the following framing

1
8

η3 6 χαθ (z) 6
1
2

η3 and η =
(

6χ| f (0)|−2
) 1

2
. (36)

This result is the direct consequence of the convexity condition of the G yield
function (see Laydi and Lexcellent [13]) which imposes the necessary condition on the
f function

3−
1
2 f (0) 6 f (y) 6 2× 3−

1
2 f (0) ∀y ∈ [−1, 1] . (37)

As reference of the single Huber-von Mises problem, the resolution of this problem
consist in finding ẑ solution of one of the following equations

ϕp (ẑ) = χαθ (ẑ)⇔ ẑ = ψp (χαθ (ẑ)) . (38)

Let

ξ ≡ ψ 4
27

(
1
8

η3
)

. (39)

Taking into account all the notations and hypothesis, we are able to demonstrate
the following theorem.
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4.4. Application I
Let the following material parameters

ν = 0.3, ρ = 0.5 (mm), KI = 50
(
MPa
√

m
)

σc =

{
σs = 30 (Mpa) start
σf = 60 (Mpa) end stress phase transformation

}
Let f (yΣ) an affine function in yΣ

f (yΣ) = 1 + byΣ.

Laydi and Lexcellent [7] shows that the G(Σ) function is convex in Σ if b ∈
[

0,
1
8

]
.

The verification of the condition need some elementary calculations

η =
(

6χ| f (0)|−2
) 1

2
=

(
π| f (0)|−2ρ

(
σc

KI

)2

| f (0)|−2

) 1
2

=

{
0.08 start phase transformation
0.13 end phase transformation

}
< 0.34.

(40)

In the two cases, the condition of unicity of the solution is verified. The zones of
phase transformation for plane stress (CP) and plane strain (DP) conditions are shown as
function of the b parameter on Fig. 5.

Application I

Let f (yΣ) an affine function in yΣ.

f (yΣ) = 1 + byΣ

Laydi and Lexcellent [5] shows that the G (Σ) function is convex in Σ if
b ∈

[
0, 1

8

]
.

The verification of the condition need some elementary calculations:

η = (6χ | f (0) |−2)
1
2 =

(
π | f (0) |−2 ρ

(
σc
KI

)2
| f (0) |−2

) 1
2

=
{

0.08 start phase transformation
0.13 end phase transformation

}
< 0.34

(40)

In the two cases, the condition of unicity of the solution is verified. The
zones of phase transformation for plane stress (CP) and plane strain (DP)
conditions are shown as function of the b parameter on figure 2 .

Figure 5: Cracked plate with curvature under mode I (Application I).

13

Fig. 5. Cracked plate with curvature under
mode I (Application I)

4.5 Application II

Let

f (yΣ) = cos
(1

3arccos (1− a (1− yΣ))
)

A new time, Laydi and Lexcellent [5] have shown that G (Σ)is convex if
a ∈ [0, 1].
The condition of convexity is verified whatever a belonging to [0, 1]. The
zones of phase transformation for plane stress (CP) and plane strain (DP)
conditions are shown as function of the b parameter on figure 2. The zones of
phase transformation for plane stress (CP) and plane strain (DP) conditions
are shown as function of the a parameter on figure 3 .

Figure 6: Cracked plate with curvature under mode I (Application II).

5 Comparison between experiments and pre-
dictions

One has to underline that there is not important difference in the phase trans-
formation zones exhibited for the two chosen shape functions e.g. “affine”

14

Fig. 6. Cracked plate with curvature under
mode I (Application II)
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4.5. Application II
Let

f (yΣ) = cos
(

1
3

arccos (1− α (1− yΣ))

)
.

A new time, Laydi and Lexcellent [7] have shown that G(Σ) is convex if a ∈ [0, 1].
The condition of convexity is verified whatever a belonging to [0, 1]. The zones of

phase transformation for plane stress (CP) and plane strain (DP) conditions are shown as
function of the b parameter on Fig. 2. The zones of phase transformation for plane stress
(CP) and plane strain (DP) conditions are shown as function of the a parameter on Fig. 6.

5. COMPARISON BETWEEN EXPERIMENTS AND PREDICTIONS

One has to underline that there is not important difference in the phase transfor-
mation zones exhibited for the two chosen shape functions e.g. “affine” (Fig. 2) or “arcos”
one (Fig. 3) .The impact of the parameters of assymmetry b and a is negligible in plane
strain and effective in plane stress. Moreover, coupled thermomechanical problems can
be solved by digital image correlation (DIC). Thus Daly et al. [1] measured by DIC de-
formations around the crack tip on nitinol thin plates. This “in situ” optical method
provides information about the phase transformation zones by locating deformations.
The choice of the “Linear Elastic Fracture Mechanics” (LEFM) hypothesis seems justified
by the small size of the transformation zones as shown on Fig. 7.

(figure 2) or “arcos” one (figure 3 ) .The impact of the parameters of assym-
metry b and a is negligible in plane strain and effective in plane stress.
Moreover, coupled thermomechanical problems can be solved by digital image
correlation (DIC). Thus Daly et al.[3] measured by DIC deformations around
the crack tip on nitinol thin plates. This «in situ» optical method provides
information about the phase transformation zones by locating deformations
. The choice of the «Linear Elastic Fracture Mechanics»(LEFM) hypothesis
seems justified by the small size of the transformation zones as shown on
figure 7.

Figure 7: Measurement of εyy obtained by DIC at the crack tip for KI=44
Mpa
√
m [3]

The shape of the lobes of the transformation surface inclined at around 60°,
validates the taking into account the assymmetry between tension and com-
pression in the calculations.

Tensile tests have been performed in the SYMME laboratory of Annecy on
samples exhibiting different radii of curvature[17].

Depending on the dimensions of the sample and on the curvature radius, we
can calculate the stress intensity factors by making use of correction

15

Fig. 7. Measurement of εyy obtained by DIC at the crack tip for KI = 44 Mpa
√

m [1]

The shape of the lobes of the transformation surface inclined at around 60◦, vali-
dates the taking into account the assymmetry between tension and compression in the
calculations.

Tensile tests have been performed in the SYMME laboratory of Annecy on samples
exhibiting different radii of curvature [14].

Depending on the dimensions of the sample and on the curvature radius, we can
calculate the stress intensity factors by making use of correction cefficient from Eq. (12).



Phase transformation surfaces around a crack tip for a shape memory alloys 385

ρ (mm) 0.25 0.5 1 1.5
Kic (Mpa

√
m) 91 102 108 115

Its means that the intensity factor KIc is slighty dependant of the curvature radius ρ.
The shape of the transformation zones shown on Fig. 8 for plane stress conditions

is consistent with our predictions.

cefficient from equation (12 ).

ρ (mm) 0.25 0.5 1 1.5
Kic (Mpa

√
m) 91 102 108 115

Its means that the intensity factor KIc is slighty dependant of the curvature
radius ρ.

The shape of the transformation zones shown on the figure 8 for plane
stress conditions is consistent with our predictions.

Figure 8: Overall photo of a plate with a curvature radius under mechanical
loading (FML).[17]

6 Conclusion

Comparison between experiments and predictions for mode I shows us a
qualitative agreement for crack tip with curvature.
Figures 2 and 3 on one part and 4 and 5 on an another part show that the
extend of the phase transformation zone is seriously greater for tip without
curvature than with curvature. In other words, note the difference in severity
between an angular defect (zero radius at the crack tip) and a regular defect
(finite radius of curvature). The difference between stress concentration and
stress singularity can be used to remove the stress singularity near an angular
defect. In order to stop the progress, simply "rounding" the tip piercing in a

16

Fig. 8. Overall photo of a plate with a curvature radius under mechanical loading (FML) [14]

6. CONCLUSION

Comparison between experiments and predictions for mode I shows us a qualita-
tive agreement for crack tip with curvature.

Figs. 1 and 2 on one part and 4 and 5 on an another part show that the extend of the
phase transformation zone is seriously greater for tip without curvature than with cur-
vature. In other words, note the difference in severity between an angular defect (zero
radius at the crack tip) and a regular defect (finite radius of curvature). The difference
between stress concentration and stress singularity can be used to remove the stress sin-
gularity near an angular defect. In order to stop the progress, simply “rounding” the
tip piercing in a circular hole (process known as SNCF method! (note : SNCF corrre-
sponds to french railways company) [15]. Moreover, crack tip stress-induced martensitic
transformation and the resulting stress distribution in a Ni-Ti have been also analysed
by Maletta et al. [16].Their recent analytical model on SMA pseudoelasticity occurring in
the crack tip region “causes a complex and unsual stress distribution” [17].It means that
the problem to solve is complex. The transition of phase transformation mechanisms at
microscale to macroscale is not entirely understood.
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[9] J. B. Leblond and P. Germain. Mécanique de la rupture fragile et ductile. Hermés-Lavoisier,
(2003).

[10] Y. Murakami. Stress intensity factor handbook. The Society of Material Science, Pergamon Press,
(1987).

[11] G. R. Irwin. Analysis of stresses and strains near the end of a crack traversing a plate. Journal
of Applied Mechanics, 24, (3), (1957), pp. 361–364.

[12] M. Creager and P. C. Paris. Elastic field equations for blunt cracks with reference to
stress corrosion cracking. International Journal of Fracture, 3, (4), (1967), pp. 247–252.
doi:10.1007/bf00182890.

[13] M. R. Laydi and C. Lexcellent. Rice local phase angle study for a delamination problem
between a shape memory alloy and an elastic material. Archive for Rational Mechanics and
Analysis, 204, (3), (2012), pp. 977–1007. doi:10.1007/s00205-012-0495-6.
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