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Abstract. Effect of transverse normal strain on bending of laminated composite beams is
proposed in this paper. A Quasi-3D beam theory which accounts for a higher-order varia-
tion of both axial and transverse displacements is used to consider the effects of both trans-
verse shear and normal strains on bending behaviours of laminated composite beams. Ritz
method is used to solve characteristic equations in which trigonometric shape functions
are proposed. Numerical results for different boundary conditions are presented to com-
pare with those from earlier works, and to investigate the effects of thickness stretching,
fibre angles, span-to-height ratio and material anisotropy on the displacement and stresses
of laminated composite beams.
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1. INTRODUCTION

Due to the advantages of stiffness-to-weight’s ratio and anisotropy material proper-
ties, laminated composite (LC) beams have recently attracted a number of researches with
different models and approaches. Many beam models with various kinematics have been
investigated to predict accurately their static, buckling and vibration behaviours such
as layer-wise theories (LWT) [1, 2], equivalent single-layer theories (ESLTs) [3–7], zigzag
theories (ZZT) [8–10] and Carrera’s unified formulation (CUF) [11, 12] . . . Although the
ESLTs have discontinuity of shear stress at the layer interfaces, they are widely used for
analysis of isotropic, laminated composite and sandwich beams owing to theirs simplic-
ity in formulation as well as programming [13]. It is noted that the continuity of shear
stress at layer interface can also be maintained by using equations of equilibrium of the-
ory of elasticity. Generally, the ESLTs can be classified as classical beam theory (CBT),
first-order beam theory (FOBT), higher-order beam theory (HOBT) and Quasi-3D theo-
ries. The CBT [14] is only suitable for the analysis of slender beams due to neglecting
the shear deformation effects. In order to take into account shear deformation effects,
the FOBT [15–18], HOBT [5, 19–24] with a higher-order variation of axial displacement,
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and Quasi-3D theory [3,25–28] with a higher-order variation of both axial and transverse
displacements have been considered for analysis of LC beams.

For numerical approaches, the finite element method is widely used for analysis of
static and vibration of LC beams [6,29–38]. For analytical methods, Navier procedure [3]
is the simplest one for analysis of LC beams, however this approach is only suitable for
simply-supported boundary conditions (BCs). For various BCs, Ritz method has been
mostly used by several authors [39–41]. However, the accuracy of this approach depends
on the choice of approximate function shapes. A literature survey shows that the number
of researches on behaviours of LC beams used the Ritz method are still limited, especially
when the effect of transverse normal strain on the bending responses of LC beams is
considered. Zenkour [3], Mantari and Canales [7] analysed effects of transverse shear
and normal strains on the bending analysis of laminated and sandwich elastic beams
using Navier method. Mantari and Yarasca [42] also used Navier method for bending
analysis of functionally grade and sandwich beams in which the authors proposed new
hybrid-type shear strain shape functions for the in-plane and transverse displacements.
The effect of transverse normal strain on the bending responses of LC beams has also
been investigated by Mantari and Canales [6] within which a Quasi-3D with 6 degree-of-
freedom and solved by Hermite-Lagrangian finite element method has been presented.
Recently, Vo et al. [38] studied flexural behaviours of LC beams using a four-unknown
shear and normal deformation theory, and finite element method.

The objective of this manuscript is to analyse effects of transverse normal strain on
the bending responses of LC beams. It is based a Quasi-3D theory which accounts for
a higher-order variation of the axial and transverse displacements. The Ritz method is
used to solve characteristic equations for various BCs. Numerical results are presented
to investigate the effects of transverse normal strain, span-to-height ratio, fibre angle and
material anisotropy on the deflections and stresses LC beams.

2. THEORETICAL FORMULATION

Consider a LC beam with rectangular section b× h and length L as shown in Fig. 1.
It is made of n plies of orthotropic materials in different fibre angles with respect to the
x-axis.

2.1. Kinetic, strain and stress relations
The displacement field of LC beams based on [3] is expressed by

u(x, z) = u0(x) + zu1(x)− 1
2

z2w1,x(x) + z3
[
− 4

3h2 (w0,x(x) + u1(x))− 1
3

w2,x(x)
]

, (1a)

w(x, z) = w0(x) + zw1(x) + z2w2(x), (1b)

where u0 and w0 are the axial and transverse displacements of mid-plan of the beam,
respectively; u1 is the rotation of a transverse normal about the y-axis; w1 and w2 are
additional higher-order terms. The comma indicates a partial differentiation with respect
to the corresponding subscript coordinate. It is worth to noticing that if the stretching
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shape functions for the in-plane and transverse displacements. The effect of transverse normal strain 
on the bending responses of LC beams has been also investigated by Mantari and Canales [6] within 
which a Quasi-3D with 6 degree-of-freedom and solved by Hermite-Lagrangian finite element method 
has been presented. Recently, Vo et al. [36]  studied flexural behaviours of LC beams using a four-
unknown shear and normal deformation theory, and finite element method. 

The objective of this manuscript is to analyse effects of transverse normal strain on the bending 
responses of LC beams. It is based a Quasi-3D theory which accounts for a higher-order variation of 
the axial and transverse displacements. The Ritz method is used to solve characteristic equations for 
various BCs. Numerical results are presented to investigate the effects of transverse normal strain, 
span-to-height ratio, fibre angle and material anisotropy on the deflections and stresses LC beams. 

2. THEORETICAL FORMULATION 
Consider a LC beam with rectangular section  and length  as shown in Fig. 1. It is made 

of  plies of orthotropic materials in different fibre angles with respect to the x-axis. 

 

Fig 1. Geometry and coordinate of a LC beam 

2.1. Kinetic, strain and stress relations 

The displacement field of LC beams based on [3] is expressed by: 

  (1a) 

  (1b) 

where and  are the axial and transverse displacements of mid-plan of the beam, respectively;  
is the rotation of a transverse normal about the y-axis; and  are additional higher-order terms. 
The comma indicates a partial differentiation with respect to the corresponding subscript coordinate. It 
is worth to noticing that if the stretching strain is ignored (  and  are omitted) in Eq. (1), the 
present displacement field will become to Reddy’s HOBT [41]: 
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Fig. 1. Geometry and coordinate of a LC beam

strain is ignored (w1 and w2 are omitted) in Eq. (1), the present displacement field will
become to Reddy’s HOBT [43]

u(x, z) = u0(x) + zu1(x)− 4z3

3h2 (w0,x(x) + u1(x)) , (2a)

w(x, z) = w0(x), (2b)
The non-zero strains of the beams are derived from Eq. (1) as follows

εx = ε
(0)
x + zε

(1)
x + z2ε

(2)
x + z3ε

(3)
x , (3a)

εz = ε
(0)
z + zε

(1)
z , (3b)

γxz = γ
(0)
xz + z2γ

(1)
xz , (3c)

where

ε
(0)
x = u0,x , ε

(1)
x = u1,x , ε

(2)
x = −1

2
w1,xx , ε

(3)
x = − 4

3h2 (w0,xx + u1,x)−
1
3

w2,xx , (4a)

ε
(0)
z = w1 , ε

(1)
z = 2w2 , γ

(0)
xz = u1 + w0,x , γ

(1)
xz = − 4

h2 (u1 + w0,x) , (4b)

The elastic strain and stress relation of kth-layer in global coordinate is given by

σx
σy
σz
σyz
σxz
σxy



(k)

=



C11 C12 C13 0 0 C16
C12 C22 C23 0 0 C26
C13 C23 C33 0 0 C36
0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66



(k)

εx
εy
εz

γyz
γxz
γxy


, (5)
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where the Cij are transformed elastic coefficients (see [43] for detail). For a laminated
beam of small width in the y-direction, the stresses σy, σxy and σyz can be neglected be-
cause it is so narrow that these stresses are unlikely to grow up to a degree of signifi-
cance [27]. By setting σy = σxy = σyz = 0, Eq. (5) is reduced to σx

σz
σxz


(k)

=

 Q11 Q13 0
Q13 Q33 0

0 0 Q55

(k) εx
εz
γxz

 , (6)

where Q11, Q13, Q33, Q55 are reduced stiffness constants of kth-layer in global coordinates,
which are related to Cij as follows

Q11 = C11 +
C2

16C22 − 2C12C16C26 + C2
12C66

C2
26 − C22C66

, (7a)

CQ13 = C13 +
C16C22C36 + C12C23C66 − C16C23C26 − C12C26C36

C2
26 − C22C66

, (7b)

Q33 = C33 +
C2

36C22 − 2C23C26C36 + C2
23C66

C2
26 − C22C66

, (7c)

Q55 = C55 −
C2

45

C44
. (7d)

It is noted that the displacement field defined in Eq. (1) meets the traction-free bound-
ary conditions of the transverse shear stresss on the top and bottom surfaces of the beam
(see Eqs. (6), (3c) and (4b)). Moreover, if the transverse normal stress and higher-order
terms of transverse displacements are omitted (σz = 0, w1 = w2 = 0), the strain and
stress relation of HOBT is recovered as{

σx
σxz

}(k)

=

(
Q11 0

0 Q55

)(k) {
εx
γxz

}
, (8)

where Q11 = Q11 −
Q2

13

Q33
, Q55 = Q55.

2.2. Variational formulation
The total potential energy Π of the beam is composed of the strain energy U and

work done by external force V. The strain energy U is given by

U =
1
2

∫
V
(σxεx + σzεz + σxzγxz)dV =

1
2

∫
V

(
Q11ε2

x + Q33ε2
z + 2Q13εxεz + Q55γ2

xz
)
dV.

(9)
The work done V by transverse load q applied on bottom surface is given by

V = −
L∫

0

q
(

w0 −
h
2

w1 +
h2

4
w2

)
bdx. (10)
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The total energy of the beam is finally obtained as follows

Π=U +V=
1
2

∫
V

(
Q11ε2

x + Q33ε2
z + 2Q13εxεz + Q55γ2

xz
)
dV−

L∫
0

q
(

w0 −
h
2

w1 +
h2

4
w2

)
bdx.

(11)
Substituting Eqs. (3) and Eqs. (4) into Eq. (11), the total energy of the beam becomes

Π =
1
2

L∫
0

[
A11(u0,x)

2 +

(
2B11 −

8
3h2 E11

)
u0,xu1,x −

8
3h2 E11u0,xw0,xx − D11u0,xw1,xx

+ 2A13u0,xw1 + 4B13u0,xw2 −
2
3

E11u0,xw2,xx +

(
D11 +

16
9h4 H11 −

8
3h2 F11

)
(u1,x)

2

+

(
A55 −

8
h2 B55 +

16
h4 D55

)
u2

1 +

(
32
9h4 H11 −

8
3h2 F11

)
u1,xw0,xx

+ 2
(

A55 −
8
h2 B55 +

16
h4 D55

)
u1w0,x +

(
4

3h2 G11 − E11

)
u1,xw1,xx

+

(
2B13 −

8
3h2 E13

)
u1,xw1 +

(
8

9h2 H11 −
2
3

F11

)
u1,xw2,xx

+

(
4D13 −

16
3h2 F13

)
u1,xw2 +

16
9h4 H11(w0,xx)

2 +

(
A55 −

8
h2 B55 +

16
h4 D55

)
(w0,x)

2

+
4

3h2 G11w0,xxw1,xx −
8

3h2 E13w0,xxw1 +
8

9h2 H11w0,xxw2,xx −
16
3h2 F13w0,xxw2

+
1
4

F11(w1,xx)
2 − D13w1,xxw1 + A33w2

1 +
1
3

G11w1,xxw2,xx − 2E13w1,xxw2

− 2
3

E13w2,xxw1 +4B33w1w2 +
1
9

H11(w2,xx)
2 − 4

3
F13w2,xxw2 + 4D33w2

2

]
dx

−
L∫

0

q
(

w0 −
h
2

w1 +
h2

4
w2

)
bdx,

(12)
where the stiffness coefficients of the beam are determined as follows

(A11, B11, D11, E11, F11, G11, H11) =
n

∑
k=1

zk+1∫
zk

Q11

(
1, z, z2, z3, z4, z5, z6

)
bdz, (13a)

(A13, B13, D13, E13, F13) =
n

∑
k=1

zk+1∫
zk

Q13

(
1, z, z2, z3, z4

)
bdz, (13b)

(A33, B33, D33) =
n

∑
k=1

zk+1∫
zk

Q33
(
1, z, z2)bdz, (13c)
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(A55, B55, D55) =
n

∑
k=1

zk+1∫
zk

Q55

(
1, z2, z4

)
bdz. (13d)

Based on the Ritz method, the displacements in Eq. (1) are approximated in the fol-
lowing forms

{u0(x), u1(x)} =
R

∑
r=1

Nu
r (x) {u0r, u1r}, (14a)

{w0(x), w1(x), w2(x)} =
R

∑
r=1

Nw
r (x) {w0r, w1r, w2r}, (14b)

where u0r, u1r, w0r, w1r, w2r are unknown values to be determined; Nu
r (x) and Nw

r (x) are
the shape functions which are proposed for simply-supported (S-S), clamped-clamped
(C-C) and clamped-free (C-F) boundary conditions (BC) as follows

S - S : Nu
r (x) = cos

rπx
L

, Nw
r (x) = sin

rπx
L

m,

C - F : Nu
r (x) = sin

(2r− 1)πx
2L

, Nw
r (x) = 1− cos

(2r− 1)πx
2L

m,

C - C : Nu
r (x) = sin

2rπx
L

, Nw
r (x) = 1− cos

2rπx
L

.

(15)

Table 1. Kinematic boundary conditions of beams

BCs Position Value

S-S x = 0, x = L w0 = 0, w1 = 0, w2 = 0
C-F x = 0 u0 = 0, u1 = 0, w0 = 0, w1 = 0, w2 = 0, w0,x = 0, w1,x = 0, w2,x = 0

x = L -
C-C x = 0, x = L u0 = 0, u1 = 0, w0 = 0, w1 = 0, w2 = 0, w0,x = 0, w1,x = 0, w2,x = 0

It is noted that the approximate functions in Eq. (15) satisfy the BCs given in Tab. 1.
The governing equations can be obtained by substituting Eq. (14) into (12), and then using
Lagrange’s equations

∂Π
∂qr

= 0, (16)

with qr representing the values of (u0r, u1r, w0r, w1r, w2r), that leads to
K11 K12 K13 K14 K15

TK12 K22 K23 K24 K25

TK13 TK23 K33 K34 K35

TK14 TK24 TK34 K44 K45

TK15 TK25 TK35 TK45 K55




u0
u1
w0
w1
w2

 =


0
0
F0
F1
F2

 , (17)
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where the components of stiffness matrix K and load vector F are given by

K11
rs = A11

L∫
0

Nu
r,x Nu

s,xdx, K12
rs =

(
B11 −

4
3h2 E11

) L∫
0

Nu
r,x Nu

s,xdx, K13
rs = − 4

3h2 E11

L∫
0

Nu
r,x Nw

s,xxdx,

K14
rs = −1

2
D11

L∫
0

Nu
r,x Nw

s,xxdx+A13

L∫
0

Nu
r,x Nw

s dx, K15
rs =−

1
3

E11

L∫
0

Nu
r,x Nw

s,xxdx+2B13

L∫
0

Nu
r,x Nw

s dx,

K22
rs =

(
D11 −

8
3h2 F11 +

16
9h4 H11

) L∫
0

Nu
r,x Nu

s,xdx +

(
A55 −

8
h2 B55 +

16
h4 D55

) L∫
0

Nu
r Nu

s dx,

K23
rs =

(
− 4

3h2 F11 +
16
9h4 H11

) L∫
0

Nu
r,x Nw

s,xxdx +

(
A55 −

8
h2 B55 +

16
h4 D55

) L∫
0

Nu
r Nw

s,xdx,

K24
rs =

(
−1

2
E11 +

2
3h2 G11

) L∫
0

Nu
r,x Nw

s,xxdx +

(
B13 −

4
3h2 E13

) L∫
0

Nu
r,x Nw

s dx,

K25
rs =

(
−1

3
F11 +

4
9h2 H11

) L∫
0

Nu
r,x Nw

s,xxdx +

(
2D13 −

8
3h2 F13

) L∫
0

Nu
r,x Nw

s dx,

K33
rs =

16
9h4 H11

L∫
0

Nw
r,xx Nw

s,xxdx +

(
A55 −

8
h2 B55 +

16
h4 D55

) L∫
0

Nw
r,x Nw

s,xdx,

K34
rs =

2
3h2 H11

L∫
0

Nw
r,xx Nw

s,xxdx− 4
3h2 E13

L∫
0

Nw
r,xx Nw

s dx,

K35
rs =

4
9h2 H11

L∫
0

Nw
r,xx Nw

s,xxdx− 8
3h2 F13

L∫
0

Nw
r,xx Nw

s dx,

K44
rs =

1
4

F11

L∫
0

Nw
r,xx Nw

s,xxdx− D13

L∫
0

Nw
r,xx Nw

s dx + A33

L∫
0

Nw
r Nw

s dx,

K45
rs =

1
6

G11

L∫
0

Nw
r,xx Nw

s,xxdx− E13

L∫
0

Nw
r,xx Nw

s dx− 1
3

E13

L∫
0

Nw
r Nw

s,xxdx + 2B33

L∫
0

Nw
r Nw

s dx,

K55
rs =

1
9

H11

L∫
0

Nw
r,xx Nw

s,xxdx− 4
3

F13

L∫
0

Nw
r,xx Nw

s dx + 4D33

L∫
0

Nw
r Nw

s dx,

F0r =

L∫
0

qNw
r dx, F1r = −

h
2

L∫
0

qNw
r dx, F2r =

h2

4

L∫
0

qNw
r dx.

(18)
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Finally, the bending responses of composite beams can be determined by solving
Eq. (17).

3. NUMERICAL RESULTS

In this section, convergence and verification studies are carried out to demonstrate
the accuracy of the present study. For static analysis, the beam is subjected to a uniformly
distributed load with density q, applied on the surface z = −h/2 in the z-direction.
Laminates are supposed to have equal thicknesses and made of the same orthotropic
materials whose properties are followed: E1/E2 = open, G12 = G13 = 0.5E2, G23 = 0.2E2,
ν12 = ν13 = ν23 = 0.25. For convenience, the following nondimensional terms are used:

w =
100w0E2bh3

qL4 , σx =
bh2

qL2 σx

(
L
2

,
h
2

)
, σz =

b
q

σz

(
L
2

,
h
2

)
, σxz =

bh
qL

σxz (0, 0).

In order to verify the convergence of the present series solutions, (00/900/00) and
(00/900) LC beams with L/h = 10, E1/E2 = 25 and different BCs subjected to uniformly
distributed load are considered. The nondimensional mid-span displacements with re-
spect to the series number R are plotted in Fig. 2. The results show that the solutions from
S-S and C-F BCs convergence faster than those from C-C one, and R = 14 is the conver-
gence point for the displacements for all BCs. Therefore, this number of series terms will
be used for the static analysis of LC beams. Trung-Kien Nguyen, Ngoc-Duong Nguyen 8 

  
a. 00/900/00 b. 00/900 

Fig. 2. Variation of the nondimensional mid-span displacements of (00/900/00) and (00/900) LC beams with 
respect to the series number  and various BCs ( ) 

  

Table 2. Normalized mid-span displacements of (00/900/00) LC beams under a uniformly distributed load 
( ). 

BCs Theory Reference L/h 
3 5 10 20 50 

S-S HOBT Present 5.336 2.414 1.098 0.761 0.666 
  Nguyen et al. [39] - 2.412 1.096 0.759 0.665 
  Murthy et al.  [31] - 2.398 1.090 - 0.661 
  Khdeir and Reddy [5] - 2.412 1.096 - 0.666 
 Quasi-3D Present 5.283 2.405 1.097 0.761 0.666 
  Zenkour [3] - 2.405 1.097 - 0.666 
  Mantari and Canales [6] - - 1.097 - - 

C-F HOBT Present 13.571 6.820 3.452 2.525 2.255 
  Nguyen et al. [39] - 6.813 3.447 2.520 2.250 
  Murthy et al. [31] - 6.836 3.466 - 2.262 
  Khdeir and Reddy [5] - 6.824 3.455 - 2.251 
 Quasi-3D Present 13.605 6.821 3.450 2.524 2.254 
  Mantari and Canales [6] - - 3.459 - - 

C-C HOBT Present 3.311 1.537 0.531 0.236 0.147 
  Nguyen et al. [39] - 1.536 0.531 0.236 0.147 
  Khdeir and Reddy [5] - 1.537 0.532 - 0.147 
 Quasi-3D Present 3.296 1.542 0.531 0.236 0.147 
  Mantari and Canales [6] - - 0.532 - - 
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a. 00/900/00 b. 00/900 

Fig. 2. Variation of the nondimensional mid-span displacements of (00/900/00) and (00/900) LC beams with 
respect to the series number  and various BCs ( ) 

  

Table 2. Normalized mid-span displacements of (00/900/00) LC beams under a uniformly distributed load 
( ). 

BCs Theory Reference L/h 
3 5 10 20 50 

S-S HOBT Present 5.336 2.414 1.098 0.761 0.666 
  Nguyen et al. [39] - 2.412 1.096 0.759 0.665 
  Murthy et al.  [31] - 2.398 1.090 - 0.661 
  Khdeir and Reddy [5] - 2.412 1.096 - 0.666 
 Quasi-3D Present 5.283 2.405 1.097 0.761 0.666 
  Zenkour [3] - 2.405 1.097 - 0.666 
  Mantari and Canales [6] - - 1.097 - - 

C-F HOBT Present 13.571 6.820 3.452 2.525 2.255 
  Nguyen et al. [39] - 6.813 3.447 2.520 2.250 
  Murthy et al. [31] - 6.836 3.466 - 2.262 
  Khdeir and Reddy [5] - 6.824 3.455 - 2.251 
 Quasi-3D Present 13.605 6.821 3.450 2.524 2.254 
  Mantari and Canales [6] - - 3.459 - - 

C-C HOBT Present 3.311 1.537 0.531 0.236 0.147 
  Nguyen et al. [39] - 1.536 0.531 0.236 0.147 
  Khdeir and Reddy [5] - 1.537 0.532 - 0.147 
 Quasi-3D Present 3.296 1.542 0.531 0.236 0.147 
  Mantari and Canales [6] - - 0.532 - - 
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Fig. 2. Variation of the nondimensional mid-span displacements of (00/900/00) and (00/900) LC
beams with respect to the series number R and various BCs (L/h = 10)

The next example is to verify the accuracy of the present solutions in predicting the
transverse displacements and stresses. Tabs. 2 and 3 present the nondimensional mid-
span transverse displacements of (00/900/00) and (00/900) LC beams with E1/E2 = 25
subjected to the uniformly distributed load. The solutions obtained from HOBT and
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Table 2. Normalized mid-span displacements of (00/900/00) LC beams
under a uniformly distributed load (E1/E2 = 25)

BCs Theory Reference
L/h

3 5 10 20 50

S-S HOBT Present 5.336 2.414 1.098 0.761 0.666
Nguyen et al. [41] 2.412 1.096 0.759 0.665
Murthy et al. [33] 2.398 1.090 - 0.661
Khdeir and Reddy [5] 2.412 1.096 - 0.666

Quasi-3D Present 5.283 2.405 1.097 0.761 0.666
Zenkour [3] 2.405 1.097 - 0.666
Mantari and Canales [6] 1.097 - -

C-F HOBT Present 13.571 6.820 3.452 2.525 2.255
Nguyen et al. [41] 6.813 3.447 2.520 2.250
Murthy et al. [33] 6.836 3.466 - 2.262
Khdeir and Reddy [5] 6.824 3.455 - 2.251

Quasi-3D Present 13.605 6.821 3.450 2.524 2.254
Mantari and Canales [6] 3.459 - -

C-C HOBT Present 3.311 1.537 0.531 0.236 0.147
Nguyen et al. [41] 1.536 0.531 0.236 0.147
Khdeir and Reddy [5] 1.537 0.532 - 0.147

Quasi-3D Present 3.296 1.542 0.531 0.236 0.147
Mantari and Canales [6] 0.532 - -

Table 3. Normalized mid-span displacements of (00/900) composite beams
under a uniformly distributed load (E1/E2 = 25)

BC Theory Reference
L/h

3 5 10 20 50

S-S HOBT Present 7.296 4.785 3.697 3.422 3.345
Nguyen et al. [41] 4.777 3.688 3.413 3.336
Murthy et al. [33] 4.750 3.668 - 3.318
Khdeir and Reddy [5] 4.777 3.688 - 3.336

Quasi-3D Present 7.158 4.764 3.694 3.421 3.344
Zenkour [3] 4.828 3.763 - 3.415
Mantari and Canales [6] 3.731
Mantari and Canales [7] 3.732 - -

C-F HOBT Present 21.583 15.289 12.359 11.585 11.363
Nguyen et al. [41] 15.260 12.330 11.556 11.335
Murthy et al. [33] 15.334 12.398 - 11.392
Khdeir and Reddy [5] 15.279 12.343 - 11.337

Quasi-3D Present 21.481 15.229 12.310 11.537 11.315
Mantari and Canales [6] 12.475 - -

C-C HOBT Present 3.764 1.922 1.006 0.754 0.680
Nguyen et al. [41] 1.920 1.004 0.752 0.679
Khdeir and Reddy [5] 1.922 1.005 - 0.679

Quasi-3D Present 3.665 1.914 1.003 0.752 0.678
Mantari and Canales [6] 1.010 - -
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Quasi-3D are calculated at x = L/2 and z = 0 for different BCs and span-to-height ratios,
and compared with those derived from the HOBTs (Nguyen et al. [41], Murthy et al. [33],
Khdeir and Reddy [5]) and Quasi-3D (Mantari and Canales [6, 7], Zenkour [3]). It can
be seen that the present solutions are in excellent agreement with earlier works for both
HOBT and Quasi-3D. Tabs. 2 and 3 also shows that the effects of normal transverse strain
on the displacements are effective for thick LC beams (L/h = 3). Moreover, Tab. 4 re-
ports the nondimensional axial, transverse shear and normal stresses of (00/900/00) and
(00/900) LC beams with different ratios of span-to-thickness L/h = 5, 10, 20. The results
are compared with those derived from Vo and Thai [36] using HOBT and Zenkour [3]
using both HOBT and Quasi-3D theory. Good agreements between the models are again
found and there are no significant deviations of the present results with and without the
effect of transverse normal strain. Figs. 3 and 4 display the distribution of nondimen-
sional shear and axial stresses through the thickness of (00/450) and (00/450/00) beams.
It can be seen that the shear stress meets the traction-free boundary conditions on the top
and bottom surfaces of the beam as expected.

Table 4. Normalized stresses of (00/900/00) and (00/900) composite beams with S-S boundary
condition (E1/E2 = 25)

Theory Reference
00/900/00 00/900

L/h = 5 10 20 L/h = 5 10 20

Normal axial stress
HOBT Present 1.0689 0.8514 0.7965 0.2362 0.2343 0.2338

Nguyen et al. [41] 1.0696 0.8516 0.7965 0.2362 0.2343 0.2338
Zenkour [3] 1.0669 0.8500 - 0.2362 0.2343 -
Vo and Thai [36] 1.0670 0.8503 0.7961 0.2361 0.2342 0.2337

Quasi-3D Present 1.0743 0.8513 0.7963 0.2383 0.2347 0.2339
Zenkour [3] 1.0732 0.8506 0.2276 0.2246
Mantari and Canales [6] 0.8501 - - 0.2227 -

Shear stress
HOBT Present 0.4050 0.4290 0.4388 0.9174 0.9483 0.9594

Nguyen et al. [41] 0.4050 0.4289 0.4388 0.9174 0.9483 0.9594
Zenkour [3] 0.4057 0.4311 0.9211 0.9572
Vo and Thai [36] 0.4057 0.4311 0.4438 0.9187 0.9484 0.9425

Quasi-3D Present 0.4012 0.4278 0.4387 0.9046 0.9443 0.9587
Zenkour [3] 0.4013 0.4289 - 0.9038 0.9469 -
Mantari and Canales [6] 0.9503 -

Transverse normal stress
Quasi-3D Present 0.1846 0.1859 0.1846 0.3012 0.3087 0.3091

Zenkour [3] 0.1833 0.1803 - 0.2988 0.2982 -

The effects of angle-ply θ and transverse normal strain on the nondimensional trans-
verse displacement of

(
00/θ0) and

(
00/θ0/00) LC beams with L/h = 3 are also plotted

in Figs. 5–7 for S-S, C-F and C-C BCs, respectively in which the transverse displacements
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Fig. 3. Distribution of nondimensional stresses through the thickness of ( ) S-S BC ( ).  

 
Fig. 4. Distribution of nondimensional stresses through the thickness of ( ) S-S BC ( ).  
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of Quasi-3D model are calculated at z = 0 and z = −h/2. It is observed that the dis-
placements increase with the increase of angle-ply θ and there are significant differences
between the present results derived from HOBT and from Quasi-3D, especially for asym-
metric LC beams and C-C BC.
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Fig. 5. Nondimensional mid-span transverse displacement with respect to the fiber angle of LC beams with S-S 

BC ( ). 

 
Fig. 6. Nondimensional mid-span transverse displacement with respect to the fiber angle of LC beams with C-F 

BC ( ). 

In order to verify the convergence of the present series solutions,  (00/900/00) and (00/900) LC 
beams with ,  and different BCs subjected to uniformly distributed load are 
considered. The nondimensional mid-span displacements with respect to the series number  are 
plotted in Fig. 2. The results shows that the solutions from S-S and C-F BCs convergence faster than 
those from C-C one, and  is the convergence point for the displacements for all BCs. Therefore, 
this number of series terms will be used for the static analysis of LC beams. 
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The next example is to verify the accuracy of the present solutions in predicting the transverse 
displacements and stresses. Tables 2 and 3 present the nondimensional mid-span transverse 
displacements of (00/900/00) and (00/900) LC beams with  subjected to the uniformly 
distributed load. The solutions obtained from HOBT and Quasi-3D are calculated at  and 

 for different BCs and span-to-height ratios, and compared with those derived from the HOBTs 
(Nguyen et al. [39], Murthy et al. [31], Khdeir and Reddy [5]) and Quasi-3D (Mantari and Canales [6, 
7], Zenkour [3]). It can be seen that the present solutions are in excellent agreement with earlier works 
for both HOBT and Quasi-3D. Tables 2 and 3 also shows that the effects of normal transverse strain 
on the displacements are effective for thick LC beams ( ). Moreover, Table 4 reports the 
nondimensional axial, transverse shear and normal stresses of (00/900/00) and (00/900) LC beams with 
different ratios of span-to-thickness . The results are compared with those derived from 
Vo and Thai [34] using HOBT and Zenkour [3] using both HOBT and Quasi-3D theory. Good 
agreements between the models are again found and there are no significant deviations of the present 
results with and without the effect of transverse normal strain. Figs. 3 and 4 display the distribution of 
nondimensional shear and axial stresses through the thickness of (00/450) and (00/450/00) beams. It can 
be seen that the shear stress meets the traction-free boundary conditions on the top and bottom 
surfaces of the beam as expected.  

The effects of angle-ply  and transverse normal strain on the nondimensional transverse 
displacement of  and  LC beams with  are also plotted in Figs. 5-7 for 
S-S, C-F and C-C BCs, respectively in which the transverse displacements of Quasi-3D model are 
calculated at  and . It is observed that the displacements increase with the increase of 
angle-ply  and there are significant differences between the present results derived from HOBT and 
from Quasi-3D, especially for asymmetric LC beams and C-C BC. 
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4. CONCLUSIONS

Effects of transverse normal strains on the bending behaviours of LC beams are pre-
sented in this paper. The displacement field is based on a Quasi-3D theory accounting
for a higher-order variation of both axial and transverse displacements. The Ritz method
with trigonometric shape functions is used to solve characteristic equations. Numerical
results for different BCs are obtained to compare with previous studies and investigate ef-
fects of material anisotropy and angle-ply on the displacements and stresses of LC beams.
The obtained numerical results showed that the transverse normal strain effects are sig-
nificant for un-symmetric and thick beams. The present model is found to be appropriate
for static analysis of LC beams.
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