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Abstract. The present paper deals with free vibration of multiple cracked continuous
beams with intermediate rigid supports. A simplified method is proposed to obtain gen-
eral solution of free vibration in cracked beam with intermediate supports that is then used
for natural frequency analysis of the beam in dependence upon cracks and support loca-
tions. Numerical results show that the support location or ratio of span lengths in com-
bination with cracks makes a significant effect on eigenfrequency spectrum of beam. The
discovered effects of support locations on eigenfrequency spectrum of cracked continuous
beam are useful for detecting not only cracks but also positions of vanishing deflection on
the beam.
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1. INTRODUCTION

Multispan or continuous beams are an important model of structures in the bridge
and mechanical engineering. Dynamic analysis of such the structures is essential but
difficult problem that was studied for long time ago. One of the key questions in dynam-
ics of the continuous beam is determining its natural frequencies and mode shapes that
provide an appropriate tool to solve the forced vibration problem of the structures. The
free vibration problem of continuous beam was first investigated as a beam with elastic
supports [1,2] that could be an approximate model of beam with rigid supports as the
stiffness of the elastic supports is very large. The problem of free vibration of actual beam
with intermediate rigid supports was solved by using the Rayleigh—Ritz method [3] with
trial functions being a solution of the beam under static load. Saeedi and Bhat [4] pro-
posed to study free vibration of beam with rigid supports by solving the forced vibration
problem of beam without supports under loads concentrated at the supports. Zheng et
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al. [5] determined mode shapes of multispan beam by the mode shape of beam without
supports combined with cubic spline functions which are chosen from the zero deflection
condition at the supports and boundary conditions. These mode shapes have been then
used to study response of the multispan beam to moving load. Ichikawa et al. [6] have
constructed exact expression for mode shapes and employed for dynamic analysis of
simply supported multispan beam subjected to moving mass. While the aforementioned
studies deal with Euler-Bernoulli beam model, some problems of free and forced vibra-
tion of multispan Timoshenko beam carrying a number of spring-mass systems were in-
vestigated by Yesilce el al. [7,8]. The dynamic stiffness method was developed by Henchi
et al. [9] for free vibration of multispan beam and the so-called spectral element method
has been used by Azizi et al. [10] for analysis of response of multispan beam subjected to
moving load. Though dynamics of intact multispan beams has been intensively studied
as shown above for instance, there is very few published papers on vibration of multispan
beams with cracks. This is probably because of that presence of cracks in a beam makes
the problem of vibration more complicate, especially in the case of beam with interme-
diate supports. Nevertheless, first attempts have been recently accomplished in [11-14]
by using the conventional method to compute natural frequencies and mode shapes of
cracked multispan beams. Namely, Liu et al. [11] and Lien and Hao [12] have demon-
strated that change in mode shapes of multispan beam due to cracks could be numerically
examined and Sharma et al. [13,14] have shown that natural frequencies are promising to
use for crack detection in the multispan beams. Recently, Tan et al. [15] studied both the
forward and inverse problems for multispan continuous beam with arbitrary number of
cracks and spring-mass systems. However, a shortcoming of the studies is the need to
assemble either transfer or stiffness matrix over not only beam steps but also the crack lo-
cations so that equations established for computing natural frequencies and mode shapes
are very complicated. This paper aimed to simplify the transfer matrix method applied
for multispan beam with arbitrary number of cracks by using shape function found as
general solution of free vibration in a single span beam containing an arbitrary number
of cracks. The latter solution has been first obtained by the first author in [16] based on the
closed-form solution for vibration modes of beam with multiple open cracks proposed
in [17]. Moreover, the simplified method and obtained frequency equation allow more
comprehensive investigation of natural frequencies in dependence on multiple cracks
and locations of intermediate supports in the multispan beams with different boundary
conditions. The revealed herein effects of support locations on eigenfrequency spectrum
of cracked continuous beam are useful guidelines for detecting not only cracks but also
positions of vanishing deflection on the beam.

2. THEORETICAL METHODOLOGY
Let’s consider a continuous Euler-Bernoulli beam of length L, cross section area A =
b x h and moment of inertia I = bh®/12 that is rigidly supported at positions
O<n<np<...<x, <L,

where the beam’s transverse displacement vanishes
¢(xj):0,j:1,2,...,n. (1)
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Obviously, the intermediate rigid supports divide the beam into 1 4- 1 spans (x;_1, x;),
j=1,...,n+1and free vibration of the beam in every span is described by the equation

4
a f}ff) + Ap(x) =0, A* = w?pA/EL 2)
Boundary conditions for the beam are assumed in general form
(P(Po)(()) — ¢(qo)(0) — q;(m)(L) — 4,(6/1)@) =0, (3)

with the integers po, qo, p1,41 denoting derivative’s orders of a function and could be
equal to one of the values 0, 1, 2,3 in dependence on specific boundary conditions.

Suppose, furthermore, that the span S; = (x;_1, x;) has been cracked at positions eji
with corresponding depths aj, k = 1,...,n;. So that the compatibility conditions at the
cracks are

¢(ej+0) = @lex —0),  ¢"(ejx+0) = (e —0), ¢" (e +0) = ¢" (e —0),
[¢' (e +0) — ¢'(ejk —0)] = vixdp" (ejx), vk = EIO(aj), k=1,...,n;,
where 7 is so-called crack magnitude and 6(a) is a function of crack depth defined
accordingly to the fracture mechanics theory of crack [18].

As well known in the vibration theory that general solution of Eq. (2) in span (x;_1, x;)
denoted by ¢;(x, A) is expressed in the form

qu(x, )L) = Aijl (Ax) + B]‘sz()tx) —+ C]-ng()\x) + Dij4()\x) , (5)

with A}, B;,Cj, D; being constants and functions L]-,(Ax), r = 1,2,3,4 are particular solu-
tions of the equation inside the beam segment that would be constructed below. Apply-
ing the conditions (1) for solution (5) in the beam span (xj_l, xj), j =2,...,n one obtains
A]'L1]'()\X];1) + B]'LZ]'()\X];1) + C]-ng(/\xj,l) + D]-L4]-()\x]-,1) =0,
Alej()\xj) + BjLZj(/\xj) + C]'Lg,]‘()\x]‘) + D]‘L4]‘()\x]‘) = 0,

that allow eliminating two from the constants A jr B s C i Dj as

(4)

A] = 11 (])C] —+ a1 (])D] , B]' = oclz(j)Cj + azz(j)Dj , (6)
where
w11 (f) = Ly ()‘x] 1)L3](/\x]) ZJ(Ax])L:’?](/\x] 1)]/d
0612(]) [L ()L'X] 1)L4](/\X]) ](/\XJ)L4](/\X] 1)]/d,
a21(j) = [L1j(Axj)Laj(Axj—1) — Laj(Ax;— 1)L3]()\x])]/d
axn(j) = [Llj(ij)L4j()\x] 1) — Laj(Axj)Lyj(Axj—1)]/d

d] = Llj(ij_1)L2j(ij) — Llj(/\x])LZJ (/\x] 1)
Substituting (6) into (5) leads the expression (5) of solution ¢; (x, A) to be simplified as

¢j(x,A) = CiLyj(Ax) + DiLyj(Ax), j=2,...,n, )
where R
Lir(x) = Lia(x) + a11(j) Lj (x) + a21(j) L2 (x) ®)
Loj(x) = Lia(x) + a11(j)Lj1 (x) + a21 (f) Lo ().
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Particularly, for the first and last spans that are enclosed respectively by (0, x1) and
(xy, L), the conditions

9 (0) = 1 (x1) = s (va) = $1}(L) =0,
must be satisfied or
AL (0) + By L (0) + ¢, LY (0) + Dy L% (0) = 0,
A1L11 (/\Xl) + B1L12(/\x1) + C1L13<)LX1) + D1L14<)LX1) 0
AL (ALY + Byt LI (AL 4 Cuia L) S (AL) + Dyt L L (AL) = 0,
Ani1Lni11(A%0) 4 Buy1Luy12(Axn) + Cuy1Lns13(A%n) + Dyi1Lai14(Ax,) = 0.

The latter equations enable to extend the expression (7) for the first (j = 1) and last
(n+1) spans with

a1(1) = (L3 (Axo) Lar (Ax1) — Lar (Ax1) L)Y (Axo)] /da,
a12(1) = [LY (Ax0) Lyt (Ax1) — Loa (Ax1) LY (Axo)) /dy,
w31 (1) = [Lur(Ax1) LS (Axg) — Loy (A LI (Axo)] /dy ,
az(1) = [Lur (Ax1) Ly} (Axo) — LI (Axo) Lar (Ax1)] /i,
s (1 41) = L, n+1(Axn)L§7,§)H(AL) — nglll()\L)Lg,nH(/\xn)
11 — " d;/H_l o s
N (n + 1) . LZ,I’H—l ()\Xn)L47rll+1 ()LL) L 241 ()\L)L4 n+1 (/\xn)
12 = /
dn—H
w1 41) = L) (AL)La i1 (Ax) — L (AL) Ly it (Axy)
21 = /
dn—H
ap(n+1) = Lg n)H(MJ)LLL w1 (M) — Ll'”“(/\x”)Lz(LquziLl(/\L)
a dn—H !

dl = LY{O)(AxO)le(Axl) — L(%)()\XO)LH (Axl) ,
dyi1 = Lﬁﬂ)lz(/\L)LnH,l(/\xn) L) (AL)Lyt12(Axn).

Thus, expressions (7)—(8) are now valid forall j =1,2,...,n+ 1.
Now, satisfying the continuity conditions at the intermediate supports

¢i(xj,A) = P (xj,A), @ (x,A) = ¢ (x,A), j=1,...,m, ©)
by solution (7) leads to

{Cj+1, Dj1}" = [T(j+1,))] - {C;, D;}T, (10)
where
T > -1 T T
T(i+1,7)] = ]+11<)\x]) ]+12<)\x]) jl()‘xj> Aj2<)‘xj) . 11
TUSLII= 120 sy Do) || Thsy) Thiay) 1

The recurrent relationship (10) allows us to obtain

{C;,,Dj}" = [H;]{Cy,D:}T, j=2,....n+1, (12)
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Hi1(j)  Haa(j)

H|=|T@,j—1)]-...-|T(21)]| = . L, 13
B = (TG, = 1)) [T@ 1) = | g e 13
that enables to rewrite the solution (7) in the form

¢](x,A) = C1G1](Ax) + DlGQj()LX), j=2,...,n, (14)

Gij(x) = Hu(j)Lyj(x) + Ha1(j)Laj(x),  Goj(x) = Hiz(j)L1j(x) + Haa(j) Loj(x).  (15)
In particular,

¢1(x,A) = C1L11(Ax) + D1L1p(Ax),  $ur1(x,A) = C1Gur11(Ax) + D1Gpry12(Ax), (16)

where R R
Gu1,1(x) = Hu1(n+1)Lyga,1(x) + Hor (n + 1) Ly 2(x),
Gni12(x) = Hio(n 4+ 1)Ly411(x) + Hop(n + 1) Lyg10(x).

Applying the unused boundary conditions (,bgp O)( 0) = 4>n +1( ) = 0 for functions (16)
yields

CiLEY(0) + DL (0) =0, GG (Ax) + DiGY ,(Ax) = 0. (17)

For existence of non-trivial solution of equations (17) with respect to constants Cy, D;
it must be satisfied the condition

D(A) = G ,(AL) L% (0) — G (ALY (0) = o, (18)

that is usually acknowledged as frequency equation for multispan beam. Roots of the
equation Ay, A, A3, ... called eigenvalue or frequency parameter allow the natural fre-
quencies of multispan beam to be calculated as

= A2\/EI/pA, k=1,2,3,... (19)
For every natural frequency (19), corresponding mode shape is
(P]‘k(x, /\k) = C_] [All/l (0)G2]()\kx) — /1:12/1 (O)Gl]()\kx)] , ] =1,...,n+1, (20)

where C; stands for arbitrary constant that is determined by a chosen for the j-th mode
normalization condition.

Obviously, to complete solving the free vibration problem of multispan beams with
cracks, we need the functions L]-r(/\x),r = 1,2,3,4 that are all particular solutions of
the equation (2) satisfying conditions (4) inside the beam segment (x;_1,x;). As shown
in [15], such solution could be expressed in the form

1j
Li(x) = Ly(Ax) + Z HinK(x —ex), r=1,2,34, (21)
k=1
where

,ujrk = ')’]k Ae]k + 2 ,ur]és e]k e]f :| r=1,2,3,4, (22)

Li(x) =

5(coshx+cosx) Ly(x) = 0.5(sinh x — sinx),
L3(x) 5

0.
23
0.5(coshx —cosx), Lg(x)=0.5(sinhx + sinx), @3)
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< <
K(x) :{ (S)(x) for xS0 K'® :{ g”(x) for xS0+ S =Ln/A
(24)
Egs. (22) show that for given crack parameters (ejr, Yjr, k = 1,...,1;) the so-called
crack indexes By = { yjrk,k =1,..., n]-}, r =1,2,3,4 can be uniquely found from given

crack position and depth as
‘u]‘r = [I — r('Y])B]()\, e])]_lr('yj)b]r()\; ej)/ r = 1/ 2/ 3/ 4:/ (25)
r(')/j) = di(lg{’)/ﬂ, . ,’)/jnj}, Bj(/\, e) = [bgk,' f, k= 1, . ,7’1]‘], bgk = K”(Ejg — ejk)/

bjr = {L:,/()\e]'l),...,L:,/()\Ejn],)}T, e = (6]'1,...,€jn],)T, Vi = (’)’jl/---/r)’jnj)T- (26)

Thus, the functions L]-r()\x),r = 1,2,3,4;j = 1,...,n+ 1 have been determined
and, therefore, the problem of free vibration in multispan beam with arbitrary number
of cracks is completely solved. The obtained solution will be illustrated by numerical
examples accomplished in subsequent section.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Effect of support location on natural frequencies of uncracked continuous beams

In this section, effect of support position on natural frequencies of uncracked contin-
uous beam with various boundary conditions is investigated. First, six lowest frequency
parameter of uncracked two-span beam with total length L = 2 m and different bound-
ary conditions are examined for various support location. The frequencies of simply
supported beam with two equal length spans are computed and compared to those given
in [6]. The compared results shown in Tab. 1 demonstrate excellent agreement of the fre-
quencies obtained in the present study with the previously published ones. Moreover,
it is observed that eigenfrequency spectrum of beam with different boundary conditions
(simple supports - SS, clamped ends - CC and clamped-free ends - CF) contains the same
frequencies (3.9266; 7.0686; 10.2102; ... ) that are bolded in Tab. 1. This is typical for two-
span beam with the middle support acknowledged as Equal Length Span beam (ELS-
beam). The spectrums of two-span beam with Symmetrical Boundary Condition (SBC)
and ELS may contain also natural frequencies of individual spans that is not appeared
for cantilever beam.

The frequency parameter of two-span beam computed versus location of interme-
diate support varying from 0.5 m to 1.5 m and normalized by those of the ELS-beam
are shown in Fig. 1. Obviously, symmetrical intermediate supports in SBC-beam pro-
duce the same spectrum of natural frequencies (see Fig. 1(a)). Natural frequencies of odd
(even) modes take their maximum (minimum) for the ELS-beam (two-span beam with
the middle support). Fundamental frequency of beam with cantilevered boundary con-
dition (CBC) increases with support moving from the left to right end of beam and higher
frequencies from the second one get also their maximum (even modes) or minimum (odd
modes) for the middle support (see Fig. 1(b)). Note, the maximum and minimum of the
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Table 1. Frequency parameter of intact two-span continuous beam
for different positions of support

Support location Frequency parameter, A = (w?pA/EI )1/4
(span length ratio) L, /Ly M A Az Ay As Ag
Simply supported two-span continuous beam
Xs=05(1/3) 2.4290 4.4199 6.2832 7.2565 8.7417 10.7049
Xs =0.75(3/5) 2.8048 4.5586 5.5315 7.7393 8.9482 10.4292
Xs = 1.0 (ELS) 3.1416  3.9266 6.2832 7.0686 9.4248 10.2102
Ichikawa et al. [6] T 3.926602 21 7.068582 371 10.21017
Xs =1.25(5/3) 2.8048 4.5586 5.5315 7.7393 8.9482 10.4292
Xs=15(3/1) 2.4290 4.4199 6.2832 7.2565 8.7417 10.7049
Clamped two-span continuous beam
Xs=05(1/3) 2.9745 4.9772 6.9593 8.4652 9.4338 11.2874
Xs =0.75(3/5) 3.4605 5.4632 6.2918 8.4209 9.9007 11.1101
Xs = 1.0 (ELS) 3.9266 4.7300 7.0686 7.8532 10.2102  10.9956
Xs =125(5/3) 3.4605 5.4632 6.2918 8.4209 9.9007 11.1101
Xs=15(3/1) 2.9745 4.9772 6.9593 8.4652 9.4338 11.2874
Cantilever two-span continuous beam

Xs=05(1/3) 1.1627 2.9534 4.9780 6.9593 8.4652 9.4338
X; =0.75(3/5) 1.3320 3.4393 5.4627 6.2925 8.4208 9.9007
Xs = 1.0 (ELS) 1.5708 3.9266 4.7124 7.0686 7.8540 10.2102
Xs =125(5/3) 1.9232 3.5119 5.4514 6.2738 8.4198 9.9019
Xs =15(3/1) 2.3198 3.3515 5.0297 6.9730 8.4360 9.4158
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Fig. 1. Effect of intermediate support location on natural frequencies
of (a) SS-beam and (b) CF-beam

natural frequencies may be attained not only in the middle support case but also for other
ratios of the span lengths (see Fig. 1).

The frequency parameters of three-span continuous beams with total length L = 3 m
are computed for various location of intermediate supports and the conventional cases of
boundary conditions as shown in Tab. 2. The common frequencies typical for two-span
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Table 2. Effect of supports location on natural frequencies for intact three-span continuous beams

Support location Frequency parameter, A = («w?pA/EI)/4
Xi Xo M Ao A3 Ay As A6
Simply supported three-span continuous beam (L = 3)

1.25 1.75 2.8220 2.9838 5.1738 5.4154 7.2104 7.8495
1.0 2.0 3.1416 3.5564 4.2975 6.2832 6.7076 7.4295
0.75 2.25 2.6177 4.1888 4.7124 5.2355 6.8068 8.3776
0.5 25 2.1079 3.5564 5.0021 6.2832 6.9659 7.4295
0.5 2.0 2.6029 3.5651 4.7111 6.2832 6.8067 7.4297
0.75 2.0 2.9206 3.6847 4.6569 5.7073 6.7198 8.0243
1.25 2.0 2.8194 3.4926 49118 5.6484 6.7504 7.8145
1.5 2.0 2.4376 3.5805 4.4556 6.2832 6.6398 7.8648
Clamped three-span continuous beam (L = 3)

1.25 1.75 3.4223 3.6011 5.7411 6.0193 7.5635 8.4584
1.0 2.0 3.5564 4.2975 4.7300 6.7076 7.4295 7.8532
0.75 2.25 2.7060 4.5243 5.5964 5.9511 6.9854 8.7272
0.5 25 2.1546 3.6195 5.1026 6.5608 7.8537 8.5558
0.5 2.0 2.7073 4.1808 4.8968 6.6237 7.5051 8.3885
0.75 2.0 3.1041 4.3305 5.3487 6.1078 7.3669 8.2585
1.25 2.0 3.4075 4.1887 5.2465 6.1296 7.4393 8.3779
1.5 2.0 2.9487 4.3250 4.9649 6.7682 7.2774 8.2037
Cantilever three-span continuous beam (L = 3)

1.25 1.75 1.7090 3.5148 5.8280 6.6665 8.0064 8.8420
1.0 2.0 1.5414 3.5685 4.2845 4.7185 6.7071 7.4301
0.75 2.25 2.3196 3.0799 4.6202 5.7452 6.5278 7.2035
0.5 25 1.9946 3.3385 4.1643 5.2258 6.6363 7.9767
0.5 2.0 1.6929 2.8227 4.5709 5.3023 6.7174 8.0679
0.75 2.0 1.5483 3.1686 4.8048 5.4529 6.1584 7.8796
1.25 2.0 1.6451 3.4169 4.5080 5.4031 6.1671 8.2517
1.5 2.0 1.9116 2.9577 4.9391 6.4516 7.0733 8.2689

ELS-beams of all the boundary conditions are now observed only for three-span ELS-
beams with SBC (3.5564, 6.7076, 9.8488, ...). Also, there are found natural frequencies
of individual spans in the eigenfrequency spectrum only for three-span ELS-beams with
simply supported ends. The frequencies are not monotonically varying with increasing
length of the intermediate span (decreasing length of two boundary spans) but they may
attain their maximum or minimum dependently on the number of modes. This is true
even for the case of fixed one support while the other is moving either to the left or to
the right. Observing changes in frequency parameter of three-span continuous beams
induced by variation of supports location shows that the frequency changes are still of
waveform only for SS- and CC-beams.

3.2. Effect of support location on natural frequencies of cracked continuous beams

This section is devoted to study effect of support location and cracks (position and
depth) on natural frequencies of two and three-span beams. First, ratios of cracked to
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intact frequency parameter of the beams with single crack running over the beam length
are computed for different locations of supports and crack depths. The ratios of three
lowest frequency parameters have been computed as function of crack position for vari-
ous crack depth and support location presented respectively on the left and on the right
of Figs. 2—4 for two-span beams and Figs. 5-7 for three-span beams with different various
boundary conditions.
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Fig. 2. Effect of crack depth (left) and support location (right) on natural frequencies
of two-span SS-beam

The graphs shown in Figs. 2-7 allow one to make some remarks as follow: (1) There
are observed so-called frequency nodes (the points on the beam, crack occurred at which
makes no effect on frequency of a certain mode) that are coinciding with the support
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location for the odd modes of two-span ELS-beam with SBCs and event modes for ELS-
beams with Cantilever Boundary Conditions (CBC); (2) Positions of the nodes are cer-
tainly dependent on the support location, they intend to move from a referenced site (of
ELS-beams) to the most near support location; (3) Crack at support locations makes the
natural frequencies of every mode for three-span beams and event (odd) modes for two-
span SBC(CBC)-beams got largest reduction; (4) The frequency ratios undertake a jump
as crack occurs at the support location and height of the jump depends on how far the
support is deviated from the support locations of ELS-beams which have no jump at the

support location; (5) As whenever, increasing depth of crack leads all natural frequencies
to be more reduced by the crack.
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The effect of multiple cracks on natural frequencies of two-span continuous beam is
shown in Tab. 3. It is observed in Tab. 3 that single crack at the middle of both two spans
causes more reduction of first and second frequencies than double cracks located near the
supports but the double cracks make more effect on two subsequent frequencies than the
single crack at the span middle. This can be verified by the graphs given in Figs. 2—4 that
show the crack positions where natural frequencies get their maximum and minimum
reduction. Furthermore, it can be noticed from the Table that for two-span cantilever
beam cracks occurred near the clamped end make less effect on the first two frequencies
than cracks occurred near the free end. This is dissimilar to the single span cantilever
beam and typical for two-span cantilever beam.

Table 3. Frequency parameter of continuous two-span beam with cracks and middle support

Crack positions M Ao A3 Ay As A
Simply supported beam
No crack 3.1416 3.9266 6.2832 7.0686 9.4248 10.2102
15t span ond span E=2e11,h=00,b=0.0,a/h=03,L1 =L, =1

No crack 1.2 1.8 3.1318 3.9230 6.2324 7.0584 9.3479 10.1521
0.5 1.2 1.8 3.1024 3.9033 6.2324 7.0499 9.2748 10.0714

0.2 0.8 1.2 1.8 3.1215 3.9065 6.1819 6.9970 9.2842 10.0800
0.2 0.8 1.5 3.1032 3.8861 6.2292 7.0031 9.2746 10.0707
0.2 0.8 No crack 3.1314 3.9098 6.2292 7.0109 9.3499 10.1494

Cantilever beam

No crack 1.5708 3.9266 4.7124 7.0686 7.8540 10.2120

No crack 1.2 1.8 1.5561 3.9067 4.7118 7.0072 7.8338 10.1373
0.5 1.2 1.8 1.5543 3.8834 4.6812 6.9988 7.8338 10.0704

0.2 0.8 1.2 1.8 1.5550 3.9033 4.7110 6.9978 7.8106 10.0799
0.2 0.8 1.5 1.5666 3.8829 4.6723 7.0477 7.8322 10.0727
0.2 0.8 No crack 1.5696 3.9233 47115 7.0576 7.8323 10.1402

Clamped end beam

No crack 3.9266 4.7300 7.0686 7.8532 10.2102 10.9956

No crack 1.2 1.8 3.9102 4.7292 7.0065 7.8329 10.1374 10.9265
0.5 1.2 1.8 3.8855 4.6996 6.9980 7.8329 10.0705 10.8260

0.2 0.8 1.2 1.8 3.9065 4.7285 6.9970 7.8096 10.0800 10.8424
0.2 0.8 1.5 3.8986 4.6992 7.0496 7.8315 10.0712 10.8266

0.2 0.8 No crack 3.9231 4.7293 7.0576 7.8315 10.1402 10.9240

Effect of multiple cracks on natural frequencies of three-span ELS-beam with differ-
ent boundary conditions is examined for crack scenarios listed in Tab. 4. Since the effect
of single crack on natural frequencies of three-span beam has been shown in Figs. 5-7,
herein, six lowest natural frequencies of the beam are computed only for multiple cracks
starting from the case of double cracks at the supports and inside every span. Results
of the computation given in Tab. 5 enable to make the following notes for the multi-
ple cracked three-span beam: (1) Double cracks occurred at two equidistant supports in
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Table 4. Multiple crack scenarios in three-span ELS-beam (L = 3.0 m)
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Positions of cracks in spans; depth of all cracks is 30%

Notations Number of cracks First span Second span Third span
1-(2-0-0) 2 0.25 0.75 No crack No crack

2 - (0-2-0) 2 No crack 1.25 1.75 No crack
3-(0-0-2) 2 No crack No crack 2.25 2.75
4-(1-1-1) 3 0.5 15 25
5-(1-2-1) 4 0.5 1.25 1.75 2.5

6 - (2-0-2) 4 0.25 0.75 No crack 2.25 2.75
7-(2-1-2) 5 0.25 0.75 1.5 2.25 2.75
8-(2-2-2) 6 0.25 0.75 1.25 1.75 2.25 2.75

Table 5. Effect of multiple cracks on natural frequencies of three-equal-length-span
continuous beam

Multi-crack scenario cases

Freq.
Number No  Cracks at 1 2 3 4 5 6 7 8
1) crack supports (2-0-0) (0-2-0) (0-0-2) (1-1-1) (1-2-1) (2-0-2) (2-1-2) (2-2-2)
Simply supported beam (SS): L1 = Lp = L3 =1.0m
1 3.1416  3.1416 3.1223 3.1230 3.1223 3.0853 3.0853 3.1042 3.0853 3.0853
2 35564 3.5196 3.5375 3.5434 3.5375 3.5074 3.4944 3.5176 3.5176 3.5046
3 42975 41960 4.2831 4.2912 4.2831 4.2472 4.2744 42686 4.2357 4.2619
4 6.2832  6.2832  6.1939 6.2047 6.1939 6.2832 6.2046 6.1333 6.1333 6.0671
5 6.7076  6.6408  6.6289 6.7059 6.6289 6.6953 6.7017 6.5245 6.5158 6.5230
6 74295 7.2631 7.4032 7.3233 7.4032 74146 7.3092 7.3738 7.3738 7.2552
Clamped end beam (CC): L1 = L = L3 =1.0m
1 35564 3.5431 3.5413 3.5352 3.5413 3.5074 3.5186 3.5265 3.4935 3.5046
2 42975 42637 4.2887 4.2807 4.2887 4.2472 4.2309 4.2795 4.2795 4.2619
3 47300 4.6248 4.7290 4.7290 4.729 4.6687 4.6883 4.7279 4.7076 4.7268
4 6.7076  6.6816  6.6700 6.5801 6.6700 6.6953 6.5675 6.6379 6.6379 6.5230
5 74295 7.3746 7.3379 7.4258 7.3379 7.4146 7.4208 7.2583 7.2491 7.2552
6 7.8532 7.6890 7.8049 7.7987 7.8049 7.8532 7.7987 7.7391 7.7391 7.6725
Cantilever beam (CF): L1 = L, = L3 = 1.0m
1 1.5414 15138 1.5405 1.5288 1.5304 1.5348 1.5260 1.5294 1.5258 1.5172
2 35685 3.5547 3.5536 3.5482 3.5479 3.5144 3.5253 3.5335 3.5017 3.5126
3 42845 42512 42757 4.2681 4.2631 4.2216 4.2059 4.2540 4.2539 4.2370
4 47185 4.6133 4.7173 4.7174 4.7087 4.6504 4.6702 4.7074 4.6868 4.7061
5 6.7071  6.6814  6.6695 6.5795 6.6552 6.6936 6.5656 6.6248 6.6248 6.5115
6 74301 7.3751 7.3383 7.4263 7.3125 7.4143 7.4205 7.2352 7.2261 7.2318

three-span beam do not change the first and fourth natural frequencies of simply sup-
ported beam that can be observed also in Fig. 5; (2) Symmetric cracks produce the same
eigenfrequency spectrum of beam with symmetric boundary conditions (cases 1 and 3)
and multiple cracks happened at intermediate span make all frequencies more reduced
than those happened solely at the boundary spans of SBC-beam; (3) For cantilever beam,
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multiple cracks near the free end make more effect on natural frequencies than those lo-
cated near the clamped end; (4) Increasing number of cracks, in general, leads natural
frequencies to more reduced, except the specific cases of crack positions (cases 4, 5, 7 and
8) when the number of cracks equals to 3-4-5-6, the fundamental frequency is the same.
This can be explained by the fact that cracks occurred at the middle of spans (0.5; 1.5 and
2.5) cause the frequency change in two times greater than the change caused by cracks at
the positions 0.25; 0.75; 1.25; 1.75; 2.25, 2.75 as shown in Fig. 5. So, the frequency change
caused by three cracks at the middle of spans equals to the change caused by six cracks
at the symmetric locations 0.25; 0.75; 1.25; 1.75; 2.25, 2.75.

4. CONCLUSION

In this study, a simplified method has been proposed to calculate natural frequen-
cies of multiple cracked continuous beam with intermediate rigid supports and various
boundary conditions. Natural frequencies of two-span (single support) and three-span
(two supports) beams with multiple cracks were numerically examined in dependence
upon location of supports and crack position and depth. It is discovered that for an in-
tact two-span continuous beam eigenfrequency spectrum may contain natural frequen-
cies of individual spans and common frequencies for all the boundary conditions such as
simple supports (SS), clamped ends (CC) and cantilever (CF). The latter frequencies are
typically caused by a single support at the middle of a continuous beam, therefore, their
presence in the eigenfrequency spectrum of a beam is an obvious indicator for existence
of a rigid support for the beam. However, the typical frequencies disappear for two-span
beam with cracks and support located not at the beam middle. For three-span contin-
uous beam, the individual frequencies are observed only for simply supported intact
beam and the typical frequencies are found only for the beams with symmetric bound-
ary conditions (SS and CC). All the specific frequencies become disappeared for cracked
three-span beams of all the boundary conditions. Furthermore, likely to the single span
beam, there are exist positions on a multispan continuous beams crack occurred at which
do not change a specific frequency. Such positions that are usually called frequency node
of the associated mode depend also on support location in the beam. The middle sup-
port is the frequency node of odd modes for two-span beam with symmetric boundary
conditions and even modes of two-span cantilever beam. The equidistant supports in
three-span beams are frequency node of first, fourth, ... modes only for simply supported
beams. Finally, location of intermediate supports in a continuous beam makes significant
effect on eigenfrequency spectrum of the beam in both cases of with and without cracks.
The continuous beams with equidistant supports have either maximum or minimum fre-
quencies dependently on mode number and boundary conditions. Frequency nodes and
sensitivity of natural frequencies to cracks are all considerably dependent also on the
location of supports in a continuous beam.
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