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Abstract. In this paper, the reflection and transmission of a qP wave through an orthotropic
elastic layer sandwiched between two orthotropic elastic half-spaces is investigated. The
main aim is to derive the expressions in closed-form of the reflection and transmission
coefficients. These expressions have been obtained by using the transfer matrix for an
orthotropic layer. Based on the obtained expressions, some numerical examples are car-
ried out to examine the dependence of the reflection and transmission coefficients on the
incident angle, the wave frequency and the ratio of mass densities.
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1. INTRODUCTION

The reflection and transmission of elastic waves have long been an important
research subject in various fields such as geophysics, acoustics, materials science, oil and
gas exploration, design of ultrasonic transducer and so on due to its important role in
practical applications. Extensive review of works on this research direction has been
reported in well-known books on the elastic wave topic by Ewing et al. [1], Brekhovskikh
[2], Brekhovskikh and Gordin [3], Ben-Menahem & Singh [4], Nayfeh [5], Borcherdt [6].
Most of investigations on this topic devoted to the wave reflection and transmission in
isotropic elastic media.

The wave reflection and transmission in anisotropic elastic media have attracted the
attention of researchers only recently due to two reasons. Firstly, the anisotropic materials
are now widely used in various fields of the modern technology. Secondly, the problems
of wave reflection and transmission in anisotropic media is significantly different from
that in isotropic media, such as the wave velocity depends on the wave propagation
direction, for the longitudinal wave the direction of the displacement vector does not
coincide with the wave propagation direction and so on. It should be noted that, the
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main aim of the investigations of reflection and transmission of elastic waves is to derive
expressions in closed-form of reflection and transmission coefficients.

The reflection of elastic waves at a surface of an anisotropic elastic half-space was
studied by Chattopadhyay and Choudhury [7], Chatterjee et al. [8]. The reflection and
transmission of elastic waves at an interface between two anisotropic elastic half-spaces
was investigated by Rokhlin et al. [9], Chattopadhyay et al. [10–12]. The reflection and
transmission of elastic waves through a layer sandwiched between two anisotropic elas-
tic half-spaces, two inhomogeneous viscoelastic half-spaces [13], a more complicated
problem, was investigated by Paswan and Sahu [14] for a fluid layer and by Kumari
et al. [15] for an isotropic elastic layer. However, no investigation has been carried out so
far for the case when the sandwiched elastic layer is anisotropic, to the best knowledge
of the authors. Therefore, the main purpose of this paper is to consider the reflection and
transmission of qP waves through an orthotropic elastic layer sandwiched between two
orthotropic elastic half-spaces. In order to obtain the closed-form formulas for the re-
flection and transmission coefficients, the transfer matrix for an orthotropic elastic layer,
established recently by Vinh et al. [16], Tuan and Trung [17], is employed. Based on the
obtained formulas, some numerical examples are carried out to examine the dependence
of the reflection and transmission coefficients on the incident angle, the incident wave
frequency and the ratio of mass densities.

2. REFLECTION AND TRANSMISSION COEFFICIENTS

Consider an orthotropic elastic layer of thickness h sandwiched between two distinct
orthotropic elastic half-spaces Ω+ and Ω− as shown in Fig. 1. Here we use the orthogonal
coordinate system 0x1x2x3 in which the x2-axis is perpendicular to the layer. The layer,
the upper half-space Ω+ and the lower half-space Ω− occupy the domain 0 ≤ x2 ≤ h,
x2 ≤ 0 and x2 ≥ h, respectively (see Fig. 1). The material constants, mass density of the
layer and two half-spaces are given by

cij, ρ =


c+ij , ρ+ for x2 ≤ 0
c−ij , ρ− for x2 ≥ h
c̄ij, ρ̄ for 0 ≤ x2 ≤ h

(1)

It is assumed that the principal material planes of the orthotropic layer and of two
orthotropic half-spaces are identical and coincide with the coordinate planes. We are
interested in the plain strain so that

ui = ui(x1, x2, t), i = 1, 2, u3 ≡ 0. (2)

Suppose that an incident quasi P wave (qP wave) with the amplitude R0(R01, R02)
propagates in the upper half-space Ω+ and it is of the form [7, 11, 18](

u01
u02

)
=

(
R01
R02

)
exp
[
ik0(x1 p01 + x2 p02 − c0t)

]
, (3)

where θ0 is the incident angle, p01 = sin θ0, p02 = cos θ0 are components of the unit
propagation vector, c0 is the velocity of wave and k0 = ω/c0 is the wave number, ω
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Fig. 1. An orthotropic elastic layer sandwiched between two orthotropic elastic half-spaces

is the circular frequency that is given. The velocity c0 of the incident qP wave is given
by [7, 11, 18]

2ρc2
0 = (M0 + P0) +

[
(M0 − P0)

2 + 4(N0)
2]1/2, (4)

in which

M0 = c+11 p2
01 + c+66 p2

02, N0 = (c+66 + c+12)p01 p02, P0 = c+66 p2
01 + c+22 p2

02. (5)

When the qP wave strikes the layer it generates reflected qP, qSV waves propagating
in the half-space Ω+ and transmitted qP, qSV waves traveling in the half-space Ω− (see
Fig. 1). The displacement fields of these waves are of the form [7, 11, 18] as follows:

For the reflected qP wave with amplitude R1(R11, R12)(
u11
u12

)
=

(
R11
R12

)
exp
[
ik1(x1 p11 + x2 p12 − c1t)

]
. (6)

For the reflected qSV wave with amplitude R2(R21, R22)(
u21
u22

)
=

(
R21
R22

)
exp
[
ik2(x1 p21 + x2 p22 − c2t)

]
. (7)

For the transmitted qP wave with amplitude R3(R31, R32):(
u31
u32

)
=

(
R31
R32

)
exp
[
ik3(x1 p31 + x2 p32 − c3t)

]
. (8)

For the transmitted qSV wave with amplitude R4(R41, R42)(
u41
u42

)
=

(
R41
R42

)
exp
[
ik4(x1 p41 + x2 p42 − c4t)

]
, (9)

where pn1, pn2, (n = 1, 2, 3, 4) are components of the unit propagation vectors of the re-
flected waves qP, qSV, the transmitted waves qP, qSV, respectively, see Fig.1, that are
determined by Singh et al [18], ki, ci are the wave numbers, the wave velocities whose
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relation is: ω = k0c0 = k1c1 = k2c2 = k3c3 = k4c4. The velocities cn(n = 1, 2, 3, 4) are
determined as follows [7, 11, 18].

a) For the longitudinal waves (qP waves)

2ρc2
n = (Mn + Pn) +

[
(Mn − Pn)

2 + 4(Nn)
2]1/2, n = 1, 3. (10)

b) For the transverse waves (qSV waves)

2ρc2
n = (Mn + Pn)−

[
(Mn − Pn)

2 + 4(Nn)
2]1/2, n = 2, 4. (11)

The expressions Mn, Nn, Pn for upper half-space (n = 1, 2) are

Mn = c+11 p2
n1 + c+66 p2

n2, Nn = (c+66 + c+12)pn1 pn2, Pn = c+66 p2
n1 + c+22 p2

n2. (12)

The expressions Mn, Nn, Pn for lower half-space (n = 3, 4) are similar to (12) in which
the signs ” (+) ” are replaced by signs ”(−) ”.

In Eqs (6)–(9), the components Ri1, Ri2 of amplitudes Ri are needed to be determined.
In addition, they have relations [7, 11, 18]

Fi =
Ri1

Ri2
=

Ni

ρ+c2
i −Mi

=
ρ+c2

i − Pi

Ni
; |Ri| =

√
R2

i1 + R2
i2 i = 0, 1, 2, 3, 4. (13)

The reflection, transmission coefficients of reflected qP, qSV waves and transmitted
qP, qSV waves are defined as

RqP =
|R1|
|R0|

=

√
1 + F2

1√
1 + F2

0

|R12|
|R02|

; RqSV =
|R2|
|R0|

=

√
1 + F2

2√
1 + F2

0

|R22|
|R02|

, (14)

for the reflected waves and

TqP =
|R3|
|R0|

=

√
1 + F2

3√
1 + F2

0

|R32|
|R02|

; TqSV =
|R4|
|R0|

=

√
1 + F2

4√
1 + F2

0

|R42|
|R02|

, (15)

for the transmitted waves.

3. FORMULAS IN CLOSED-FORM FOR THE REFLECTION
AND TRANSMISSION COEFFICIENTS

In order to determine the reflection and transmission coefficients the transfer matrix
for an orthotropic elastic layer derived recently by Vinh et al. [16] is used.

From (3)–(7), the displacement field of the upper half-space Ω+ is expressed as

u+
1 = u01 + u11 + u21 = ei(ηx1−ωt)(R01e(ik0 p02x2) + R11e(ik1 p12x2) + R21e(ik2 p22x2)

)
,

u+
2 = u02 + u12 + u22 = ei(ηx1−ωt)(R02e(ik0 p02x2) + R12e(ik1 p12x2) + R22e(ik2 p22x2)

)
,

(16)

where η is the horizontal wave-number.
Similarly, from (8) and (9), the displacement field of lower half-space Ω− is given by

u−1 = u31 + u41 = ei(ηx1−ωt)(R31e(ik3 p32x2) + R41e(ik4 p42x2)
)
,

u−2 = u32 + u42 = ei(ηx1−ωt)(R32e(ik3 p32x3) + R42e(ik4 p42x3)
)
.

(17)
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From Snell’s law we have the following identities [11, 19]

η = k0 p01 = k1 p11 = k2 p21 = k3 p31 = k4 p41. (18)

The constitutive equations for orthotropic material are of form [20]

σ11 = c11u1,1 + c12u2,2, σ22 = c12u1,1 + c22u2,2, σ12 = c66(u2,1 + u1,2). (19)

From (16), (17) and (19), the stress components σ+
11, σ+

12, σ+
22 and σ−11, σ−12, σ−22 of the

upper and the lower half-spaces are derived.
We introduce a new unknown vector given by ξ(x2) = [u1, u2, σ12, σ22]

T. By ξ+, ξ−

and ξL we denote the corresponding values of ξ for the upper half-space, the lower half-
space and the layer respectively. Suppose that the layer and the half-spaces are perfectly
bonded to each other. Then, the displacements and stresses are required to be continuous
through the interfaces x2 = 0 and x2 = h, i. e.

ξ+(0) = ξL(0), ξ−(h) = ξL(h), (20)

where

ξ+(0) =


u+

1 (0)
u+

2 (0)
σ+

12(0)
σ+

22(0)

 , ξ−(h) =


u−1 (h)
u−2 (h)
σ−12(h)
σ−22(h)

 , (21)

and (we assign Ri2 = Bi, i = 0, 1, 2, 3, 4)

u+
1 (0) = F0B0 + F1B1 + F2B2; u+

2 (0) = B0 + B1 + B2,

σ+
12(0) = c+66i(F0B0k0 p02 + F1B1k1 p12 + F2B2k2 p22 + B0k0 p01 + B1k1 p11 + B2k2 p21),

σ+
22(0) = i

(
c+12(F0B0k0 p01 + F1B1k1 p11 + F2B2k2 p21)

+ c+22(B0k0 p02 + B1k1 p12 + B2k2 p22)
)
,

u−1 (h) = F3B3. exp(ik3 p32h) + F4B4. exp(ik4 p42h),

u−2 (h) = B3. exp(ik3 p32h) + B4. exp(ik4 p42h),

σ−12(h) = c−66i
(

F3B3k3 p32. exp(ik3 p32h) + F4B4k4 p42. exp(ik4 p42h)

+ B3k3 p31. exp(ik3 p32h) + B4k4 p41. exp(ik4 p42h)
)
,

σ−22(h) = c−12i
(

F3B3k3 p31. exp(ik3 p32h) + F4B4k4 p41. exp(ik4 p42h)
)

+ c−22i
(

B3k3 p32. exp(ik3 p32h) + B4k4 p42. exp(ik4 p42h)
)
.

(22)

On the other hand, using the transfer matrix of an orthotropic layer we have [16]

ξL(0) = TξL(h), (23)
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in which

T =



[γ̄; chε]

[γ̄]

−i[β̄; shε]

[ᾱ; β̄]

−[ᾱ; shε]

[ᾱ; β̄]

−i[chε]

[γ̄]
−i[γ̄; ᾱshε]

[γ̄]

[ᾱchε; β̄]

[ᾱ; β̄]

−iᾱ1ᾱ2[chε]

[ᾱ; β̄]

−[ᾱshε]

[γ̄]
−[γ; β̄shε]

[γ̄]

−iβ̄1 β̄2[chε]

[ᾱ; β̄]

[ᾱ; β̄chε]

[ᾱ; β̄]

i[β̄shε]

[γ̄]
−iγ̄1γ̄2[chε]

[γ̄]

[β̄; γ̄shε]

[ᾱ; β̄]

−i[ᾱ; γ̄shε]

[ᾱ; β̄]

[γ̄chε]

[γ̄]


, (24)

is the transfer matrix of orthotropic layer given by Vinh et al. [16] and

[ f ; g] := f2g1 − f1g2, [ f ] := f2 − f1 , (25)

denote the jump of quantities inside bracket. Furthermore,

c = c0/ sin(θ0), k = k0 sin(θ0), ε = kh,

ᾱk = −
(c̄12 + c̄66)b̄k

c̄22b̄2
k − c̄66 + X̄

, k = 1, 2, X̄ = ρ̄c2

b̄1 =

√
S̄ +
√

S̄2 − 4P̄
2

, b̄2 =

√
S̄−
√

S̄2 − 4P̄
2

,

S̄ =
c̄22(c̄11 − X̄) + c̄66(c̄66 − X̄)− (c̄12 + c̄66)2

c̄22c̄66
,

P̄ =
(c̄11 − X̄)(c̄66 − X̄)

c̄22c̄66
,

β̄n = c̄66(b̄n − ᾱn), γ̄n = c̄12 + c̄22b̄nᾱn, n = 1, 2.

(26)

The components tij of the transfer matrix T have properties [16]

t11 = t33, t12 = t43, t14 = t23, t21 = t34, t22 = t44, t32 = t41. (27)

Using (20), (23), and taking into account (21), (24), we have
u+

1 (0)
u+

2 (0)
σ+

12(0)
σ+

22(0)

 =


t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44




u−1 (h)
u−2 (h)
σ−12(h)
σ−22(h)

 . (28)

Therefore, we have 4 equations for 4 unknowns B1; B2; B3; B4 (taking into account
(22)), namely 

a1B1 + a2B2 + a3B3 + a4B4 = a5 ,
a6B1 + a7B2 + a8B3 + a9B4 = a10 ,
a11B1 + a12B2 + a13B3 + a14B4 = a15 ,
a16B1 + a17B2 + a18B3 + a19B4 = a20.

(29)
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This equation system leads to
B1
B2
B3
B4

 =


a1 a2 a3 a4
a6 a7 a8 a9
a11 a12 a13 a14
a16 a17 a18 a19


−1

a5
a10
a15
a20

 , (30)

where

a1 = −F1; a2 = −F2; a5 = F0B0; a6 = a7 = −1; a10 = B0; a15 = c+66iB0(F0 p02 + p01),

a3 =
(
t11F3 + t12 + t13c−66ik3(F3 p32 + p31) + t14ik3(c−12F3 p31 + c−22 p32)

)
exp(ik3 p32h),

a4 =
(
t11F4 + t12 + t13c−66ik4(F4 p42 + p41) + t14ik4(c−12F4 p41 + c−22 p42)

)
exp(ik4 p42h),

a8 =
(
t21F3 + t22 + t14c−66ik3(F3 p32 + p31) + t24ik3(c−12F3 p31 + c−22 p32)

)
exp(ik3 p32h),

a9 =
(
t21F4 + t22 + t14c−66ik4(F4 p42 + p41) + t24ik4(c−12F4 p41 + c−22 p42)

)
exp(ik4 p42h),

a11 = c+66ik1(F1B1 p12 + B1 p11); a12 = c+66ik2(F2B2 p22 + B2 p21),

a13 =
(
t31F3 + t11 + t14c−66ik3(F3 p32 + p31) + t21ik3(c−12F3 p31 + c−22 p32)

)
exp(ik3 p32h),

a14 =
(
t31F4 + t32 + t11c−66ik4(F4 p42 + p41) + t21ik4(c−12F4 p41 + c−22 p42)

)
exp(ik4 p42h),

a16 = c+12ik1(F1B1 p11 + B1 p12); a17 = c+12ik2(F2B2 p21 + B2 p22),

a18 =
(
t32F3 + t42 + t12c−66ik3(F3 p32 + p31) + t22ik3(c−12F3 p31 + c−22 p32)

)
exp(ik3 p32h),

a19 =
(
t32F4 + t42 + t12c−66ik4(F4 p42 + p41) + t22ik4(c−12F4 p41 + c−22 p42)

)
exp(ik4 p42h),

a20 = ik0B0(c+12F0 p01 + c+22 p02).

(31)

For an incident qP wave, θ0 is given and, therefore, c0(θ0) is computed by (4). The
terms pi1 = cos θi; pi2 = sin θi; ki and Fi are computed by (18). The detail of procedure
for the calculation of other quantities is represented in papers [7, 11, 16]. Finally, the
reflection, transmission coefficients are calculated by (14), (15).
The formulas (14), (15), in which Ri2 ≡ Bi given by (30), are closed-form expressions for the
reflection, transmission coefficients.

4. NUMERICAL RESULTS AND DISCUSSION

In this section, the influence of incident angle, wave frequency, ratio of mass den-
sity on the reflection and transmission coefficients is illustrated. From (14), (15) we can
see that the reflection and transmission coefficients depend on dimensionless parameters
defined as

e11 =
c+11

c+66
; e21 =

c+22

c+66
; e31 =

c+12

c+66
; e12 =

c−11

c−66
; e22 =

c−22

c−66
; e32 =

c−12

c−66
,

e1 =
c̄11

c̄66
; e2 =

c̄22

c̄66
; e3 =

c̄12

c̄66
; r =

ρ−

ρ+
; rµ =

c−66

c+66
; rL =

ρ̄

ρ+
; rµL =

c̄66

c+66
; ε = k0h.

(32)
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As an example, we choose a model with the dimensionless parameters (being not
relative to any particular material) as

e11 = 33.8333; e21 = 40.8333; e31 = 12.5000; e12 = 2.4787; e22 = 2.9255,
e32 = 0.8511; e1 = 2.9999; e2 = 2.9999; e3 = 0.9999; r = 1.5745; rµ = 15.6667,
rL = 0.0017; rµL = 48.3750; ε = 1.

(33)

In Fig. 2, the modulus of amplitudes of reflected, transmitted waves against the
incident angle θ0 for ε = 1 are plotted. It can be seen from Fig. 2 that:

i) The modulus RqP is almost unchange for θ0 < 500 then increases strongly when the
incident angle tends to 900. Conversely, the modulus TqP decreases sharply at θ0 = 450

from value 0.85 to value 0.
ii) In domain of 200 < θ0 < 700, the reflected qSV wave is dominant over qP wave.
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Fig. 2. The reflection, transmission coefficients as a function of incident angles
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Fig. 3. The reflection, transmission coefficients
as a function of wave frequency
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Fig. 4. The reflection, transmission coefficients
as a function of ratio of mass density

Fig. 3 depicts the variation of modulus of amplitudes of reflected and transmitted
waves with respect to the wave frequency ε when θ0 = π/6. We observed that the
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amplitude RqP increases in range 1 ≤ ε ≤ 10 while TqP decreases. The modulus of
reflection, transmission coefficients of qSV waves decrease in 1 ≤ ε ≤ 10.

The dependence of amplitudes of reflected, transmitted waves on rL with ε = 1 and
θ0 = π/3 is represented in Fig. 4. It is shown that in domain 0 < rL ≤ 1 the reflected qP
wave is dominant.

5. CONCLUSIONS

In this paper, problem of the reflection and transmission of a qP wave through
an orthotropic layer sandwiched between two orthotropic elastic half-spaces is investi-
gated and the closed-form expressions for the reflection, transmission coefficients have
been obtained by using the transfer matrix for an orthotropic elastic layer. As an illustra-
tion of the application of obtained expressions, numerical results are carried to indicate
the dependence of the reflection, transmission coefficients on the incident angle, wave
frequency and ratio of mass density. It is shown that the reflection and transmission coef-
ficients depend strongly on the incident angle, wave frequency and considerably on the
ratio of mass density.
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