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Abstract. The dynamic vibration absorber (DVA) has been widely applied in various tech-
nical fields. This paper presents a simple approach to determine a closed-form expression
for the tuning ratio of a DVA attached to a damped primary structure. The result is ob-
tained by using the so-called weighted averaging technique of the equivalent linearization
method proposed by the first author. The values of the tuning ratio given in this paper are
compared with those obtained numerically as well as the ones obtained from other au-
thors. The comparison shows the reliability of the method given in this study.
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1. INTRODUCTION

The dynamic vibration absorber (DVA) is a passive control system installed in a
primary structure to suppress harmful vibration. Frahm [1] introduced the first DVA
and then Ormondroyd and Den Hartog [2] proposed the standard model of DVA with a
spring element and a viscous element are arranged in parallel. Since then, many studies
on DVA have been investigated [3–5].

In order to maximize the effect of DVA on the primary structure, two main design pa-
rameters of a DVA are the tuning ratio and damping ratio. Den Hartog [6] presented two
simple expressions for the optimal tuning ratio and damping ratio of a DVA by minimiz-
ing the displacement response of an undamped primary structure subjected to sinusoidal
excitation. When the primary structure taking into account damping, there have been ei-
ther numerical solutions or empirical expressions for optimal parameters of DVA in the
literature [7–11].
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In 2007, Ghosh and Basu [12] gave a closed-form expression for optimal tuning ra-
tio of DVA by using an approximate assumption about the existence of two fixed points.
Later, Anh and Nguyen [13] proposed another closed-form expression for the optimal
tuning ratio of DVA. That result was obtained via the equivalent linearization method,
where the original damped structure was replaced equivalently by an undamped struc-
ture and then using the known result for undamped structures to give the expression of
optimal tuning ratio.

In this paper, the authors use a technique of the equivalent linearization method
with a weighted averaging to replace the damped system by an undamped structure,
and then using the known result for undamped structures given by Den Hartog to get the
expression of optimal tuning ratio. The result in this study is compared with the results
obtained from Ghosh and Basu’s expression, Anh and Nguyen’s expression as well as
the result obtained numerically from Ioi and Ikeda [7]. The comparisons show that the
values of optimal tuning ratio derived from the expression in this paper are closer to the
values from the result given by Ioi and Ikeda than those from the expression proposed
by Ghosh and Basu as well as by Anh and Nguyen.

2. DEN HARTOG’S CLASSICAL RESULTS IN THE CASE
OF UNDAMPED STRUCTURE

A system consisting of a dynamic vibration installed in the primary structure is
shown in Fig. 1. The primary structure includes a main mass ms, a spring element ks
and a damping element cs and is subjected an external force f (t). The mass of the DVA
is md and its spring and damping coefficients are kd and cd.

Figure 1. Damped vibration absorber applied to a force-excited system with damping 
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Fig. 1. Damped vibration absorber applied to a force-excited system with damping

Let xs and xd denote the displacements of the primary structure and the DVA, re-
spectively. By using Lagrange’s equations, we get the equations of motion

ms ẍs + cs ẋs + ksxs = cd ẋd + kdxd + f (t),
md ẍd + cd ẋd + kdxd = −md ẍs.

(1)
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We introduce the dimensionless parameters as follows

µ =
md

ms
, ωs =

√
ks

ms
, ξs =

cs

2msωs
,

ωd =

√
kd

md
, ξd =

cd

2mdωd
, α =

ωd

ωs
,

(2)

where µ is the mass, ωs, ξs and ωd, ξd are natural frequencies and damping ratios of the
primary structure and of the DVA, respectively, α is the tuning ratio.

Eq. (1) can be rewritten as

ẍs + 2ωsξs ẋs + ω2
s xs = 2µαξdωs ẋd + µα2ω2

s xd +
f (t)
ms

, (3)

ẍd + 2αξdωs ẋd + α2ω2
s xd = −ẍs . (4)

Den Hartog [6] presented the expressions for the optimal tuning ratio and damping
ratio of a DVA in the case of undamped primary structures as follows

αopt =
1

1 + µ
,

ξdopt =

√
3µ

8(1 + µ)
.

(5)

In next sections, the authors give an approximate expression for the tuning ratio of a
DVA installed in damped primary structures.

3. USING EQUIVALENT LINEARIZATION METHOD WITH A WEIGHTED
AVERAGING TO OBTAIN A CLOSED-FORM EXPRESSION FOR THE

OPTIMAL TUNING RATIO

The main purpose in this work is using the equivalent linearization method with a
weighted averaging in order to replace approximately the original damped structure by
an undamped structure and then using Den Hartog’s results (5) to obtain the closed-form
expression for optimal tuning ratio.

3.1. The equivalent linearization method
In Fig. 2(a) with damped structure, the equation of motion is

ẍs + 2ξsωs ẋs + ω2
s xs = 0. (6)

In Fig. 2(b) with undamped structure, the equation of motion has the form as follows

ẍs + ω2
e xs = 0, (7)

where ωe is an unknown constant and will be determined by the following criterion

A =
〈
(2ξsωs ẋs + ω2

s xs −ω2
e xs)

2〉→ Min
ωe

(8)
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with

〈·〉 = 1
T

T∫
0

(·)dt. (9)

Using Eq. (8), we get
∂A
∂ωe

= 0.

This deduces
(ω2

e −ω2
s )
〈

x2
s
〉
− 2ξsωs 〈ẋsxs〉 = 0. (10)

Instead of using the averaging in Eq. (9), we define the weighted averaging in the
next section.

3.2. A weighted averaging
In this subsection the weighted averaging technique proposed in [14] and has been

applied to analyze some vibrating systems with nonlinearities [15] is shortly introduced.
In practice, for a given dataset, the most common statistic is the arithmetic mean. The
concept of average of a data set can be extended to functions. The conventional aver-
age value (CAV) of an integrable deterministic function x(t) on a domain D: (0, d) is a
constant value defined by

〈x(t)〉 = 1
d

∫ d

0
x(t)dt (11)

In many cases when the function x(ωt) is periodic with period 2π/ω the value d is
taken as 2π/ω and it leads to the averaged value of x(t) over one period

〈< x(ωt)〉 = ω

2π

∫ 2π/ω

0
x(ωt)dt =

1
2π

∫ 2π

0
x(τ)dτ, (12)

where τ = ωt is the new variable or “new time”. Averaged values play surely major
roles in the past and at the present, however, the definition (11) has some deficiencies,
for example, if Eqs. (11) or (12) are equal zero, the information about x(t) is lost. For all
harmonic functions cos(nωt) and sin(nωt), this observation is true. The dual approach
to averaged values may be a possible way to suggest an alternative choice for the con-
ventional average value, namely the constant coefficient 1/d in (11) can be extended to
a weighted coefficient as a function h(t). Thus one gets the so-called a weighted aver-
age value
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W(x(t)) =
∫ d

0
h(t)x(t)dt, (13)

where the condition of normalization is satisfied as∫ d

0
h(t)dt = 1. (14)

There are three basic weighted coefficients as follows:
- Basic optimistic weighted coefficients: They are increasing functions of t and denoted

as O(t). Examples are αtβ and αeβt, α, β > 0.
- Basic pessimistic weighted coefficients: They are decreasing functions of t and denoted

as P(t). Examples are αtβ and αeβt, α < 0, β > 0; or α > 0, β < 0.
- Neutral weighted coefficients: They are denoted as N(t), where N(t) is a constant.
An arbitrary weighted coefficient h(t) can be obtained as summation and/or product

of basic weighted coefficients. An example is

h(t) =
n

∑
i=1

AiOi(t) + BiPi(t) + CiOi(t)Pi(t) + N(t), (15)

where Ai, Bi, Ci are constant.
In this paper, we will consider only ω-periodic functions x(ωt). A special form of

weighted coefficient is introduced as

h(t) = s2ω2te−sωt, s > 0. (16)

3.3. The closed-form expression of optimal tuning ratio
Eq. (7) has a periodic solution as follows

xs = a cos ωet , (17)

with the weighted coefficient is

h(t) = s2ω2
e te−sωet, s > 0.

We will determine

W
(
x2

s
)
= W

(
a2 cos2 ωet

)
=

+∞∫
0

a2s2ω2
e te−sωet cos2(ωet)dt

= a2 s4 + 2s2 + 8
s4 + 8s2 + 16

,

(18)

W (ẋsxs) = W
(
−a2ωe sin(ωet) cos(ωet)

)
= − a2ωe

2

+∞∫
0

s2ω2
e te−sωet sin(2ωet) dt

= − 2ωea2s3

s4 + 8s2 + 16
.

(19)
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Substituting Eqs. (18) and (19) into Eq. (10) we obtain

(s4 + 2s2 + 8)ω2
e + 4s3ωsξsωe − (s4 + 2s2 + 8)ω2

s = 0. (20)

Eq. (20) leads to

ωe =
−2s3ξs +

√
4s6ξ2

s + (s4 + 2s2 + 8)2

s4 + 2s2 + 8
ωs. (21)

Using Den Hartog’s result (5) for undamped primary structure, we have

αeopt =
1

1 + µ
.

Noting that

αeopt =
ωd

ωe
, αopt =

ωd

ωs
,

and using Eq. (21), finally we obtain a closed-form expression for the optimal tuning
ratio as follows

αopt =
−2s3ξs +

√
4s6ξ2

s + (s4 + 2s2 + 8)2

(1 + µ)(s4 + 2s2 + 8)
. (22)

The expression (22) will reduce to Den Hartog’s result (5) in the case of undamped
primary structures. The formula (22) is independent of the damping ratio of the DVA. The
optimal turning ratio in Eq. (22) depends not only on µ and ξs but also on a parameter s.
In this paper, for sakes of computation convenience, the chosen parameter s is equal to 2.

4. COMPARISONS

The values of the optimum tuning ratio from the proposed expression (22) will be
compared with the values calculated from the empirical expression given by Ioi and
Ikeda [7] as well as the expressions proposed by Ghosh and Basu [12] and by Anh and
Nguyen [13]. In Ghosh and Basu’s paper, they have given an expression

αopt =

√
1− 4ξ2

s − µ(2ξ2
s − 1)

(1 + µ)3 . (23)

Meanwhile, Anh and Nguyen’s expression is

αopt =
1

(1 + µ)
(√

1 + 4
π2 ξ2

s +
2
π ξs

) . (24)

The comparison is done in Tabs. 1 and 2, in which the mass ratio µ is taken to be 0.03
and 0.05, respectively, and the different values of the structural damping ratio ξs vary
from 0.005 to 0.15.

It is shown from Tabs. 1 and 2 that the values of optimal turning ratio from the ex-
pression (22) proposed in this paper are closer to the values from the empirical expression
given by Ioi and Ikeda than those derived from the expression (23) given by Ghosh and
Basu as well as from the expression (24) given by Anh and Nguyen. It also can be seen
from Tabs. 1 and 2 that the values of turning ratio decrease when the structural ratio or
the mass ratio increases.



Weighted averaging technique for the design of dynamic vibration absorber installed in damped primary structures 161

Table 1. Optimal turning ratio of TMD for different structural damping ratios
and the mass ratio µ = 0.03

αopt αopt αopt αopt
ξs given by Ioi given by Ghosh given by Anh in present

and Ikada and Basu and Nguyen the paper

0.005 0.9694 0.9708 (0.14)∗ 0.9678 (0.17) 0.9684 (0.10)
0.01 0.9679 0.9707 (0.29) 0.9647 (0.33) 0.9660 (0.19)
0.02 0.9647 0.9701 (0.56) 0.9586 (0.63) 0.9612 (0.36)
0.03 0.9613 0.9692 (0.82) 0.9525 (0.92) 0.9564 (0.51)
0.05 0.9540 0.9661 (1.27) 0.9405 (1.42) 0.9469 (0.74)
0.07 0.9464 0.9615 (1.64) 0.9286 (1.84) 0.9375 (0.89)
0.1 0.9325 0.9515 (2.04) 0.9110 (2.31) 9.9235 (0.96)
0.12 0.9225 0.9429 (2.17) 0.8995 (2.49) 0.9144 (0.88)
0.14 0.9118 0.9326 (2.28) 0.8882 (2.59) 0.9053 (0.71)
0.15 0.9062 0.9268 (2.27) 0.8826 (2.60) 0.9008 (0.59)
∗Different from Ioi and Ikeda’s results in percentage terms

Table 2. Optimal turning ratio of TMD for different structural damping ratios
and the mass ratio µ = 0.05

αopt αopt αopt αopt
ξs given by Ioi given by Ghosh given by Anh in present

and Ikeda and Basu and Nguyen the paper

0.005 0.9508 0.9523 (0.16) 0.9494 (0.15) 0.9500 (0.08)
0.01 0.9491 0.9522 (0.33) 0.9463 (0.30) 0.9476 (0.15)
0.02 0.9456 0.9516 (0.63) 0.9403 (0.56) 0.9429 (0.29)
0.03 0.9420 0.9507 (0.92) 0.9344 (0.81) 0.9382 (0.40)
0.05 0.9341 0.9477 (1.46) 0.9225 (1.24) 0.9289 (0.56)
0.07 0.9256 0.9432 (1.90) 0.9109 (1.59) 0.9196 (0.64)
0.1 0.9114 0.9336 (2.44) 0.8937 (1.94) 0.9060 (0.59)
0.12 0.9010 0.9252 (2.69) 0.8824 (2.06) 0.8970 (0.45)
0.14 0.8899 0.9152 (2.84) 0.8713 (2.09) 0.8880 (0.21)
0.15 0.8840 0.9096 (2.90) 0.8658 (2.06) 0.8836 (0.04)

5. CONCLUSIONS

Based on the equivalent linearization method when using the so-called weighted
averaging proposed by Anh, a closed-form expression for the optimal turning ratio of a
DVA attached to a damped primary structure, modeled as an SDOF system, is presented
in this paper. The original damped primary structure is replaced equivalently by an un-
damped structure and then using the well-known results in case of undamped structures
to obtain the analytical expression for the optimal turning ratio.
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The obtained expression of turning ratio is compared with the results in the liter-
ature. The comparison shows that the expression of the tuning ratio proposed in this
paper coincides with numerical results given by Ioi and Ikeda.
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