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Abstract. A cell-based smoothed discrete shear gap method (CS-DSG3) using three-node
triangular elements was recently proposed to improve the performance of the discrete
shear gap method (DSG3) for static and free vibration analyses of isotropic Reissner-
Mindlin plates and shells. In this paper, the CS-DSG3 is further extended for static and
free vibration analyses of laminated composite shells. In the present method, the first-
order shear deformation theory (FSDT) is used in the formulation due to the simplicity
and computational efficiency. The accuracy and reliability of the proposed method are
verified by comparing its numerical solutions with those of others available numerical
results.

Keywords: Smoothed finite element methods (S-FEM), cell-based smoothed discrete shear
gap method (CS-DSG3), laminated composite shell, first-order shear deformation theory
(FSDT).

1. INTRODUCTION

Owning many superior properties as high strength-to-weight and high stiffness-
to-weight ratios, excellent fatigue strength, etc., composite materials have been widely
used in plate and shell structures in many engineering fields such as naval, automo-
tive, aerospace, defense industries and many other areas. Many methods for analysis of
the laminated composite plate and shell have been developed recently. For example, A.
Bhimaraddi has proposed a three-dimensional (3D) elasticity solution for static and vi-
bration of double curved shallow shell made of composite material [1, 2]. In this study,
the shell thickness is divided into layers of smaller thickness, which can help increase the
accuracy in analysis of thickness shell. However, the computational cost for 3D analysis

c© 2018 Vietnam Academy of Science and Technology

http://dx.doi.org/10.15625/0866-7136/10579
mailto: nguyenthoitrung@tdt.edu.vn


90 Pham Quoc Hoa et al.

is still much higher than that for two-dimensional (2D) analysis. Therefore, a 2D model
was preferred for analysis of the laminated composite shell and attracted the concern of
many researchers. For example, K. P. Rao [3] developed a rectangular laminated shell el-
ement. In these papers, the authors only used the classical laminated theory (CLT) which
completed neglect the shear deformation effect, and hence had a negative influence to
the accuracy of analysis results of thickness shell. To overcome the drawbacks, the first
order shear deformation theory (FSDT) was used to analyze for the laminated shell. J. N.
Reddy [4] presented a development of exact solutions based on the Sander shell theory
for the double curved shell. S. J. Hossain et al. [5] developed a four node quadrilat-
eral isoparametric element using mixed interpolation of tensorial components (MITC)
approach. D. Chakravorty et al. [6] proposed an eight node curved quadrilateral isopara-
metric element for the vibration analysis of double curved laminated composite shells.
The FSDT, however, the accuracy of solutions strongly depends on shear correction fac-
tors to ensure the stability of the solution [7]. Hence, the higher order shear deformation
(HSDT), layerwise (LWT) or zigzag (ZIGT) theories have been proposed to analyze the
laminated composite shell. For instance, L. Librescu and A. A. Khdeir [8,9] used the state
space concept conjunction of the Lévy method for static and free vibration analyses of
the laminated composite shell. J. N. Reddy and C. F. Liu [10] developed a HSDT for the
laminated composite shell. In this study, the Navier-type exact solutions for static and
free vibration analyses were presented for spherical and cylindrical shells. R. K. Khare et
al. [11] presented a 2D HSDT for analysis of laminated composite and sandwich shallow
shells subjected to thermal and mechanical loads. To achieve more accurate results for
laminated shell, M. Y. Yasin [12] proposed a four-node quadrilateral element for static
and free vibration analyses of laminated shallow shells based on the ZIGT. G. Giunta et
al. [13] mixed the HSDT with LWT and ZIGT for analysis of the laminated double curved
shell. A. J. M. Ferreira et al. [14] studied the radial basis functions (RBFs) collocation
based on a LWT for the static and free vibration analyses of the laminated shells. From
above literature review, it is obvious that, HSDT, LWT and ZIGT have been achieved the
great interest from researchers. However, they have a limitation in computational cost
which causes the limit of their practical applications. In addition, in recent years, many
promising computational approaches have also been proposed for analyzing plate/shell
problems. For example, Chien H. Thai et al. [15–17] developed isogeometric analysis for
static, free vibration, and buckling analysis of laminated composite plates. T. Rabczuk et
al. [18,19] used meshfree method based on the Kirchhoff–Love (KL) theory to investigate
for crack and fluid-structure interaction of thin shells. N. Nguyen-Thanh et al. [20, 21]
presented isogeometric analysis to study for thin shell structures.

On the other hand, in front of the development of numerical methods, Liu and
Nguyen-Thoi [22] integrated the strain smoothing technique into the finite element
method to create a series of smoothed finite element methods (S-FEM) including the cell-
based smoothed finite element (CS-FEM) [23–28], the node-based smoothed finite ele-
ment (NS-FEM) [29–31], the edge-based smooth finite element method (ES-FEM) [32,33],
and the face-based smoothed finite element (FS-FEM) [34]. Each of these smoothed finite
element methods has different properties and has been used to produce desired solutions
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for a wide class of benchmark and practical mechanics problems. The smoothed finite el-
ement methods have also been further investigated and applied to various problems as
plates and shells [35–43], and some other applications.

Among the S-FEM models, the CS-FEM has shown some interesting properties in
the solid mechanics problems. Extending the idea of the CS-FEM to plate structures,
Nguyen-Thoi et al. [43] have recently formulated a cell-based smoothed stabilized dis-
crete shear gap element (CS-DSG3) for static and free vibration analyses of isotropic shell
structures by combining the CS-FEM with the original DSG3 [44]. In the CS-DSG3, each
three-node triangular element will be divided into three sub-triangles, and in each sub-
triangle, the stabilized DSG3 is used to compute the strains. Following that the strain
smoothing technique on whole triangular element is used to smooth the strains on three
sub-triangles. The numerical results have shown that the CS-DSG3 is free of shear lock-
ing and achieves a high accuracy compared with the exact solutions and other existing
elements in the literature.

This paper aims to extend further the CS-DSG3 to static and free vibration analyses of
the laminate composite shell. The FSDT and flat shell theory are used in the formulation
due to the simplicity and computational efficiency. The accuracy and reliability of the
proposed method are verified by comparing its numerical solutions with those of others
available numerical results.

2. WEAK FORM OF LAMINATED COMPOSITE SHELL

A shell is a 3D structure and it is often convenient to define the geometry of shell
structures in the global coordinate system. Based on the theories of formulation [45], shell
elements can be classified into three main groups: (1) degenerated shell elements derived
from the 3D solid theory; (2) curved shell elements based on general shell theory; and (3)
flat shell elements formulated by combining a plane elastic membrane elements (plane
stress elements) and a plate bending elements. Among these three groups, the flat shell
elements are more popular due to simple formulation and low computational cost, and
hence the theory of flat shell elements will be chosen to consider in this study.

To generate the element stiffness matrix for the membrane and plate bending ele-
ments, the elements must be defined in a local plane. Thus it is necessary to use local
coordinates for computing the element mass, stiffness matrices and load vectors of the
flat shell elements. In this case, a transformation between global and local coordinates is
required and can be defined by using direction cosines. Based on the FSDT and flat shell
theory, the standard weak-form Galerkin of shell problem is defined by

∫
Ω

δuTmüdΩ +
∫
Ω

δ

 εεεT
m

κκκT

γγγT


T  Dm Dmb 0

Dmb Db 0
0 0 Ds

 εεεm
κκκ
γγγ

dΩ =
∫
Ω

δuTbdΩ, (1)

where u =
{

u0, v0, w0, βx, βy, βz
}T is the displacement field at any point on the middle

plane of shell with u0, v0, w0 and βx, βy, βz denote the displacement components in the
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x, y, z directions, respectively; b is an applied load vector; εεεm,κκκ and γγγ are defined by

εεεm =
{

u0,x v0,y u0,y + v0,x
}T ,κκκ =

{
βx,x βy,y βx,y + βy,x

}T , γγγ =
{

w0,x + βx w0,y + βy
}T .
(2)

In Eq. (1), Dm, Db, Dmb and Ds are the extensional, bending, bending-extension
coupling stiffness, respectively, which are given by

(Dm, Dmb, Db) =
∫ h/2

−h/2
(1, z, z2)Qijdz, (i, j = 1, 2, 6)

Ds =
∫ h/2

−h/2
κQijdz, (i, j = 4, 5)

(3)

where h is the thickness of the shell; κ = 5/6 is shear coefficient; Qij are the transformed
material constants of the kth lamina [7]; m is the mass matrix containing the mass density
of the material ρ, expressed by

m =
N

∑
k=1

ρk
∫ zk+1

zk


1 0 0 z 0 0
0 1 0 0 z 0
0 0 1 0 0 0
z 0 0 z2 0 0
0 z 0 0 z2 0
0 0 0 0 0 0

dz. (4)

3. CS-DSG3 FORMULATION FOR LAMINATED COMPOSITE SHELL

In the DSG3 [44], the shear strain is linear interpolated based on the concept “shear
gap” of displacement along the sides of the elements by using the standard element shape
functions. Accordingly, the approximation ue of a 3-node triangular shell element Ωe can
be written as

ue =
3

∑
I=1

NI (x)I6deI =
3

∑
I=1

NIdeI , (5)
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where  , , , , ,
T

eI I I I xI yI zIu v w β β βd is the nodal degrees of freedom associated with the Ith node and 

IN x is linear shape functions in a natural coordinate defined by 

 ; ; .N N N       1 2 31   (6) 

 Then, the membrane, bending and shear strains in the element are then obtained by 
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where 
miB , 

biB and 
siB  are determined as 

iR , 
iB and 

iS  in [42]. 

The global stiffness matrix now can be written by: 

 
nN

DSG DSG

e

e

K K
3 3

1

  (8) 

where 
DSG

eK
3

is the element stiffness matrix of the DSG3 element and is given by: 
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B D D 0 B

K T B D D 0 B T

B 0 0 D B

  (9) 

in which T is the transformation matrix for whole element that is defined by 

 0 0 0diag( , , )T T T T  (10) 

and T0 is a transformation matrix at each point [44]. 

In the CS-DSG3, each triangular element was divided into three sub-triangles, j , by connecting 

the central point of the element to three field nodes as shown in Fig. 1. Then the displacement vector 

at central point was assumed to be the simple average of three displacement vectors of three field 

nodes. To avoid the shear locking phenomenon, in each sub-triangles, the stabilized DSG3 was used to 

compute the strain fields. The detail formulation of CS-DSG3 can be found in references [42, 45]. 

  

 Fig. 1. Three sub-triangles created from the triangle 1-2-3 in CS-DSG3 by connecting the central 

point O with three field nodes 1, 2 and 3. 

 The smoothed membrane, bending and shear strains in the CS-DSG3 are expressed by 

 , ,m m e b e s e  ε B Td κ B Td γ B Td   (11) 

where , and  are, respectively, the smoothed membrane, bending and shear gradient matrices 

expressed by 

   (12) 

Fig. 1. Three sub-triangles created from the triangle 1-2-3 in CS-DSG3 by connecting
the central point O with three field nodes 1, 2 and 3
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where deI =
{

uI , vI , wI , βxI , βyI , βzI
}T is the nodal degrees of freedom associated with

the Ith node and NI (x) is linear shape functions in a natural coordinate defined by

N1 = 1 − ξ − η; N2 = ξ; N3 = η. (6)

Then, the membrane, bending and shear strains in the element are then obtained by

εεεm = [Bm1, Bm2, Bm3]de = Bmde,
κκκ = [Bb1, Bb2, Bb3]de = Bbde,
γγγ = [Bs1, Bs2, Bs3]de = Bsde,

(7)

where Bmi, Bbi and Bsi are determined as Ri, Bi and Si in [43].
The global stiffness matrix now can be written by

KDSG3 =
Nn

∑
e=1

KDSG3
e , (8)

where KDSG3
e is the element stiffness matrix of the DSG3 element and is given by

KDSG3
e = TT

∫
Ωe

 Bm
Bb
Bs


T  Dm Dmb 0

Dmb Db 0
0 0 Ds

 Bm
Bb
Bs

dΩ

T, (9)

in which T is the transformation matrix for whole element that is defined by

T = diag(T0, T0, T0), (10)

and T is a transformation matrix at each point [45].
In the CS-DSG3, each triangular element was divided into three sub-triangles, ∆j, by

connecting the central point of the element to three field nodes as shown in Fig. 1. Then
the displacement vector at central point was assumed to be the simple average of three
displacement vectors of three field nodes. To avoid the shear locking phenomenon, in
each sub-triangles, the stabilized DSG3 was used to compute the strain fields. The detail
formulation of CS-DSG3 can be found in references [43, 46].

The smoothed membrane, bending and shear strains in the CS-DSG3 are expressed
by

εεεm = B̃mTde, κκκ = B̃bTde, γγγ = B̃sTde, (11)

where B̃m, B̃b and B̃s are, respectively, the smoothed membrane, bending and shear gra-
dient matrices expressed by

B̃k =
1

Ae

3

∑
i=1

A∆i B
∆i
k , k = m, b, s (12)

where Ae and A∆i are the area of element and sub-triangle ∆i, respectively; B
∆j
m , B

∆j
b , B

∆j
s

(j = 1, 2, 3) are computed similarly as the matrices Bm, Bb, Bs of the DSG3 in Eqs. (7), but
with two following changes: 1) the coordinates of three node xi =

[
xi yi

]T, i = 1, 2, 3
are replaced by three nodes of sub-triangle ∆j, respectively; and 2) the area Ae is replaced
by the area A∆j of sub-triangle ∆j. These computational details can be found in [43] By
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substituting Eq. (11) into Eq. (1), the equilibrium equation for the laminated shell is now
expressed in the form of

Md̈ + Kd = F, (13)
in which M and K are the global mass and stiffness matrices, F is the global load vector.
They are obtained by assembling from local matrices and expressed as follows

M =
Ne

∑
e=1

Me =
Ne

∑
e=1

∫
Ωe

TTNTmNTdΩ, (14)

K =
Ne

∑
e=1

KCS−DSG3
e =

Ne

∑
e=1

∫
Ωe

TT { B̃T
m B̃T

b B̃T
s
}  Dm Dmb 0

Dmb Db 0
0 0 Ds


B̃T

m
B̃T

b
B̃T

s

TdΩ, (15)

F =
Ne

∑
e=1

Fe =
Ne

∑
e=1

∫
Ωe

TTNTbdΩ, (16)

From Eq. (2), we can see the independence between the strain components and the
drilling degree of freedom, βz. This is the cause of singularity in the global stiffness ma-
trix when all the elements meeting at node are coplanar and there is no coupling between
the membrane stiffness and bending stiffness of the element. To deal this problem, the
null values of the stiffness matrix corresponding to βz are replaced by approximate val-
ues. This approximate value is taken to be equal to 10−3 times the maximum diagonal
value in the element stiffness matrix [43].

Note that while the accuracy of the CS-DSG3 [46] and that of the ES-DSG3 [39] are
almost the same [46], the CS-DSG3 has lower computational cost. It is because the CS-
DSG3 only requires the local computation located inside the element which is much more
convenient than the ES-DSG3. This advantage of the CS-DSG3 is even further promoted
for shell elements

4. NUMERICAL RESULTS

In this section, the static and free-vibration analyses of laminated composite spher-
ical and cylindrical shells as shown in Fig. 2 are conducted using the proposed method
CS-DSG3. In static analysis, these shells are assumed to be subjected to uniform dis-
tributed, sinusoidal and concentrated loads. The effects of the boundary conditions,
length to radius ratio and fiber direction on behavior of these shells are considered. The
obtained results are compared to the other existing numerical solutions to show the ac-
curacy and stability of the CS-DSG3 in laminated shell analyses. For the convenient com-
parison, the non-dimensional central deflection and natural frequencies are introduced
by

w =
1000w

(
a
/

2, b
/

2, 0
)

t3E2

Pa4 , ω = ω
(
a2/h

)√
ρ
/

E2. (17)
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method (CS-DSG3) using three-node triangular elements  

 

 a. Spherical shell model ( ) 

 

b. Cylindrical shell model( ) 

 Fig. 2. Geometry for laminated composite shells. 

Table 2. The non-dimensional center deflections of the laminated spherical shells under uniform load 

 R/a  Theory  
 0o

/90
o
  0o

/90
o
/0

o
  0o

/90
o
/90

o
/0

o
 

 a/h=10  a/h=100  a/h=10  a/h=100  a/h=10  a/h=100 

 5 

 Reddy and Liu FSDT [10]  19.9440  1.7535  9.7937  1.5118  9.8249  1.5358 

 CS-DSG3 (88)  16.8807  1.6712  9.3469  1.4427  9.3365  1.4630 

 CS-DSG3 (1212)  17.3799  1.6926  9.5609  1.4628  9.5678  1.4856 

 CS-DSG3 (2424)  17.6854  1.7059  9.6914  1.4762  9.7095  1.4995 

 10 

 Reddy and Liu FSDT [10]  19.0650  5.5428  10.110  3.6445  10.141  3.7208 

 CS-DSG3 (88)  18.2055  5.3245  9.7984  3.5237  9.7879  3.5780 

 CS-DSG3 (1212)  18.7586  5.4562  10.025  3.6008  10.032  3.6713 

 CS-DSG3 (2424)  19.0971  5.5213  10.164  3.6454  10.186  3.7221 

 100 

 Reddy and Liu FSDT [10]  19.4640  16.6450  10.2180  6.6421  10.2490  6.6772 

 CS-DSG3 (88)  18.6726  15.5468  9.95190  6.3613  9.94110  6.4508 

 CS-DSG3 (1212)  19.2457  16.3981  10.1839  6.5904  10.1908  6.7124 

 CS-DSG3 (2424)  19.5964  16.7744  10.3253  6.7133  10.3436  6.8493 

Table 3. The non-dimensional center deflections of the laminated spherical shells under central concentrated load 

 R/a  Theory  
 0o

/90
o
  0o

/90
o
/0

o
  0o

/90
o
/90

o
/0

o
 

 a/h=10  a/h=100  a/h=10  a/h=100  a/h=10  a/h=100 

 5 

 Reddy and Liu FSDT [10]  71.015  -  51.410  -  49.360  - 
 CS-DSG3 (88)  57.019  6.7337  38.123  5.8155  36.595  5.3842 

 CS-DSG3 (1212)  60.573  7.3182  41.223  6.2661  39.461  5.7427 

 CS-DSG3 (2424)  65.315  7.8136  45.653  6.6565  43.682  6.0465 

 10 

 Reddy and Liu FSDT [10]  73.836  -  52.273  -  50.186  - 
 CS-DSG3 (88)  60.590  16.625  39.479  11.927  37.906  11.122 

 CS-DSG3 (1212)  64.279  17.456  42.636  12.645  40.823  11.652 

 CS-DSG3 (2424)  69.145  18.078  47.133  13.176  45.109  12.049 

 100 

 Reddy and Liu FSDT [10]  74.940  -  52.666  -  50.565  - 
 CS-DSG3 (88)  61.833  43.141  39.930  19.481  38.345  18.515 

 CS-DSG3 (1212)  65.578  45.176  43.109  20.727  41.281  19.438 

 CS-DSG3 (2424)  70.489  46.333  47.624  21.504  45.589  20.020 
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 CS-DSG3 (2424)  69.145  18.078  47.133  13.176  45.109  12.049 

 100 

 Reddy and Liu FSDT [10]  74.940  -  52.666  -  50.565  - 
 CS-DSG3 (88)  61.833  43.141  39.930  19.481  38.345  18.515 

 CS-DSG3 (1212)  65.578  45.176  43.109  20.727  41.281  19.438 

 CS-DSG3 (2424)  70.489  46.333  47.624  21.504  45.589  20.020 

 

  

x yR R R  ;x yR R R (b) Cylindrical shell model (Rx = ∞, Ry = R)

Fig. 2. Geometry for laminated composite shells

4.1. Static analysis
4.1.1. Laminated spherical shell

Firstly, the static analysis of a simply supported laminated spherical shell is studied.
The shell composes of several layers such as [0◦/90◦], [0◦/90◦/0◦], [0◦/90◦/90◦/0◦]. All
the plies have the same thickness and material with mechanical properties given by: E1 =
25E2, G12 = 0.5E2, G13 = 0.5E2, G23 = 0.2E2, v12 = 0.25. Tab. 1 presents the non-
dimensional central deflections of the laminated shell subjected to sinusoidal loading, by
the CS-DSG3 in comparison with those by the DSG3 [44] and Reddy and Liu [10] using
the FSDT. Further, the non-dimensional central displacements of laminated shell under

Table 1. The non-dimensional center deflections of the laminated spherical shells
under sinusoidal load

R/a Theory
0◦/90◦ 0◦/90◦/0◦ 0◦/90◦/90◦/0◦

a/h=10 a/h=100 a/h=10 a/h=100 a/h=10 a/h=100

Reddy and Liu FSDT [10] 11.4290 1.1948 6.4253 1.0337 6.3623 1.0279
DSG3 (24×24) 11.2516 1.1630 6.3442 1.0087 6.2653 1.0024

5 CS-DSG3 (8×8) 10.7714 1.1287 6.1245 0.9772 6.0546 0.9713
CS-DSG3 (12×12) 11.1020 1.1527 6.2837 0.9999 6.2135 0.9940
CS-DSG3 (24×24) 11.3055 1.1645 6.3672 1.0113 6.2969 1.0053

Reddy and Liu FSDT [10] 12.1230 3.5760 6.6247 2.4109 6.5595 2.4030
DSG3 (24×24) 12.0923 3.5495 6.6487 2.4103 6.5701 2.4009

10 CS-DSG3 (8×8) 11.5641 3.4124 6.3912 2.0314 6.3294 2.2933
CS-DSG3 (12×12) 11.9266 3.5118 6.5584 2.3729 6.4861 2.3649
CS-DSG3 (24×24) 12.1165 3.5625 6.6612 2.4123 6.5886 2.4041

Reddy and Liu FSDT [10] 12.3700 10.446 6.6923 4.3026 6.6264 4.3021
DSG3 (24×24) 12.3911 10.465 6.7438 4.3438 6.6640 4.3391

100 CS-DSG3 (8×8) 11.8434 9.7343 6.4817 4.0756 6.4092 4.0730
CS-DSG3 (12×12) 12.2177 10.277 6.6518 4.2516 6.5786 4.2507
CS-DSG3 (24×24) 12.4478 10.522 6.7564 4.3453 6.6828 4.3447
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uniformly distributed and point load obtained by the CS-DSG3 are listed in Tabs. 2 and 3
along with those by Reddy and Liu [10] using the FSDT, respectively. The various ratios
of values side-to-thickness and values of radius-to-thickness are also examined. It is seen
that the results by the CS-DSG3 are softer than those of the DSG3 and agree well with
those published by Reddy and Liu [10] using the FSDT.

Table 2. The non-dimensional center deflections of the laminated spherical shells
under uniform load

R/a Theory
0◦/90◦ 0◦/90◦/0◦ 0◦/90◦/90◦/0◦

a/h=10 a/h=100 a/h=10 a/h=100 a/h=10 a/h=100

5

Reddy and Liu FSDT [10] 19.9440 1.7535 9.7937 1.5118 9.8249 1.5358
CS-DSG3 (8×8) 16.8807 1.6712 9.3469 1.4427 9.3365 1.4630
CS-DSG3 (12×12) 17.3799 1.6926 9.5609 1.4628 9.5678 1.4856
CS-DSG3 (24×24) 17.6854 1.7059 9.6914 1.4762 9.7095 1.4995

10

Reddy and Liu FSDT [10] 19.0650 5.5428 10.110 3.6445 10.141 3.7208
CS-DSG3 (8×8) 18.2055 5.3245 9.7984 3.5237 9.7879 3.5780
CS-DSG3 (12×12) 18.7586 5.4562 10.025 3.6008 10.032 3.6713
CS-DSG3 (24×24) 19.0971 5.5213 10.164 3.6454 10.186 3.7221

100

Reddy and Liu FSDT [10] 19.4640 16.6450 10.2180 6.6421 10.2490 6.6772
CS-DSG3 (8×8) 18.6726 15.5468 9.95190 6.3613 9.94110 6.4508
CS-DSG3 (12×12) 19.2457 16.3981 10.1839 6.5904 10.1908 6.7124
CS-DSG3 (24×24) 19.5964 16.7744 10.3253 6.7133 10.3436 6.8493

Table 3. The non-dimensional center deflections of the laminated spherical shells
under central concentrated load

R/a Theory
0◦/90◦ 0◦/90◦/0◦ 0◦/90◦/90◦/0◦

a/h=10 a/h=100 a/h=10 a/h=100 a/h=10 a/h=100

5

Reddy and Liu FSDT [10] 71.015 - 51.410 - 49.360 -
CS-DSG3 (8×8) 57.019 6.7337 38.123 5.8155 36.595 5.3842
CS-DSG3 (12×12) 60.573 7.3182 41.223 6.2661 39.461 5.7427
CS-DSG3 (24×24) 65.315 7.8136 45.653 6.6565 43.682 6.0465

10

Reddy and Liu FSDT [10] 73.836 - 52.273 - 50.186 -
CS-DSG3 (8×8) 60.590 16.625 39.479 11.927 37.906 11.122
CS-DSG3 (12×12) 64.279 17.456 42.636 12.645 40.823 11.652
CS-DSG3 (24×24) 69.145 18.078 47.133 13.176 45.109 12.049

100

Reddy and Liu FSDT [10] 74.940 - 52.666 - 50.565 -
CS-DSG3 (8×8) 61.833 43.141 39.930 19.481 38.345 18.515
CS-DSG3 (12×12) 65.578 45.176 43.109 20.727 41.281 19.438
CS-DSG3 (24×24) 70.489 46.333 47.624 21.504 45.589 20.020



Static and free vibration analyses of laminated composite shells by cell-based smoothed discrete shear gap method . . . 97

4.1.2. Laminated cylindrical shell
Next, the static analysis of the laminated cylindrical shells is considered. All of

the layers are made by the same material with mechanical properties given by: E1 =
19.2×106 Psi; E2 = 1.56×106 Psi, G12 = G13 = 0.82×106 Psi, G23 = 0.523×106 Psi, v12 =
0.24. The shell is subjected to a sinusoidal distributed load. Tab. 4 presents the non-
dimensional center deflections of the shell in comparison with those published by Khdeir
et al. [9]. Despite using a coarse mesh (12×12), it is observed that the obtained results
match well with exact solution by Khdeir et al. [9].

Table 4. The non-dimensional center deflections of the laminated cylindrical shells
under sinusoidal distributed load

R/a (a/h = 10) Theory 0◦/90◦ 0◦/90◦/0◦ 0◦/90◦/90◦/0◦

5

FSDT [9] 1.5614 0.8999 -
CS-DSG3 (8×8) 1.4780 0.9090 0.8993
CS-DSG3 (12×12) 1.5261 0.9359 0.9261
CS-DSG3 (24×24) 1.5555 0.9525 0.9426

10

FSDT [9] 1.5910 0.9434 -
CS-DSG3 (8×8) 1.5257 0.9269 0.9175
CS-DSG3 (12×12) 1.5756 0.9545 0.9450
CS-DSG3 (24×24) 1.6062 0.9714 0.9618

50

FSDT [9] 1.6000 0.9583 -
CS-DSG3 (8×8) 1.5420 0.9327 0.9234
CS-DSG3 (12×12) 1.5926 0.9605 0.9511
CS-DSG3 (24×24) 1.6235 0.9776 0.9681

4.2. Free vibration analysis
In this example, the free vibration analysis of simply supported laminated composite

spherical and cylindrical shells is considered. All layers of these shells are assumed to be
of the same thickness and material with mechanical properties given by: E1 = 25E2,
G12 = 0.5E2, G13 = 0.5E2, G23 = 0.2E2, v12 = 0.25. The non-dimensional frequencies of
the laminated spherical shell by the CS-DSG3 are compared with those by Reddy and Liu
[10] in Tab. 5. Tab. 6 contains non-dimensional frequencies of the laminated cylindrical
shell which are compared with analytical solutions by Reddy and Liu [10]. The shape
of the first-six mode shapes of these shells by the CS-DSG3 is also displayed in Figs. 3
and 4. It can be seen that the results obtained by the CS-DSG3 agree well with reference
solutions using FSDT of Reddy and Liu [10].
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Table 5. Non-dimensional frequencies ω of a cross-ply laminated spherical shells (Rx = Ry = R)

R/a Theory
0◦/90◦ 0◦/90◦/0◦ 0◦/90◦/90◦/0◦

a/h=10 a/h=100 a/h=10 a/h=100 a/h=10 a/h=100

5

FSDT [10] 9.2309 28.8250 12.3720 30.9930 12.4370 12.3800
CS-DSG3 (8×8) 9.6105 30.0054 12.7958 32.2573 12.8746 32.3533
CS-DSG3 (12×12) 9.3569 29.3434 12.4863 31.5120 12.5614 31.6050
CS-DSG3 (24×24) 9.2078 28.9614 12.3037 31.0822 12.3766 31.1728

10

FSDT [10] 8.9841 16.7060 12.2150 20.3470 12.4370 20.3800
CS-DSG3 (8×8) 9.3713 17.4354 12.6673 21.2329 12.7437 21.2675
CS-DSG3 (12×12) 9.1206 16.9796 12.3583 20.6578 12.4314 20.6921
CS-DSG3 (24×24) 8.9734 16.7380 12.1762 20.3421 12.2474 20.3764

100

FSDT [10] 8.9009 9.7896 12.1630 15.2440 12.2280 15.2450
CS-DSG3 (8×8) 9.2911 10.358 12.6241 16.0094 12.6998 16.0110
CS-DSG3 (12×12) 9.0412 9.9574 12.3152 15.4827 12.3878 15.4837
CS-DSG3 (24×24) 8.8946 9.7703 12.1333 15.2047 12.2040 15.2057

Table 6. The non-dimensional ω frequencies of a cross-ply laminated cylindrical shells
(Ry = R, Rx = ∞)

R/a Theory
0◦/90◦ 0◦/90◦/0◦ 0◦/90◦/90◦/0◦

a/h=10 a/h=100 a/h=10 a/h=100 a/h=10 a/h=100

5

FSDT [10] 8.9082 16.6680 12.2070 20.332 12.2670 20.3610
Present (8×8) 9.2805 17.1638 12.4794 20.9195 12.5887 20.9538
Present (12×12) 9.0985 16.8699 12.2934 20.5549 12.3868 20.5866
Present (24×24) 9.0123 16.7363 12.2064 20.3824 12.2883 20.4132

10

FSDT [10] 8.8879 11.831 12.1730 16.6250 12.2360 16.6340
Present (8×8) 9.3048 12.4510 12.6379 17.4240 12.7141 17.4355
Present (12×12) 9.0550 12.0455 12.3289 16.8880 12.4019 16.8991
Present (24×24) 8.9084 11.8461 12.1468 16.6014 12.2180 16.6126

100

FSDT [10] 8.8974 9.7108 12.1630 15.1980 12.2270 15.1990
Present (8×8) 9.2853 10.280 12.6222 15.9617 12.6969 15.9618
Present (12×12) 9.0356 9.8801 12.3134 15.4353 12.3849 15.4348
Present (24×24) 8.8891 9.6935 12.1315 15.1576 12.2011 15.1571
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5. CONCLUSIONS

The paper presents an extension of the CS-DSG3 using the FSDT for static and free
vibration analyses of laminated composite shells. Through the present formulations and
obtained numerical results, some main points can be withdrawn as:

i). The CS-DSG3 uses three-node triangular elements that are easier generated auto-
matically for arbitrary complex geometrical domains.

ii). The CS-DSG3 uses only minimum degrees of freedom at each vertex node, so
we can expect an efficient analysis in term of computational cost. The CS-DSG3 is free of
shear locking for laminated composite shells.
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iii). Due to using the gradient smoothing technique which can help soften the over-
stiff behavior in the DSG3, the proposed CS-DSG3 improves significantly the accuracy of
the numerical results and has a good convergence performance.

iv). The accuracy and reliability of the CS-DSG3 are verified by comparing its numer-
ical solutions with those of other available numerical results. The results by the CS-DSG3
agree well with all reference solutions in different analyses.

The method presented herein is promising to be an effectively alternative method of
classical finite elements for analysis of laminated composite shells in practice.
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