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Abstract. In this paper, a robust controller for a nonholonomic wheeled mobile robot
(WMR) is proposed for tracking a predefined trajectory in the presence of unknown wheel
slips, bounded external disturbances, and model uncertainties. The whole control system
consists of two closed loops. Specifically, the outer one is employed to control the kinemat-
ics, and the inner one is used to control the dynamics. The output of kinematic controller
is adopted as the input of the inner (dynamic) closed loop. Furthermore, two robust tech-
niques were utilized to assure the robustness. In particular, one is used in the kinematic
controller to compensate the harmful effects of the unknown wheel slips, and the other is
used in the dynamic controller to overcome the model uncertainties and bounded external
disturbances. Thanks to this proposed controller, a desired tracking performance in which
tracking errors converge asymptotically to zero is obtained. According to Lyapunov the-
ory and LaSalle extension, the desired tracking performance is guaranteed to be achieved.
The results of computer simulation have shown the validity and efficiency of the proposed
controller.

Keywords: Asymptotic convergence to zero, bounded external disturbances, desired track-
ing performance, model uncertainties, unknown wheel slips.

1. INTRODUCTION

It is well known that wheeled mobile robots are able to work effectively in a wide
area, and especially they are capable of performing tasks intelligently without any hu-
man action. In addition, they can replace people on dangerous tasks such as looking for
explosive materials, transporting of goods in environments having poison, rescue, etc.,
and therefore they have had wide applicability and been increasingly popular in various
areas such as industry, entertainment, healthcare, automation in logistics, transport, etc.

c© 2018 Vietnam Academy of Science and Technology

http://dx.doi.org/10.15625/0866-7136/10564
mailto: nvtinh@ioit.ac.vn


142 Kiem Nguyentien, Linh Le, Tuan Do, Tinh Nguyen, Minhtuan Pham

Furthermore, a WMR is one of the systems suffering nonholonomic constraints, and
therefore researchers all over the world have paid much their attention to study this topic
Recently, a lot of the effort of researchers in the world has been paid in order to solve
the tracking control problems of WMRs by employing various control techniques such
as sliding mode control [1], adaptive control [2], backstepping control [3, 4], etc. Most
previous works have been performed under an assumption that “pure rolling without
slip” has held.

Conversely, unfortunately, in a number of practical applications, such the assump-
tion has usually been violated. There simply existed wheel slips. Clearly, the wheel slip
has been one of the reasons making tracking performance of a WMR be worse signifi-
cantly. Accordingly, a robust tracking controller must be proposed in such a way that
it is capable of compensating the effects of the wheel slips to achieve a desired tracking
performance.

To be specific, with the aim of addressing the undesired influences of the wheel slips,
an adaptive tracking controller was derived in [5], which is based on slip-ratios. Meth-
ods based on gyros and accelerometers to cope with the wheel slips in the realtime were
also shown in [6, 7]. The authors in [8] proposed a feedback linearization controller for
tracking a desired trajectory of a WMR in the presence of the longitudinal and lateral slip
at each driving wheel under an ideal condition where model uncertainties and unknown
bounded external disturbances were ignored, and furthermore the values of the acceler-
ations and velocities of the wheel slips could be accurately measured Nevertheless, it is
impractical to obtain an acceptable performance by adopting this feedback linearization
controller in real applications. The reason is that such an ideal condition is unrealistic
and therefore does not exist in practice In [9], a tracking control problem was addressed
in the world coordinate system by means of a neural network-based adaptive tracking
controller being capable of compensating the effects the wheel slips, where the neural net-
work weight updating law was built by making an objective function minimal. In [10],
an adaptive controller based on a nonlinear disturbance observer was proposed at the
dynamic level and in the polar coordinate system for trajectory tracking of a class of Type
(2, 0) WMRs.

Overall, most these works were fulfilled under a condition that the accelerations and
velocities of the wheel slips have been measured exactly for analyzing and designing
controllers being robust against the wheel slips. The drawback of this condition is the
extra requirement of expensive and complex sensors so as to measure the wheel slips
such as a global position system (GPS), a gyroscope, an accelerometer, etc.

These results have motivated us to propose a robust tracking control method based
on the backstepping technique [3] for a WMR with the unknown wheel slips, model un-
certainties, and unknown bounded external disturbances in such a way that the WMR
tracks a predefined trajectory with a desired tracking performance where the conver-
gence to zero of the tracking errors is ensured Furthermore, this proposed control method
has relaxed the measurements of the accelerations and velocities of the wheel slips. The
entire control system includes two closed loops. To be specific, the outer one is adopted in
order to control the kinematics, and the other is used to control the dynamics Moreover,
two robust techniques were utilized to assure the robustness. In particular, one is used
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in the kinematic controller so as to overcome the harmful effects of the unknown wheel
slips, and the other is used in the dynamic controller to deal with the model uncertainties
and bounded external disturbances.

The structure of this article is organized as follows. Section 2 shows preliminaries
namely the kinematics and dynamics of the WMR with the wheel slips. Section 3 ex-
presses a procedure designing the proposed control law. Section 4 illustrates comparative
computer simulation results carried out via Matlab/Simulink software. Finally, Section 5
describes our conclusions.

2. PRELIMINARIES

2.1. The kinematics of the WMR with the wheel slips
Let us consider a nonholonomic WMR composed of two driving wheels and a caster

wheel as shown in Fig. 1. Specifically, G with coordinates (xG, yG) is the center of mass
of the platform of the WMR. M with coordinates (xM, yM) indicates the midpoint of the
wheel shaft. F1 and F2 illustrate the total longitudinal friction forces at the right and left
driving wheel, respectively. F3 expresses the total lateral friction force along the wheel
shaft. F4 and v describe external force and moment acting on G, respectively. r is the
radius of each driving wheel. b shows the haft of the wheel shaft. θ is the angle showing
the orientation of the WMR.
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Fig. 1. a) A nonholonomic WMR subjected to unknown wheel slips.     b) The coordinate of the target is 

represented in the body coordinate system M-XY. 
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Fig. 1. (a) A nonholonomic WMR subjected to unknown wheel slips; (b) The coordinate of the
target is represented in the body coordinate system M-XY

Without the wheel slips, the linear and angular velocities of the WMR, calculated at
M, are expressed respectively as follows [3]

Θ =
r (φ̇R + φ̇L)

2
, µ =

r (φ̇R − φ̇L)

2b
, (1)

where φ̇R, φ̇L denote the angular velocities of the right and left driving wheel about the
wheel shaft, respectively.
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Thus, the kinematics of the WMR is shown as follows [3]
ẋM = Θ cos θ,
ẏM = Θ sin θ,
µ = θ̇.

(2)

On the other hand, if the WMR moves in the presence of the wheel slips, then (1) and
(2) do not hold. Now, let us denote γR and γL as the coordinate of the longitudinal slip
of the right and left driving wheels, respectively, and η as the coordinate of the lateral
slip along the wheel shaft (see Fig. 1), with the result that the actual linear velocity of the
WMR along the longitudinal direction is described as follows [8]

ϑ =
r (φ̇R + φ̇L)

2
+

γ̇R + γ̇L

2
= Θ +

γ̇R + γ̇L

2
. (3)

The actual angular velocity of the WMR is computed as follows [8]

ω =
r (φ̇R − φ̇L)

2b
+

γ̇R − γ̇L

2b
= µ +

γ̇R − γ̇L

2b
. (4)

Thus, the kinematic model of this WMR can be expressed as follows [8]
ẋM = ϑ cos θ − η̇ sin θ,
ẏM = ϑ sin θ + η̇ cos θ,
θ̇ = ω.

(5)

The perturbed nonholonomic constrains can in turn be written as follows [10] γ̇R = −rφ̇R + ẋM cos θ + ẏM sin θ + bω,
γ̇L = −rφ̇L + ẋM cos θ + ẏM sin θ − bω,
η̇ = −ẋM sin θ + ẏM cos θ.

(6)

2.2. Dynamics of the WMR with wheel slips

Let q = [xG, yG, θ, η, γR, γL, φR, φL]
T be a vector of generalized Lagrange coordinates.

The perturbed nonholonomic constrains (6) can be expressed in term of matrix as follows

A (q) q̇ = 0. (7)

with A (q) =

 cos θ sin θ b 0 −1 0 −r 0
cos θ sin θ −b 0 0 −1 0 −r
− sin θ cos θ a −1 0 0 0 0

, where a is the distance

between M and G (see Fig. 1).
According to Euler–Lagrange formulation, the dynamic model of this WMR is shown

as follows [3]
M (q) q̈ + τττd = Nτττ + AT (q)λλλ, (8)

where λλλ = [λ1, λ2, λ3]
T is the vector of Lagrange multipliers to be considered as non-

holonomic constraint factors. τττ = [τR, τL]
T is the input vector with τR and τL showing

the torques at the right and left driving wheel about the wheel shaft, respectively. τττd
is a vector describing both the model uncertainties such as unstructured unmodelled
dynamic components and the unknown bounded external disturbances for example un-
known external forces as F1, F2, F3, F4, v (see Fig. 1(a)).
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N =

[
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]T

is the input transformation matrix.

Replacing (xM, yM) in (5) and (6) by (xG, yG), it is possible to show that

q̇ = S1 (q) v + S2 (q) γ̇γγ + S3 (q) η̇ηη, (9)

where v = [φ̇R, φ̇L]
T, γγγ = [γR, γL]

T. Here, S1 (q) , S2 (q) and S3 (q) are possibly given by

S1 =


( r

2
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]T .
Subsequently, taking the time derivative of (9), we obtain

q̈ = Ṡ1 (q) v + S1 (q) v̇ + S2 (q) γ̈γγ + Ṡ2 (q) γ̇γγ + Ṡ3 (q) η̇ηη + S3 (q) η̈ηη. (10)

On the other hand, one can easily see that

A (q)S1 (q) = 0 and ST
1 (q)N = I. (11)

Substituting (10) into (8), and then pre-multiplying the both sides of the new equa-
tion by ST

1 (q), it results in

Mv̇ + B (v) v +ΩΩΩv + Qγ̈γγ + Cη̇ηη + Gη̈ηη + τττd = τττ, (12)

where τττd = ST
1 (q)τττd. The matrices in (12) are shown specifically as follows

M = ST
1 MS1 =
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]
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.
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The parameters of the WMR in the above matrices are described in Tab. 1.

Table 1. The parameters of the WMR [3]

Symbol Quantity Value

mG The mass of the platform of the WMR 10 (kg)
IG The inertial moment of the platform about 5 (kg.m2)

the vertical axis through G
a The distance between G and M (see Fig. 1(a)) 0.2 (m)
C The distance between P and M (see Fig. 1(b)) 0.5 (m)
mW The mass of each driving wheel 2 (kg)
IW The inertial moment of each driving wheel about 0.1 (kg.m2)

the wheel shaft
ID The inertial moment of each wheel about its diameter axis 0.05 (kg.m2)

b half-distance between two the driving wheels 0.25 (m)
r The radius of each driving wheel 0.05 (m)

We have 2 following properties.
Property 1. M is always an invertible, differentiable, and positive-definite.
Property 2.

[
Ṁ− 2B (v)

]
is a skew-symmetric matrix. In other words, it implies that

xT [Ṁ− 2B (v)
]

x = 0 with ∀x ∈ R2×1.

3. DESIGNING CONTROL LAW

3.1. Problem statement
The control goal is to design an adaptive tracking controller for the WMR subjected

to the unknown wheel slips, the model uncertainties, and the unknown bounded external
disturbances in such a way that the point P of the WMR (see Fig. 1) seems to track
the target D with a predefined tracking performance in the absence of measuring the
accelerations and velocities of the wheel slips. For this purpose, we have proposed the
scheme of the whole control system as shown in Fig. 2.
Remark 1. From Fig. 1, let (xP, yP, θ) and (xPd, yPd, θd) be the actual and desired posture
of the WMR, respectively. It is infeasible to obtain an arbitrarily good tracking perfor-
mance in a finite-time interval if one wants to control the WMR in such a way that the
actual posture (xP, yP, θ) tracks the desired one (xPd, yPd, θd) successfully in the presence
of the wheel slips, namely both longitudinal slips and lateral slip between the driving
wheels and the floor. On the other hand, an arbitrarily good tracking performance in a
finite-time interval is fully achievable if one wants to control the WMR with the purpose
of making the actual position (xP, yP) track the desired one (xPd, yPd) in such situations
(see Definition 1 and Definition 2 in [11]).
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where χ̂  is the kinematic robust term which eliminates the harmful effects of the wheel slips at the 
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Fig. 2. Scheme of the whole closed-loop control system

3.2. Robust kinematic control law
Firstly, let O-XY denote the global coordinate system and M-XY denote the body

coordinate system attached to the WMR’s platform (see Fig. 1(b)). The coordinate vector
of the target D is expressed in M-XY as follows

ζζζ =

[
ζ1
ζ2

]
=

[
cos θ sin θ
− sin θ cos θ

] [
xD − xM
yD − yM

]
, (13)

where (xD, yD) is the Cartesian coordinate of D in O-XY (see Fig. 1(b)).
Taking the first order derivative with respect to time of (13) yields

ı̇ = hv +

[
cos θ sin θ
− sin θ cos θ

] [
ẋD
ẏD

]
+χχχ, (14)

where h =


(

ζ2
1
b
− 1
)

r
2
−
(

ζ2
1
b
+ 1
)

r
2

−ζ1
r

2b
ζ1

r
2b

, χχχ =

[
− γ̇R + γ̇L

2
−η̇

]
.

Remark 2. Because of det (h) = −ζ1
r2

2b
, it follows that h is invertible as long as ζ1 6= 0.

Assumption 1. Not only xD, yD but also their first and second derivatives are bounded.
Assumption 2. All γ̇R, γ̇L and η̇ are bounded. Therefore, there exists an unknown posi-
tive constant value Γ such that ‖χχχ‖ ≤ Γ.

From the control goal stated in Subsection 3.1 and Fig. 1, it is possible to express the
desire vector of ζζζ as ζζζd = [C, 0]T, and therefore the vector of the position tracking errors
is calculated as e = [e1, e2]

T = ζζζ − ζζζd.
As the velocities of the wheel slips are not measured, χχχ in (14) is unknown. Conse-

quently, let us propose a desired vector of the wheel angular velocity v as follows

vc = h−1
(
−ΛΛΛe + ı̇d −

[
cos θ sin θ
− sin θ cos θ

] [
ẋD
ẏD

]
− χ̂χχ

)
, (15)
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where χ̂χχ is the kinematic robust term which eliminates the harmful effects of the wheel
slips at the kinematic level to establish the robustness of the kinematic closed control loop
(see Fig. 2), and ΛΛΛ is a positive definite matrix and can be selected arbitrarily.

Replacing v in (14) by vc in (15) yields

ė = −ΛΛΛe +χχχ− χ̂χχ. (16)

Let us propose the kinematic robust term as follows

χ̂χχ = Γ̂
e
‖e‖ with ˙̂Γ = H ‖e‖ , (17)

where H expresses a positive real constant and can be chosen arbitrarily. Γ̂ is the kine-
matic robust gain and updated online.

3.3. Robust dynamic control law
Adding −Mv̇c − B (v) vc to the both sides of (12) results in

Mṡ = τττ − B (v) s−Mv̇c − B (v) vc + δδδ, (18)

with s = v − vc being the velocity tracking error vector, and δδδ = −ΩΩΩv −Qγ̈γγ − Cη̇ηη−
Gη̈ηη − τττd.

It should be noted that there is no prior knowledge of the dynamic parameters of the
WMR exactly. Therefore, let us propose the torque input as follows

τττ = −Ks + M̂v̇c + B̂ (v) vc − d̂, (19)

where K is a positive-definite diagonal constant matrix and can be chosen arbitrarily. M̂
and B̂ (v) are the estimation of M and B (v), respectively. d̂ shows the dynamic robust
term to eliminate the total uncertainty owing to the model uncertainties and unknown
bounded external disturbances and to be determined subsequently.

Utilizing the control input (19) makes the dynamics of s in (18) become

Mṡ = −B (v) s−Ks + d− d̂, (20)

with d = δδδ− M̃v̇c − B̃ (v) vc, M̃ = M− M̂, B̃ (v) = B (v)− B̂ (v).
Assumption 3. d is bounded by an unknown positive value, which implies that ‖d‖ ≤ Υ.

On the other hand, the dynamic robust term d̂ in (19) is proposed as follows

d̂ = Υ̂
s
‖s‖ with ˙̂Υ = Ψ ‖s‖ , (21)

with Ψ being positive constants and being selected arbitrarily. Υ̂ is the dynamic robust
gain and updated online.

3.4. Stability analysis
Theorem 1. Let us take account of the WMR in the presence of the unknown wheel slips, model
uncertainties, bounded external disturbances with the kinematics (5) and the dynamics (12) under
a condition that Assumptions 1–3 hold. If the proposed control method as shown Fig. 2 with the
kinematic control law (15) and dynamic control law (19) is utilized, then the tracking error vectors
consisting of e and s asymptotically converge to zero as t → ∞ and the control parameters are
ensured to be bounded for all t > 0.
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Proof. Let us choose a candidate Lyapunov function as follows

V =
1
2

eTe +
1
2

sTMs +
1
2

H−1Γ̃2 +
1
2

Ψ−1Υ̃2, (22)

with Υ̃ = Υ− Υ̂, Γ̃ = Γ− Γ̂.
Taking the first derivative of (22), it follows that

V̇ = eTė + sTMṡ +
1
2

sTṀs− H−1Γ̃ ˙̂Γ−Ψ−1Υ̃ ˙̂Υ. (23)

Putting (16), (17), (20), and (21) into (23) with noting Property 2 leads to

V̇ = −eTΛΛΛe + eTχχχ− Γ̂ ‖e‖ − Γ̃ ‖e‖+ sTd− Υ̃ ‖s‖ − Υ̂ ‖s‖ − sTKs. (24)

According to Assumptions 2–3, it implies that

V̇ ≤ −eTΛΛΛe− sTKs. (25)

For this reason, it follows that V̇ ≤ 0 with ∀s, e. Applying Lyapunov theory and
LaSalle extension, thus allowing for V (t) ≤ V (0), has resulted in that if s, e, Γ̃, and Υ̃
were bounded at the initial time t = 0, then they all also will be ensured to be bounded
for all t > 0. As a consequence of this, all vc, ζζζ, Γ̂, and Υ̂ are bounded for all t > 0.

In order to apply Barbalat’s lemma [12], we define another candidate Lyapunov func-
tion as follows

V2 = V −
t∫

0

[
V̇ (ι) + eT (ι)ΛΛΛe (ι) + sT (ι)Ks (ι)

]
dι. (26)

Differentiating (26) yields

V̇2 = −eTΛΛΛe− sTKs. (27)

Now let us check the uniform continuity of V̇2 whose first derivative is computed as
follows

V̈2 = −2eTΛΛΛė− 2sTKṡ. (28)

Every term in (16) as well as (20) is bounded, thus allowing for that V̈ is guaranteed
to be bounded, which in turn leads to that V̇2 is uniformly continuous. In accordance
with Barbalat’s lemma, we can conclude that V̇2 → 0 as t → ∞, which causes that not
only e but also s asymptotically converge to zero.
Remark 3. In order to remove the chattering in the output of the kinematic controller, vc,
let us replace (17) by the following equation.

χ̂χχ =


Γ̂

e
‖e‖ if ‖e‖ > ς

Γ̂
e
ς

if ‖e‖ ≤ ς
with ˙̂Γ =

{
H ‖e‖ if ‖e‖ > ς

0 if ‖e‖ ≤ ς
(29)

where ς is a tiny positive real constant value illustrating a boundary layer around zero
and can be chosen arbitrarily.
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Let us check the stability of the kinematic control closed loop whenever ‖e‖ ≤ ς by
selecting another candidate Lyapunov function as follows

V3 =
1
2

eTe. (30)

Taking the time derivative of (30) results in

V̇3 = eTė. (31)

Substitution (16) and (29) in case ‖e‖ ≤ ς into (31) yields

V̇3 = −eT

(
ΛΛΛe−χχχ +

Γ̂
ς

e

)
. (32)

Applying Assumption 2 shows that

V̇3 ≤ −‖e‖
[(

Λmin +
Γ̂
ς

)
‖e‖ − Γ

]
, (33)

where Λmin is the minimum eigenvalue of ΛΛΛ.
Seeing (33) describes that V̇3 is assured to be negative as long as the term in the braces

is strictly positive. Particularly, V̇3 is negative if the following inequality holds.(
Λmin +

Γ̂
ς

)
‖e‖ > Γ. (34)

As a result, according to Lyapunov criteria and LaSalle extension, it can be easily
shown that e is guaranteed to be uniformly ultimately bounded in the following compact
set.

Ue =

{
e ∈ R2×1

∣∣∣∣∣
(

Λmin +
Γ̂
ς

)
‖e‖ ≤ Γ

}
. (35)

Moreover, it is clear that e can be kept arbitrarily small by choosing ΛΛΛ to be proper.
Particularly, the bigger Λmin is, the smaller e is.
Remark 4. In order to alleviate the chattering at the dynamic level, (21) is proposed to be
replaced by the following equations.

d̂ =


Υ̂

s
‖s‖ if ‖s‖ > κ

Υ̂
s
κ

if ‖s‖ ≤ κ

with ˙̂Υ =

{
Ψ ‖s‖ if ‖s‖ > κ

0 if ‖s‖ ≤ κ
(36)

where κ is a very small positive constant showing a boundary layer around zero and can
be selected arbitrarily.

In case of ‖s‖ ≤ κ, in accordance with Lyapunov criteria and LaSalle extension, it is
easily to reveal that s is guaranteed to be ultimately uniformly bounded in the following
compact set

Us =

{
s ∈ R2×1

∣∣∣∣∣
(

Kmin +
Υ̂
κ

)
‖s‖ ≤ Υ

}
, (37)
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where Kmin is the minimum eigenvalue of K. Besides, it is worth to note that s can be
kept as small as possible via choosing K to be suitable. Particularly, the bigger K is, the
smaller s is.

4. SIMULATION RESULTS

In this section, let us show a computer simulation for trajectory tracking of the WMR
which were implemented to validate the correctness and effectiveness of the proposed
control method. Crucially, it is unnecessary to preliminary known the dynamic parame-
ters of the WMR precisely. Furthermore, in this computer simulation, we compared be-
tween its tracking performance and that of the feedback linearization control method [8].

For comparison, both of the two methods were implemented under the same condi-
tion that in addition to the model uncertainties and the bounded external disturbances
existing, there was also no need for measuring the accelerations and velocities of the
unknown wheel slips. To be specific, without loss generality, let us assume that τττd =

[3 + sin(0.5t), 2.5 + cos (0.4t)]T (N.m), and furthermore the unknown wheel slips between
the floor and the driving wheels are illustrated as [γ̇R, γ̇L, η̇]T = [2 sin t, 1.5 cos 0.5t, 0.5]T

(m/s) for all t > 2 (s). The control gains were chosen as K = diag([2, 2]), ΛΛΛ = diag([2, 2]).
The target D was on a straight line with the following motion equation{

xD = 4 + 0.5t,
yD = −0.5 + 0.25t.

(38)
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robust terms, ̂  and ̂ , of the proposed control method were bounded as illustrated in Fig. 6. 
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external disturbances, the proposed control method has effectively compensated the un-
desired effects of all the wheel slips, model uncertainties, and external disturbances in
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comparison with the control method in [8]. In other words, the robust capability of the
robust terms gave the former a big advantage over the latter.

Tinh Nguyen, Tuan Do, Linh Le, Minhtuan Pham, Nam Dao 12 

In general, from these above simulation results, we can draw a conclusion that Theorem 1 holds. 
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Remark 5: For the tracking performance of the feedback linearization control method, one may 

wonder why it is worse in this paper than in the original paper [8]. For comparison purposes, in this 

paper, both the feedback linearization control method and this proposed control method were 

simulated under a more realistic condition where apart from ignoring the measurements for the 

accelerations and velocities of the wheel slips, we have taken into account the existence of both the 

unknown external disturbances and the model uncertainties. Meanwhile, in the original paper [8], the 

feedback linearization method was simulated under an ideal condition where the accelerations and 

velocities of the wheel slips were available from precise measurements, and further there existed no 

both the external disturbances and the model uncertainties. 

5. CONCLUSIONS 

In this work, the robust tracking control method has been developed to allow the WMR to track 

a predefined trajectory with the desired tracking performance in the presence of the unknown wheel 

slips, model uncertainties, and unknown bounded external disturbances. It is unnecessary to require 

prior knowledge of the dynamic parameters of the WMR exactly. The two robust terms were utilized 

to form the robustness of the whole closed-loop control system. Particularly, the one was used in the 

kinematic controller, and the other was employed in dynamic controller. The gains of the two robust 

techniques were updated online due to no prior knowledge of the upper bounds of the wheel slips, 

model uncertainties, and external disturbances. It has been shown that not only the asymptotic 

convergence of the tracking errors to zero is guaranteed but also the robust terms are bounded via 

standard Lyapunov theory and LaSalle extension. The results of the computer simulations 

demonstrated the correctness as well as effectiveness of the proposed control approach. 
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Remark 5. For the tracking performance of the feedback linearization control method,
one may wonder why it is worse in this paper than in the original paper [8]. For com-
parison purposes, in this paper, both the feedback linearization control method and this
proposed control method were simulated under a more realistic condition where apart
from ignoring the measurements for the accelerations and velocities of the wheel slips,
we have taken into account the existence of both the unknown external disturbances and
the model uncertainties. Meanwhile, in the original paper [8], the feedback linearization
method was simulated under an ideal condition where the accelerations and velocities of
the wheel slips were available from precise measurements, and further there existed no
both the external disturbances and the model uncertainties.

5. CONCLUSIONS

In this work, the robust tracking control method has been developed to allow the
WMR to track a predefined trajectory with the desired tracking performance in the pres-
ence of the unknown wheel slips, model uncertainties, and unknown bounded external
disturbances. It is unnecessary to require prior knowledge of the dynamic parameters
of the WMR exactly. The two robust terms were utilized to form the robustness of the
whole closed-loop control system. Particularly, the one was used in the kinematic con-
troller, and the other was employed in dynamic controller. The gains of the two robust
techniques were updated online due to no prior knowledge of the upper bounds of the
wheel slips, model uncertainties, and external disturbances. It has been shown that not
only the asymptotic convergence of the tracking errors to zero is guaranteed but also the
robust terms are bounded via standard Lyapunov theory and LaSalle extension. The re-
sults of the computer simulations demonstrated the correctness as well as effectiveness
of the proposed control approach.
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