
Vietnam Journal of Mechanics, VAST, Vol. 40, No. 2 (2018), pp. 121 – 140
DOI:10.15625/0866-7136/10503

FREE VIBRATION ANALYSIS OF 2-D FGM BEAMS
IN THERMAL ENVIRONMENT BASED ON A NEW
THIRD-ORDER SHEAR DEFORMATION THEORY

Tran Thi Thom1,2, Nguyen Dinh Kien1,2,∗
1Institute of Mechanics, VAST, Hanoi, Vietnam

2Graduate University of Science and Technology, VAST, Hanoi, Viet Nam
∗E-mail: ndkien@imech.vast.vn

Received July 10, 2017

Abstract. Free vibration analysis of two-directional functionally graded material
(2-D FGM) beams in thermal environment based on a new third-order shear deformation
theory is presented. The material properties are assumed to be graded in both the thick-
ness and longitudinal directions by a power law distribution, and they are considered to
be temperature-dependent. Equations of motion, in which the shear rotation rather than
the cross-sectional rotation is considered to be an independent variable, are constructed
from Hamilton’s principle. A finite element formulation is derived and employed to com-
pute the vibration characteristics of the beams. The numerical results reveal that the de-
veloped formulation is accurate, and it is capable to give accurate natural frequencies by
using a small number of elements. A parametric study is carried out to highlight the effects
of material composition, temperature rise on the vibration characteristics of the beams.

Keywords: 2-D FGM beam, temperature-dependent properties, new third-order shear de-
formation theory, shear rotation, free vibration analysis.

1. INTRODUCTION

Beams made of functionally graded materials (FGMs) with excellent thermal re-
sistance are increasingly used as structural components in aircrafts and space vehicles
where the effect of temperature is often concerned. Investigations on the static and dy-
namic behavior of FGM beams are extensively reported in the literature, contributions
that are most relevant to the topic of the present work are briefly discussed below.

Chakraborty et al. [1] formulated a first-order shear deformable beam element for
studying the static, free vibration and wave propagation problems of bi-material beams
fused with an FGM layer. The beam element taking the uniform temperature rise into
consideration is derived by using the exact solution of static equilibrium equations of an
FGM segment to interpolate the kinematic variables. The third-order shear deformation
beam theory was adopted by Kadoli et al. [2] to develop the stiffness matrix and load
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vector for the stress analysis of FGM beams. Pradhan and Murmu [3] utilized the mod-
ified differential quadrature method to compute natural frequencies of FGM sandwich
beams. Mahi et al. [4] presented an analytical method for examining the effect of the tem-
perature rise and material distribution on the natural frequencies of higher-order shear
deformable FGM beams. Based on a new third-order shear deformation theory proposed
recently by Shi in [5], Wattanasakulpong et al. [6] studied the thermal buckling and vi-
bration of FGM beams. It has been shown by the authors that the fundamental frequency
decreases to zero when the temperature increases towards the critical temperature. Al-
shorbagy et al. [7] used the traditional two-node beam element to compute the natural
frequencies of beams with the material properties being graded in the thickness or lon-
gitudinal direction by a power-law distribution. Thai and Vo [8] presented analytical
solutions for the bending and free vibration problems of higher-order shear deformation
FGM beams. The bending and free vibration problems of FGM beams were also consid-
ered by Vo et al. in [9] by using a refined shear deformation beam theory. Nguyen et
al. [10] studied the bending and free vibration of axially loaded shear deformable FGM
beams in which the transverse shear stiffness is derived from the in-plane stress and the
shear correction factor is calculated analytically. Recently, Trinh et al. [11] presented an
analytical method for vibration and buckling analysis of the third-order shear deformable
FGM beams subjected to mechanical and thermal loads.

In the above-discussed references, the beam material properties are considered to
be varied in one spatial direction only. There are practical circumstances, in which the
unidirectional FGMs may not be so appropriate to resist multi-directional variations of
thermal and mechanical loadings. In this regard, the development of FGMs with effec-
tive material properties varying in two or three directions to withstand severe general
loadings is of great importance in practice. Investigations on the static and dynamic be-
havior of beams made of two-directional functionally graded materials (2-D FGMs) have
been reported by several researchers in recent years. Based on an analytical method,
Wang et al. [12] studied the free vibration of 2-D FGM beams by assuming the material
properties to be varied in the thickness by an exponent function and in the longitudinal
direction by a power law. It has been shown by the authors that the vibration character-
istics are significantly influenced by the longitudinal variation of the material properties,
and there is a critical frequency at which the natural frequencies have an abrupt jump.
Şimşek [13] studied the vibration of 2-D FGM Timoshenko beams traversed by a moving
force by assuming the material properties to be varying in the thickness and longitudinal
directions by the exponent functions. The author concluded that the material parameters
of the 2-D FGM beams could be tailored to meet the design goal of optimizing the dy-
namic response. Considering the power-law variations of material properties in both the
length and thickness directions, Nguyen et al. [14] presented a finite element procedure
for studying the forced vibration of 2-D FGM Timoshenko beams excited by a moving
load. Using a quasi-3D shear deformation theory and the symmetric smoothed particle
hydrodynamics method, Karamanli [15] examined the static behavior of 2-D FGM beams
with power-law variation of the material properties in both the length and thickness of
the beams. Recently, Do et al. [16] derived a finite element formulation for analysis of
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2-D FGM plates. The formulation is based on the new third-order shear deformation the-
ory proposed by Shi [5], and the cross-sectional rotation is considered as an independent
variable.

The shear deformation beam theories which are enabled to model the effect of slen-
derness ratio are widely employed in analysis of FGM beams. Although a value of 5/6
is usually chosen for the shear deformation factor in the first-order shear deformation
theory, this value may not be appropriate for FGM beams with variation of the material
properties in the beam thickness [17]. To avoid using the shear correction factor, a new
third-order shear deformation theory, derived from an elasticity formulation rather by
the hypothesis of displacements in [5] is employed in the present paper to study free vi-
bration of 2-D FGM beams in thermal environment. The material properties of the beams
are assumed to vary in both the thickness and longitudinal directions by a power-law
function, and they are considered to be temperature-dependent. Equations of motion
in which the shear rotation rather than the cross-sectional rotation is considered as an
independent variable are derived from Hamilton’s principle, and they are solved by a
finite element formulation. The choice of the shear rotation as an independent variable
is motivated by the fact that the finite element formulation based on the shear rotation
is more efficient than the one based on the cross-sectional rotation [18, 19]. Using the de-
rived finite element formulation, numerical investigations are carried out to highlight the
effects of the material composition and temperature rise on the natural frequencies and
vibration modes of the 2-D FGM beams.

2. 2-D FUNCTIONALLY GRADED BEAM

A 2-D FGM beam with length L, width b and height h as shown in Fig. 1 is con-
sidered. The Cartesian coordinate system (x, z) in the figure is introduced such that the
x-axis is on the mid-plane, and the z-axis is perpendicular to the mid-plane, and it directs
upward.
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Fig. 1. Geometry and coordinates of 2-D FGM beam

The beam material is assumed to be formed from two ceramics (referred to as ce-
ramic1 and ceramic2) and two metals (referred to as metal1 and metal2) whose volume
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fraction varies in both the thickness and longitudinal directions as
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where nz and nx are the grading indexes, which dictate the variation of the constituent
materials in the thickness and longitudinal directions, respectively. It can be seen from
Eq. (1) that the left and right lower corners of the beam contain only metal1 and metal2,
respectively whereas the corresponding upper two corners are, respectively, pure ce-
ramic1 and ceramic2. The variation of the volume fraction of ceramic1 and ceramic2
in the z- and x-directions according to Eq. (1) is illustrated in Fig. 2 for various values of
the grading indexes nz and nx.
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Fig. 2. Variation of volume fraction of ceramics in the thickness and longitudinal directions

The effective material properties P (such as the elastic modulus and mass density,
etc.) are evaluated by Voigt’s model according to

P = Vc1Pc1 + Vc2Pc2 + Vm1Pm1 + Vm2Pm2, (2)

where Pc1,Pc2,Pm1 and Pm2 denote the properties of the ceramic1, ceramic2, metal1, and
metal2, respectively. Substituting Eq. (1) into Eq. (2), one gets

P(x, z, T) =
[
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In the above equation, the beam is considered to be in a thermal environment and the
material properties depend upon the environment temperature T. Noting that the mass
density ρ is hardly changed with temperature and it can be considered to be temperature-
independent [6].

One can easily verify that if nx = 0, Eq. (3) deduces to the well-known expression
for the effective material properties of a unidirectional transverse FGM beam made of
ceramic2 and metal2. In addition, if ceramic1 and ceramic2 are identical, and metal1 is
the same as metal2, Eq. (3) also reduces to the formula for the effective properties of
two-phase transversely FG beams. Furthermore, if nz = 0, Eq. (3) results in the effective
material properties of an axially FGM beams formed from ceramic1 and ceramic2.

The material properties are considered to be temperature-dependent, in which a typ-
ical material property P is considered as a function of environment temperature T (K)
as [20]

P = P0(P−1T−1 + 1 + P1T + P2T2 + P3T3), (4)
where P0,P−1,P1,P2 and P3 are the coefficients of temperature and they are unique
to the constituent materials, T = T0 + ∆T with T0 = 300 K is reference temperature
and ∆T is the temperature rise. A uniform temperature rise (UTR) is assumed in the
present work.

3. GOVERNING EQUATIONS

The new third-order shear deformation theory derived from an elasticity formula-
tion, rather by the hypothesis of displacements is employed herewith to establish gov-
erning equations of the 2-D FGM beam. The axial and transverse displacements at any
point of the beam, u(x, z, t) and w(x, z, t), according to the new theory are of the form [5]

u(x, z, t) = u0(x, t) +
1
4

z(5θ + w0,x)−
5

3h2 z3(θ + w0,x) , w(x, z, t) = w0(x, t) (5)

where t is the time variable; u0(x, t) and w0(x, t) are, respectively, the axial and transverse
displacements of the point on the x-axis, and θ is the cross-sectional rotation.

Using a notation for the transverse shear rotation γ0, defined as

γ0 = θ + w0,x , (6)

the axial and transverse displacements in Eq. (5) can be rewritten in the following form

u(x, z, t) = u0(x, t) + z
(

5
4

γ0 − w0,x

)
− 5

3h2 z3γ0 , w(x, z, t) = w0(x, t). (7)

The axial strain (εxx) and shear strain (γxz) resulted from Eq. (7) are of the forms

εxx = u0,x + z
(

5
4

γ0,x − w0,xx

)
− 5

3h2 z3γ0,x , γxz = 5
(

1
4
− 1

h2 z2
)

γ0. (8)

Based on the assumption of Hooke’s law, the constitutive relation for the 2-D FGM
beam is as follows

σxx = E(x, z, T)εxx , τxz = G(x, z, T)γxz , (9)
where E(x, z, T) and G(x, z, T) are, respectively, the elastic modulus and shear modulus,
which are functions of both the coordinates x, z and they depend on the temperature
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according to Eq. (3); σxx and τxz are the axial stress and shear stress, respectively. The
elastic strain energy resulted from beam deformation (U B), and the kinetic energy (T ) of
the beam are then given by

U B =
1
2
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(σxxεxx + τxzγxz) dAdx , T =
1
2

L∫
0

∫
A

ρ(x, z)
(
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where ρ(x, z) and A = bh are, respectively, the mass density and cross-sectional area.
From Eqs. (8) and (9), one can write the elastic strain energy for the beam in the form
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and the kinetic energy resulted from Eq. (7) is as follows
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The strain energy resulted from the initial stressed due to temperature rise (UT) is [4]

UT =
1
2

L∫
0

NTw2
0,xdx. (13)

In Eqs. (11), (12) and (13), A11, A12, A22, A34, A44, A66 and B11, B22, B44 are the beam
rigidities, defined as

(A11, A12, A22, A34, A44, A66) (x, z, T) =
∫
A

E(x, z, T)(1, z, z2, z3, z4, z6)dA,

(B11, B22, B44) (x, z, T) =
∫
A

G(x, z, T)
(

1, z2, z4
)

dA.
(14)

I11, I12, I22, I34, I44, I66 are the mass moments, defined as

(I11, I12, I22, I34, I44, I66) (x, z) =
∫
A

ρ(x, z)(1, z, z2, z3, z4, z6)dA (15)

and NT is thermal resultant, which can be expressed as

NT (x, z, T) = −
∫
A

E(x, z, T)α(x, z, T)∆TdA, (16)
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with α(x, z, T) is the thermal expansion, and ∆T, as above mentioned, is the tempera-
ture rise.

Substituting Eq. (3) into Eq. (14), one can rewrite the beam rigidities in the following
forms

Aij(x, z, T)=Ac1m1
ij −(Ac1m1

ij −Ac2m2
ij )

( x
L

)nx
, Bij(x, z, T) = Bc1m1
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ij )
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.

(17)
In the above equation, Ac1m1

ij , Bc1m1
ij are the rigidities of the unidirectional transverse

FGM beam composed of ceramic1 and metal1; Ac2m2
ij , Bc2m2

ij are the rigidities of the trans-
verse FGM beam composed of ceramic2 and metal2. One can see from Eq. (17) that the
rigidities of the present 2-D FG beam degenerate to the ones of the unidirectional FGM
beam if nx = 0 or the two ceramics and two metals are identical. Because Ac1m1

ij , Bc1m1
ij , Ac2m2

ij , Bc2m2
ij

are functions of z only, the explicit expressions for the rigidities of the unidirectional
transverse FGM beam can easily be obtained [6].

Similarly, the mass moments defined by Eq. (15) can also be rewritten in the forms

Iij (x, z) = Ic1m1
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ij − Ic2m2
ij )
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. (18)

Applying Hamilton’s principle to Eqs. (11), (12), and (13), one can obtain the follow-
ing equations of motion for the 2-D FGM beam
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I12ü0+
1
4

I22

(
5
4

γ̈0 − ẅ0,x
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(19)
Since the coefficients of the differential equations (19) are functions of x, a closed-

form solution is difficult to derive. Here, a finite element formulation is developed and
employed in solving Eq. (19). The beam is assumed to be divided into a number of
two-node beam elements with length of l. The vector of nodal displacements (d) for the
element considering the transverse shear rotation γ0 as an independent variable contains
eight components as

d = {ui wi wxi γi uj wj wxj γj}T , (20)
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where ui, wi, wxi and γi are the values of u0, w0, w0,x and γ0 at the node i; and uj, wj, wxj
and γj are the corresponding values at the node j. In Eq. (20), and hereafter, a superscript
‘T’ is used to denote the transpose of a vector or a matrix.

The axial displacement u0(x, t), transverse displacement w0(x, t) and transverse shear
deformation γ0(x, t) are interpolated from the nodal values according to

u0 = Nud, w0 = Nwd, γ0 = Nγd, (21)

where Nu, Nw, and Nγ denote the matrices of shape functions for u0, w0 and γ0, respec-
tively. In the present work, linear shape functions are used for the axial displacement
u0(x, t) and the shear rotation γ0(x, t), Hermite shape functions are employed for the
transverse displacement w0(x, t) as

- Axial displacement shape functions

Nu1 =
l − x

l
, Nu5 =

x
l

, Nu2 = Nu3 = Nu4 = Nu6 = Nu7 = Nu8 = 0. (22)

- Transverse displacement shape functions
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- Transverse shear rotation shape functions

Nγ1 = Nγ2 = Nγ3 = Nγ5 = Nγ6 = Nγ7 = 0 , Nγ4 =
l − x

l
, Nγ8 =

x
l

. (24)

Using the above interpolation schemes, one can write the strain energy of the beam
defined by Eqs. (11) and (13) as

U = U B + UT =
1
2
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∑ dTkd, (25)

where ne is the total number of the elements, and k is the element stiffness matrix with
the following form
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Similarly, the kinetic energy in Eq. (12) can be rewritten as
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∑ ḋTm ḋ, (28)

where
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is the element consistent mass matrix, in which
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Having the element stiffness and mass matrices derived, the equations of motion

for the free vibration analysis in the context of finite element analysis can be written in
the form

MD̈ + KD = 0, (31)
where D, M, and K are the structural nodal displacement vector, mass and stiffness ma-
trices, obtained by assembling the element displacement vector d, mass matrix m, and
stiffness matrix k over the total elements, respectively. A harmonic response can be as-
sumed, and Eq. (31) leads to

(K−ω2M)D = 0, (32)
where ω is the circular frequency, D is the vibration amplitude. Eq. (32) leads to an
eigenvalue problem, and its solution can be obtained by the standard method.

4. NUMERICAL RESULTS AND DISCUSSION

Numerical investigations are carried out in this section to study the effects of the ma-
terial distribution and temperature rise on the vibration characteristics of the 2-D FGM
beam. Otherwise stated, a beam with an aspect ratio L/h = 20 composed of alumina
(Al2O3), zirconia (ZrO2), stainless steel (SUS304) and titanium (Ti-6Al-4V) with the ma-
terial properties given in Ref. [21,22] is employed in the analysis. Alumina, zirconia, steel
and titanium are employed as ceramic1, ceramic2, metal1 and metal2, respectively.

Validation and convergence of the derived formulation is firstly confirmed. To this
end, Tab. 1 compares the fundamental frequency parameters of a simply supported (S-
S) 2-D FGM beam in the reference temperature (∆T = 0) of the present paper with
that of Ref. [14], where a finite element formulation based on Timoshenko beam the-
ory was employed. The frequency parameters in Tab. 1 have been obtained for the
beam composed of steel (SUS304), aluminum (Al), alumina (Al2O3) and zirconia (ZrO2)
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Table 1. Comparison of fundamental frequency parameter of S-S 2-D FGM beam

Source nx = 0 nx =
1
3

nx =
1
2

nx =
5
6

nx = 1 nx =
4
3

nx =
3
2

nx = 2

nz = 0
Ref. [14] 3.3018 3.7429 3.9148 4.1968 4.3139 4.5118 4.5956 4.8005
Present 3.3018 3.7428 3.9146 4.1966 4.3137 4.5116 4.5954 4.8003

nz =
1
3

Ref. [14] 3.1542 3.5050 3.6305 3.8252 3.9022 4.0277 4.0792 4.2009
Present 3.1543 3.5050 3.6305 3.8251 3.9022 4.0276 4.0791 4.2008

nz =
1
2

Ref. [14] 3.1068 3.4285 3.5397 3.7087 3.7745 3.8805 3.9236 4.0245
Present 3.1069 3.4285 3.5397 3.7087 3.7745 3.8805 3.9235 4.0244

nz =
5
6

Ref. [14] 3.0504 3.3296 3.4206 3.5548 3.6059 3.6869 3.7194 3.7947
Present 3.0505 3.3296 3.4206 3.5547 3.6058 3.6868 3.7193 3.7946

nz = 1
Ref. [14] 3.0359 3.2984 3.3819 3.5035 3.5495 3.6219 3.6508 3.7177
Present 3.0359 3.2983 3.3818 3.5034 3.5493 3.6217 3.6507 3.7175

as previously used in [14] and the fundamental frequency parameter is defined as µ =

ω1
L2

h

√
ρAl/EAl, where ω1 is the fundamental frequency of the beam. Very good agree-

ment between the result of the present work with that of Ref. [14] is noted from Tab. 1.
In order to verify the formulation in some further, Tab. 2 compares the fundamental

frequency parameter of a S-S unidirectional transverse FGM beam in thermal environ-
ment with the result based on Euler–Bernoulli beam theory and the differential transform
method of Ref. [22]. The beam is formed from SUS304 and Al2O3 as employed in [22],

and the frequency parameter is also defined as µ = ω1
L2

h

√
ρsteel/Esteel, where ρsteel

and Esteel are the mass density and Young’s modulus of the steel at the reference tem-
perature. A slight difference between the result of the present work with that of Ref. [22]
is seen from Tab. 2, and this difference may be resulted from the different beam theory
employed herein with that of Ref. [22].

Table 2. Comparison of fundamental frequency parameter for S-S unidirectional
FGM beam in thermal environment

∆T (K) Source n = 0.1 n = 0.2 n = 0.5 n = 1

20
Ref. [22] 4.6536 4.3867 3.8974 3.5193
Present 4.6080 4.3456 3.8645 3.4923

40
Ref. [22] 4.4516 4.1782 3.6779 3.2925
Present 4.3966 4.1286 3.6380 3.2595

80
Ref. [22] 4.0148 3.7212 3.1834 2.7693
Present 3.9388 3.6530 3.1290 2.7242
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The convergence of the derived formulation in evaluating frequency of the 2-D FGM
beam is shown in Tab. 3, where the frequency parameters of a S-S 2-D FGM beam in the
reference temperature (∆T = 0) obtained by different number of the derived elements
are listed for various values of the grading indexes nz and nx. The convergence of the
derived formulation, as seen from Tab. 3, is very fast, and the convergence is achieved by
using just fourteen elements, regardless of the grading indexes. The frequency param-

eter in Tab. 3 and hereafter is defined as follows µi = ωi
L2

h

√
ρ0/E0 where ωi is the ith

natural frequency, ρ0 and E0 are the mass density and Young’s modulus of SUS304 in the
reference temperature.

Table 3. Convergence of the formulation in evaluating frequency parameter µ1
of S-S beam (∆T = 0)

Grading indexes
Number of elements (ne)

5 10 14 16 18 20

nx = nz =
1
3 3.4042 3.4037 3.4037 3.4037 3.4037 3.4037

nx = nz =
1
2 3.4223 3.4217 3.4217 3.4217 3.4217 3.4217

nx = nz = 1 3.3943 3.3935 3.3934 3.3934 3.3934 3.3934
nx = nz = 2 3.3045 3.3035 3.3034 3.3034 3.3034 3.3034

Tab. 4 lists the fundamental frequency parameter µ1 of the S-S beam for various
values of the grading indexes and a temperature rise ∆T = 20 K. The table shows a
significant influence of the grading indexes on the fundamental frequency of the beam.
The effect of the grading index nz, which governs the variation of the material properties
in the thickness direction, is clearly seen from Tab. 4, where the frequency parameter
µ1 is decreased by the increase in the index nz, irrespective of the index nx. A careful
examination of the table shows that the decrease of µ1 by increasing nz is more significant
for the beam with a higher index nx. For example, a decrease of 20.22% is attained when
increasing nz from 0 to 2 for the beam with nx = 0.2, but the corresponding values are
30.31% and 34.36% for the beam associated with nx = 1 and nx = 2, respectively. The
decrease of µ1 by increasing nz is due to the fact that, as seen from Eq. (3), the effective
Young’s modulus of the beam with a higher index nz is smaller, and this leads to lower
beam rigidities. Noting that the mass moments are also decreased by increasing nz but
with the constituent materials adopted herein the decrease of the rigidities is much faster.
The effect of the index nx on the fundamental frequency parameter µ1, as seen from Tab. 4,
is different from that of the index nz, and ω1 increases with the increase of the nx index.
The increase of µ1 by increasing nx is, however more significant for the beam associated
with a lower index nz. The increase of the parameter µ1 by increasing the index nx is
explained by the increase in the beam rigidities as clearly seen from Eq. (17).

The variation of the frequency parameter µ1 with the grading indexes nz and nx of
the S-S beam is depicted in Fig. 3 for various values of the temperature rise ∆T. Fig. 4
shows the variation of the first four natural frequency parameters µi (i = 1, . . . , 4) with
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Fig. 3. Variation of frequency parameter µ1 with grading indexes of S-S beam for different ∆T
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Table 4. Fundamental frequency parameter of S-S beam for various
grading indexes and ∆T = 20 K

nx = 0 nx = 0.2 nx = 0.5 nx = 1.0 nx = 1.2 nx = 1.5 nx = 2.0

nz = 0 3.0227 3.3456 3.6853 4.0587 4.1671 4.3004 4.4657
nz = 0.2 2.9415 3.1905 3.4464 3.7213 3.7998 3.8955 4.0129
nz = 0.5 2.8690 3.0551 3.2422 3.4402 3.4963 3.5643 3.6472
nz = 1.0 2.8051 2.9394 3.0714 3.2103 3.2496 3.2972 3.3551
nz = 1.2 2.7890 2.9111 3.0302 3.1556 3.1912 3.2343 3.2867
nz = 1.5 2.7704 2.8785 2.9833 3.0940 3.1255 3.1637 3.2102
nz = 2.0 2.7483 2.8406 2.9293 3.0236 3.0506 3.0835 3.1236

the grading indexes nz and nx of the S-S beam for a temperature rise ∆T = 50 K. The ef-
fect of the grading indexes on the fundamental frequency is clearly seen again from Fig. 3,
where the frequency parameter decreases by increasing the index nz, but it increases by
increasing the index nx, regardless of the temperature rise. The temperature rise leads to
a lower frequency, but it hardly changes the variation of the parameter on the grading
indexes. The effect of the grading indexes on the higher frequencies, as seen from Fig. 4,
is similar to the case of the fundamental frequency, and at the given value of the temper-
ature rise, the frequency parameters µ2, µ3 and µ4 are also decreased by increasing the
index nz and they are increased by increasing index nx.

In order to show the effect of boundary conditions on the relation between the grad-
ing indexes and frequency parameter, Figs. 5 and 6 illustrate the variation of the fun-
damental frequency parameter and the first four frequency parameters on the grading
indexes of the 2-D FGM beam with clamped ends (C-C beam) in thermal environment,
respectively.

The corresponding figures for the beam with one end clamped and the other free (C-
F) are depicted in Figs. 7 and 8. The effect of the boundary conditions is clearly seen from
the figures. As expected, the frequency parameters of the C-C beam are much higher than
that of the beam with the other boundary conditions, regardless of the grading indexes
and the temperature rise. The variation of the frequency parameters with the grading
indexes of the C-C beam and the C-F beam is similar to that of the S-S beam, and the
frequency parameters decrease when increasing the index nz and they increased with
increasing the index nx. In addition, the change in the frequency parameters by the vari-
ation of the indexes of the C-F beam is more significant than that of the S-S beam and the
C-C beam. In other words, the C-F beam is more sensitive to the change in the grading
indexes than the S-S and C-C beams.

In Fig. 9, the mode shapes for w0, u0 and γ0 of the S-S beam are depicted for ∆T = 0.
For nx = 0, the beam deduces to the unidirectional FGM beam, and thus Fig. 9(a) repre-
sents the mode shapes of the unidirectional transverse beam composed of zirconia and
titanium. As can be seen from the figure, the mode shapes of the 2-D FGM beam as de-
picted in Fig. 9(b) are very different from that of the unidirectional transverse FGM beam.
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The longitudinal variation of the material properties of the 2-D FGM beam significantly
influences on the vibration modes. While the first and third modes of the transverse
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displacement w0 of the unidirectional FGM beam are symmetric with respect to the mid-
span, that of the 2-D FGM beam are not. The figure also shows the difference in the mode
shape of u0 and γ0 of the 2-D FGM beam with that of the unidirectional beam, and the
asymmetric of the second mode for γ0 with respect to the mid-span is clearly seen from
Fig. 9(b). The mode shapes for the w0, u0 and γ0 of the S-S 2D-FGM beam in thermal
environment are depicted in Figs. 10 and 11 for various values of the grading indexes
and for a temperature rise ∆T = 50 K. As seen from the figures, the grading indexes
have a significant influence on the vibration modes of the beam, and not only vibration
amplitude but also the position of the critical point is changed by the variation of the
grading indexes.
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Fig. 11. Vibration mode shapes of S-S beam with nz = 1: (a) nx = 0.1, (b) nx = 2 (∆T = 50 K)

The effect of the beam aspect ratio, L/h, on the vibration characteristics of the beam
is illustrated in Fig. 12, where the variations of the fundamental frequency parameter
with the grading indexes of the S-S beam are depicted for two values of the aspect ratio,
L/h = 10 and L/h = 30, and for a temperature rise ∆T = 50 K. The aspect ratio, as
seen from the figure, has a significant influence on the fundamental frequency parameter
of the beam, and as expected an increase in the aspect ratio leads to a decrease of the
fundamental frequency parameter, but it hardly changes the relationship between the
frequency parameter and the grading indexes.
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Fig. 12. Variation of fundamental frequency parameter with grading indexes of S-S beam
in thermal environment with different values of aspect ratio

5. CONCLUSION

The free vibration analysis of 2-D FGM beams in thermal environment by using a
new third-order shear deformation theory has been presented. The material properties
of the beams are assumed to vary in both the thickness and longitudinal directions and
they are considered to be temperature-dependent. The equations of motion in which
the transverse shear rotation is employed as an independent variable have been derived
from Hamilton’s principle and they were solved by a finite element model. The numer-
ical result reveals that the finite element formulation developed in the present work is
accurate, and it is capable to give accurate natural frequencies by using a small num-
ber of elements. A parametric study has been carried out to highlight the effect of the
material grading indexes and the temperature rise on the natural frequencies and mode
shapes of the beams. The effect of boundary conditions and the aspect ratio on the vibra-
tion characteristics of the beams has also been examined. Though the present paper deals
with the free vibration analysis, the finite element formulation derived herein is capable
to use for forced vibration analysis of 2-D FGM beams.
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