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NONLINEAR MODEL SIMULATION OF SHIP MOTION

NGUYEN VAN DAO
Institute of Mechanics NCSR Vietnam

SUMMARY. Nonlinear model simulation of coupling between heave - roll and pitch -
roll ship motions is considered by means of the asymptotic method of nonlinear mechanics.
The purely vertical motion and vertical - angular motion and their stability are studied.

1. INTRODUCTION

The simulation of the coupling between heave roll and pitch roll motions of a ship running
in a regular longitudinal or oblique sea has been studied by Tondl A. and Nabergoj R. [1]. The
proposed model congiste of a mass M restrained by a linear elastic spring, which, in turn, carries
a simple free oscillating pendulum made up of a mass m attached to a hinged, weightless rod (Fig.
1). The system is forced to oscillate sinusoidally in the vertical direction by means of an external
driver with constant amplitude ¢ and frequency w. The coupling between the vertical and angular
oscillations is accomplished by connecting the two inasses and the effect of the waves 1s simulated
by meauns of external forcing.

In the present paper some results obtained by Tondl A. and Nabergoj R. [1, 2] will be extended
for the case of a nonlinear elastic spring and nonlinear expansions of trigonometric functions.

2. MOTION EQUATIONS

Using the Lagrange equations for the system represented in Fig.1 we have the following dil-
ferential equations of motion:

(m+ M)(Z+8)+koZ+B,2° +hoZ + mi($sinp + ¢° cosp) = 0,

- 2.1
ml2G + Cop + mé{g+ Z + i) sinp = 0, (21)

where Z = z - u is the relative vertical displacement of the mass M, z iz the vertical displacement
of the mass M from its static position of equilibrium, u = gcoswt is the vertical displaceinent of
the base of the spring - mass system,  is the angular displacement of the pendulum, ky and 4,
are the linear and nonlinear characteristics of the spring respectively, £ is the length of the rod,
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ho and Cy are the damping coefficients of the linear and angular motions, respectively, g is the
gravity acceleration and an overdot denotes a derivative with respect to time ¢.

By introducing the notations

zZ w \/E Cy
= — = — = e c=
w=g wy “o g’ wymt?

ho 2 ko 8.
h‘—‘—————, k“qu . = et ! s (22)
wo(m + M) wi(m -+ M) f3 wi{m + M)
= ™ g T = wyl
Femem "¢ T
m

and supposing that the damping forces and the ratios % =0, = u are small, and himiting

. m+ M
by considering small vibrations of coordinates, so that w®, ©°, pp”, ©'?, pw' are small, we have

the following equations of motion:

‘UJ"+ k?w = —sf[w,w', “, ‘P‘, P") +52"‘l (2 3)
P’ +p=ebu,p, ) +e*..., )

where a prime denctes a derivative with respect to the dimensionless time 7,

" f=—oncosnr+ hw' + Bu’ + u(pe” + ¢'%),
_ 3 (2.4)
D= —cp' + % — puw" +on®pcosyr
and ¢ is a small dimensionless positive paraméter that is used as a book keeping device and will
be set equal to unity in the final results. The case 8 =0, sinp = ¢, cos v = 1 has been examined
in 1, 2] . : .

3. APPROXIMATE SOLUTION

Let us consider the resonant region determined by

K =n® e,

n? = 4(1+¢4), (3.1

where T' and A are detuning parameters. Using in equations (2.3) the transformation into new
amplitude and phase variables R, 8, a, ¥ by means of the formulae '

w=Recos§ v = %Rnsinf, ¢ ='nr+46,
(3.2)

p=acosa, ¢ = —Earysina, a = En'r-i- ¥,

we have:

nR' =e(f —Tw)sing; na’ = -2:(® + Ap)sine,

3.
Rl =¢(f —Tw)cos & nay’ = —2e(®@+ Ap) cosa. (3.3)

These equations are in the standard form for which the averaging technique of nonlinear mechanics
[3] can be used. So, in the first approximation one can replace (3.3) by the following evaraged
equations: ' :



g[kR +onsinf + ipna sin(f — 2v)],
Rnt' = E[1"R - —ﬁR3 +on?cosh + -pr} a® cos(f — Zt,b”
g 1 {3.4)
—3 [ca + omasin2¢ — Rnasin(d — 29},
any’ = §[2Aa+ —~a® + ontacos 29 + Rn? acos( ‘~2r}))].
4., PURELY VERTHKCAL SHIP MOTION
A stationary semi - trivial solution of equa‘tions (3.4) is
.a=0, = s
a ¥ =1y (4.1)
R= R{)r- é= 00:
where i, 18 an arbitrary constant and Ry, #, are constants satisfying the relations
hRy + onsinfy = 0,
' (4.2)

3
TRy~ ZﬂRg + o2 cos by = 0.

This solution corresponds to the vertical motion of the ship, while its angular motion remains

unexcited. ) .
Eliminating the phase f; from {4.2} we obtain an equation which defines the admissible valnes

of the amplitude R, as a function of the excitation frequency n:

W(R3,n*) =0, (4.3)
here 3 .,
W (RS, o) = R3[4 + (0 = 26RE)’] - o*n',
el = 5% — k2.

This relationship can be expreszed approximately as

(4.4)

‘ o2 k2
r]z = —z:,@R(, + ek — — h?, (4.5)
i

. and is plotted i Fig. 2 for the paramete‘rs k=2 h=10" 0=45-1002 8 =0 (curve 1)

and f = 1 (curve 2}. With very small values of o, the amplitude Ry is almost a small constant:
RZ ~ k20? /A2
To study the stability of the semi - trivial solution (4.1} one lets

a=6a, $=+vo+69, R=Ry+6R, 6=0+60.
The following variational equations will be obtained

d. . .
—(53) = ﬂi(héR + an cos 6y 56),

Ron—, (53) ~l(r- gﬁlﬁ)“f - an” sin 8056}, (4.6)

(éa] - {c + o sin 24 — Ry sin(fy — 2!}.’).;)]
0= [2A + on? cos 240 + > Ry cos{fn — 21/)0)] fa
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From the first two equations of {4.6) and from (4.2) and (4.3) one can find after a short calculation
the stability condition

aw

>0 _ ‘ (4.7]

‘ 3R, -
which is imposed upon the resonant curve (see heavy lines in Fig.2) of the vertical motion of the
ship. 14 o

1z 2

EY B A 4
Fig.2

The boundary of the instability region for the appearance of a parametric resonance of angular
ship motion is determined from the last two equations of (4.6) as

¢+ onsin 2o ~ nhy Siﬂ(gﬂ - 2'1)(;) =0,
2A + on? cos 2490 + n% Ry cos{fy — 2vn) = 0.

Eliminating the phases ¥, o gives

2 2 3
n’c® +4A% = n*(o” + B3} + 20 R5 (S ARG - T),
_ e (4.8)
A : Z’?%"’ 1,

or

2 2.

n? 4t 2k.-:\/k2(p2 +R3) -2+ 21‘2{‘;(1c - i, zﬁf?ﬁ) - o (4.9)
where R, satisfies equation (4.3). The relation {4.9) is plotted in Fig.3 for the case f = 1,
¢ =101, h = 107!, and k = 1.9 (curve 1), k = 2 {curve 2}, k = 2.1 (curve 3). These curves
are approximately parabolic and the instability region is located above the parabola (see shaded
region in Fig.3). For sufficently small values of the excitation (o), the semi - trivial solution remains
stable. Corresponding to every instability region there exists a “theshold” & = oy which must be
exceeded before instability can occur. .

Taking into account curve.2 in Fig.3, one can see that for ¢ = 4.5- 1072 and 2.75 < n? < 4.9
the parametric vibration of angular motion may occur. So, in the interval 2.75 < n° < 4.9 the
ship motion will not be characterised only by the resonant curve in Fig.2. Outside the mentioned
interval the dngular motion of the ship will be zero and the ship motion is characterised only by
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the resonant curve in Figi2. In the last case the amplitude of ship vibration will be small and
almost constant. Therefore, for the case considered, the purely vertical motion {without angular
motion) occurs only with small amplitude. The strong vertical motion will be accompanied by the
angular one. )

&

254

10°L

5. COUPLING BETWEEN VERTICAL AND ANGULAR MOTIONS

The non - trival stationary solution of equations (3.4) with a # 0, R # 0 is determined from
the relation: o

1 , .
on’sinf + anzaz sin{f — 2¢}) = —hnR,

. , ‘ 1 3
2 cos§ + ~punta? f—2¢)={-sK?-T)R,
on?cosd + Lun’a cos( ) (49 )R, (5.1)
. 0-;12 sin 2'¢) — RY]Z Si]’l(ﬁ - 2'¢'} = —cr,

1
on? cos 2¢ + Rn® cos(f — 29) = —(ZA + 102).

This solution corresponds to the simultanecus vertical and angular motions of the ship. Eliminating
the phase variables in these equations we obtain the following expression giving the dependence of
the amplitudes of vibration a, R on'the frequency 5 of the exciting force: '

. : 3 5 )
n{c® — h*R?) + [2A + -i-az - i,{chz?]Q =R? [n2 - T+ ZﬁRzlz. (5.2)

This relationship is plotted in Fig.4 for the case § = 1,k =2, A = ¢ = 0.1 and p = 0.05. From Fig.4
_ it is seen that, increasing n from the resonant value { = 2) and keeping constant the amplitude of
verticai motion, the amplitude -of angular ship vibration {a} decreases, and 2t a constant value of
the excitation frequency (1) the amplitudes of vertical and angular ship vibrations either increase
or decrease simultaneously. '
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CONCILUSION

The nonlinear mode! simulation of coupling between vertical and angular. ship motions has
been considered. The nonlinear terms in the motion equations have essential influence on both the
shape of the response curve and the instability region in comparison with the linear equations [1,
2]. The condition for the appearance of a purely vertical vibration of the ship has been denived.
In the case considered this vibration occurs only with small amplitude and the strong vertical ship
vibration is always accompanied by angular motion. The stationary simultaneous vertical and
angular motions of the ship have been studied too. :
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MO HINH PHI TUYEN MO PHONG CHUYEN DONG TAU THUY

Trong bio bio niy md hinh tuyén tinh cda Tondl A. vi Nabergoj R. [1, 2] vé sw lic ngang va
chuyén ddng thing dimg cda tiu thiy dwge mé réng cho trwdmg hop phi tuyéhn, taoc nén do dic
treng din hoi va ké d&n cic s8 hang bic cao trong khai trifn cdc him lwong gidc. Di xét dén kha
ning x3y ra dong thiri cdng hudng cwdmg birc (d5i véi chuyén déng thing démg) va cong hudng
théng s (d3i véi chuyén déng ldc ngang) cda tiu thiy; cing nhu di nghién céru chi riéng chuyén
déng thing ding ma khéng cé chuyén déng lic ngang cda tiu.

Chuyén déng dbng th&i thing ding vi lic ngang cida tiu ¢é djc difm 1 & cling mdt tin s8
kich déng cAc bién d8 dao déng ding vi dao d6ng lic ngang clng ting hoc cung gidm. Khi ting
tan s8 kich déng tir gia tri cdng hwdng vi gitr cho bién 45 dao d6ng ding khéng ddi thi bién 43
dao ddng lic ngang gidm. ' o
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