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SUMJviARY. The pre-buckling and post-buckling deformation processes are assumed to 
be less complicated1 i.e. processes of average curvature, the influence of complex loading on 

the stability of plates was analysed ·in [1]. In this paper eliminating this restriction, post­
buckling process may 'l:>e arbitrary complicated, a g~nerallzed expression for determining 

critical force is formulated by Bubnov-Galiorkin's method and loading parameter method. 

1. PRE-BUCKLING PROCESS. 

Let consider a rectangular plate subjected to biaxial compressions of intensities p(t) and q(t). 
At any moment t there exists a membrane plane stress state in the plate 

ern = -p(t), cr22 = -q(t), "12 = 0'33 = 0'32 = 0'31 = 0, 

so that 

(1.1) 

The strain velocity tensor is determined from the following equations 

. 1 . 1 . ( 1 1 ) (PP + qq- ~P4- hP) (p- h) 
<n=O'u/s(-p+zq)- f'(s)-O'u/s p2 -pq+q2 ·' 

"?2 = ~1- -4 + ~p - (~1-- ~1-) (pp + qq- ~pq- ~qp)(q- ~p) 
" O'u/s( 2) ft(s) au/s p2-pq+q2 

(1.2) 

and the arc-length_ of deformation trajectory is evaluated from 

ds _ 2 ( .2 •2 . • ) 1/2 _ F( ) 
-- ;;;cn+c22+cnc22 = s,p,q. 
dt y3 

(1.3) 

2. POST-BUCKLING PROCESS 

Suppose that external forces depend_ on a loading parameter t. The parameter t increases 
and will reach some value tk. At this moment tk a bifurcation of equilibrium states. is assumed to 
appear: with an infinitesimal small increment of external force the plate is buckled and receives 
possible increments of deformation . 

where 
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These post-buckling deformation processes may be arbitrary complicated) so that the stress­
strain relations are defined by the elastoplastic deformation process theory [2] 

(2.1) 

where 

<Ou/ <Ou [ (3Gs ) 1- cos OJ 1 ( <Ou 1) ( <Ou) A=--.-=- 1+ ---1 =- 3G+--- 3G-- cosO, 
smfJ s rru 2 2 s 2 s 

p = _'l_ _ ~'( ) 3G :_ </>11- cos e _ 1 ( G ') 1 3G- 4>1 
cosO -'Y s- cosO 2 -2 3 +</> -2 cosO 

(2.2) 

with 

According to Ilyushin's approximate statement 67ii = 0 and not accounting the unloading, 
we obtain 

oe;;. = o, cos&= 
Zrrii6w,ii 

rru·Os 
' 2 (' 2 ' 2 ' 2 ) 1/2 us= yl3z uw, 11 + uw,22 + uw,116w,22 + 6w, 12 . 

Hence the quantity cos fJ does not depend on Z, such that A and P do not depend on Z as well. 
The bending m-oments are of the form 

hj2 

oM,;= j 
-h/2 

h
3 

[ 2 (J'ijO'ke l o<J ZdZ =- --A( ow··+ 5 ·ow kk) +(A- P)--ow ke . 11 12 3 ,tJ tJ ' a~ ' 

Substituting 6Mii by (2.3L where A, P contain Ow, into the stability equation 

we obtain 

[ 
3 . p

2 l B4
6w [ 3 pq l B

4
6w A--(A-P --+2 A--(A-P) + 

4 ) p2- pq + q2 Bx4 4 . p2 - pq + qZ Bx28y2 

[ 
3 q2 l B4 5w 9p B26w 9p 8 2 6w 

+ A--(A-P) 2 z -8 • +hz-a 2 +h2-a 2 + 4 . p - pq + q y X y 

+ ~ 82 
A (2 a

2
ow + 3

2
5w) + ~ 82 

A (2 a
2
5w + a2

5w) + 3
2
A 3

2
5w _ 

2 Bx2 Bx2 . By2 2 By2 By2 Bx2 axay axay 

a 2 5w B2b'w 
3 P---;J;2 +qa-yz- [ (a2A a2p) (azA 82p)] 

- 4 p2 - pq + q2 p Jx2 - ax2 + q Jy2 - By2 = 0. 

(2.3) 

(2.4) 

Satisfying kinematic boundary conditions with edges simply supported we can find a solution 
of the form 
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' G . 11'X • "Y 
uw= sm~smb. 

Notice that cos 8 does not contain C, so that A, P also" do not contain C. Substituting Ow 
into the stability equation and applying·Bubnov-Galiorkin's method [3]: 

a b II X sin": sin ~y dxdy= 0, 

0 0 

(2.5} 

where X is the expression in the left hand side of the stability equation (2.4}, give from (2.5} an 
equation for finding a critical force. 

Consider the case of a square plate. In this case 

. 'lf'X· • 1rY 
5w=Csm-sin-, 

a a 

cos 8 = - -------::-'-P_+-"-q ______ -:-cco 
2 ( 2 1rx 27ry)1/2 ·· (p2-pq+q2)1f2_ 3+ctg -ctg-

,j3 a a 

According to (2.6}, the equation (2.4} reduces to 

3,.2 q(p + q) a2 P] . ,.x . "Y . ,.2 a2 A ,.x "Y 
- sln-sm- +---cos-cos-= 0. 

4a2 p2 - pq + q2 ayz a a a 2 axay a a 

The expressions of A and P from (2.2} and (2. 7} are written in the form 

A= A1(s,p,q)+Az(s,q,]J)f(x,y). 

where 

,)3( 11'X "Y)-1/2 f(x,y) =- 3+ctg2 -ctg2 - , 
2 a a 

and 

P= P,(s,p,q) +P2(s,p,q)g(x,y), 

where 

(2.6} 

(2.7} 

(2.8} 

(2.9} 

(2.10} 

P 1 ( ~') · n 1 ( '} "" 1 = - 3G + '~' , r2 = - 3G- <P -- , 
2 . 2 p+q 

2 ( 11'X "Y)1/2 1 g(x, y) = r;; 3 + ctg2 -ctg2
- = -(--} . 

y3 a a · f x, y 

Hence 
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Applying Bubnov-Gafiorkin's method 

a o 

If . n X • 1rY 
Xsm -sm- dxdy = 0 

a a ' 
0 0 

we obt-ain 

(2.11) 

where Ci(i = 1-T 7) are constants, evaluated by the following integrals 

a a a a 

c, =I I ( 
. 2 11"X . 2 11"Y f x,y)sm -sm - dxdy; 
. a a - C,= I I !

II • 2 1TX . 2 1ry 
xx sm - sm - dxdy; 

a a 
0 0 0 0 

a a a a 

Cs= I I II • 2 1rX • 2 'TrY 
!yy sm - sm - dxdy; 

a a c.= I I II • 1fX 1fX • -rry 1fY 
fxy Slh- COS -Sill - COS - d';Cdy; 

a a a a 
0 0 0 0 

a a 

Cs= I I ( ) 
• 2 11"X • 2 "Y d .d 

g x, y sm - sm - x y; 
a a 

. 0 0 
a a a a 

c.= I I 11 • 2 'lrX • 2 1ry 
9xx 511). - sm - dxdy; 

a a c7~ I I II • 2 1rX • 2 1fY 
9yy sm - sm - dxdy. 

a a 
0 0 0 0 

Substituting the expressions of A1 , A2 , P1 , P2 into the equation (2.11), from which we get the 
formula for determining a critical force 

.2 _ 9a
2 

_ 4 { 11"
2 

( G '7u) 311"
2 (~' <Ou) (p + q) 2 

•=-----3+-+-'1'-- + 
h2 p + q 2 s 32 s p2 - pq + q2 

+ .!:.(3G- '"")p+q["'(4~ 3 (p+q)' )c,+~(-2+ "p(p+q) )c,+ 
2 S <7 a a2 4 p2 - pq + q2 4 p- - pq + q2 

+ ~ (- 2 + q(p + q) ) Cs +c.] + .!:.(3G- ¢') __<T_u:__ [ 3
1f

2 
(p + q)' ? C5 -

4 p2 - pq + q2 2 p + q 4a2 p2 - pq + q-

-~ p(p+q) C6 -
3 q(p+q) c 7]}=oH(s,p,q), (2.12) 

4 P' - pq + q' 4 P' - pq + q' 

where '"• = (p2
- pq + q2

) 
1

/
2 

Now, suppOse th'at p = p(t), q = q(t) are known as functions of loading par'ameter f. The 
equations (1.3) and (2.12) are satisfied simultaneously, from that we can determine a critical value 
tk of the loading parameter. Then the critica] forces are as follows 
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In particular case when pos~-buckling process is a proe.ess of average curvature, we have 

A= C!u 

s ' 
p = ¢/(s) 

from (2.2) to get 
p+q 

cos 8 = --:-;;- f(x, y) = 1, 
u 

the functions f(x, y) and g(x, y) must be constant. Hence we obtain 

CTu . a
2 

---Cs =-:---, C2 = Gs =c.= c.= Cr = 0. 
p+ q 4 

Finally, from (2.12) we get the known expression of the critical force in ]1] 

or 

where 

CONCLUSIONS 

¢>' ( 8) 
'Pt = 3G . 

1. A typical example on the application of th~ general elastoplastic deformation process theory 
in the stability problem of plates is given. 

2. Establishing a method for formulating an expression of critical force in the general case 
without any restriction on the arbitrary complex loading, this approach has a practical meaning 
in engineering calculation. 

3. Received. result in [1] is a particular case of the generalized expression (2.12) shown in this 
paper: 
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MOT eAcH TIEP CAN M6I BAI TOAN cJN DINH 
. cu A BAN CHTU .TAl PHUC T ~p BAT KY. 

G& b6 m9i gilt thiet h~n che' len qui trinh trien d~ng sau khi milt 6n d~n·h, & day c6 th~ xem 
d6 lit qua trlnh phrrc t~p bilt ky. I;lr.ng phrrong ph:ip Bubnov- Galiorkin va phrrO'ng ph:ip tham 
s5 tlti di thie't l~p dtrgc cOng thll'c hi~n xic d!nh ll!c t&i h<!-n tC:ng quit han ket q11i nh~n drrqc 
tnr&c d.iy. 
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