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STABILITY OF TWO- DIMENSIONAL SEDIMENT FLOW
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SUMMARY. In this paper the authorz have studied the instability of 2-D flow with
sediment transport, which iz based on the generalized diffusion theory. The authors have
construcied the boundary conditions of the bed concentration and diffusien fux at the free
surface for closing equations system. After that the authors have considered the instability
and obtainsd the neutral-curve of stability in the plane (R, k). The obtained results show
that if there is no suspended sediment, the result will be identical to Chia-Shun Yih’s.

The stability of two-dimensional flow has been studied before. However it was considered
whether the two dimensional clear fiow or sediment flow as non-Newtonian fluid, e. g., sediment
conceniration isn’t taken into account [1-4].

In this paper the authors have studied the instability of suspended sediment flow, which is
based on the generalized diffusion theory for multiphase 8ow [5, (3[ At last the neutral-stability
curve is obtained. If one ignores the sediment concentration, it's

C. 8. Yih [1]

asy to obtain again the result of

1. SYSTEM OF EQUATIONS

The system of 3-D dimensionaless equations describing the sediment flow for inclined axes
includes [6]:
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where p,, U, - guantities averaged over the steady flow depth H of mixture density, steady flow
velocity, regpectively, v, Ji - components of mixture velocity and diffusion fux, respectively,
¢ - suspended sediment volume concentraton, k, D - constant coefficients, B - Reynolds number,
F - Froude number, p,, pu - densities of sediment and water, respeciively, g - viscosity.

Now we consider the steady flow with the following boundary conditions:

+ At the hard and plane bed z, = 1: '

s
uf cosa

E;:+5(ﬁ7:)4, " =g D {1.2)

i

v;=0,1=1,23, cf

where § - experiment constant, after Frank Engelund é = 0.00056, u? - shear velocity of flow, W,
- settling velocity of sediment particles.
+ At the free surface zo =0

du, Bun 2 Jug )
—_= - = —_ —_ =10 J = Q. 1.
22s T m, PY Romy 2 (1.3)

We easily have found solution of (1.1) - {1.3) for steady flow:
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where the subscrits ¢, b refer in turn to values at the surface and bed. From here we obtain the
relation of Froude number and Reynolds number:

o %
. o P .
F? = R( + 1;—)/;34 (1.4)

If one ignores sediment concentration theu (1.4} is identical to Chia-Shun Yih’s result [1].

2. PROBLEM OF DISTURBANCES AND SQUIRE’S THEOREM

Let’s consider the 3-D) disturbances as cylindrical waves propagating at the angle f to the flow
direction [2]. Here, the zyz Cartesian coordinates, in which the y axis is directed along the z, -
axis and z - axis is orthogonal to the wave front, are used instead of z; z3 z5. Therefore such
disturbances have the form:

q17= q" {y)eikix_“t’, O = g, + 10, {2.1)

with ¢*(y) - complex amplitudes, and steady solution of the primary flow becomes:

u' = fcosf, wl=2lsinf, =4 =0, PP {y) = p°{z2),
J0 = Reosh, J)=J)=0, J)=-Jsind, {2.2)

f=1(ficost, fo, —fisinf), m = {mycosd, ma, —my smé).

Let.

g=q¢ +¢, lni<xt (2.3)

11




Where g is u, v, w, ¢, D, Jx, J, and J; in t.urn Substltutmg (2. 3) into (1.1) in zyz coordinate
system we obtain equations for dxsturba.nces g*, here ¢* is ut, ot wh, o, pt, JL T J) in turn,
The boundary conditions for disturbances are the folldwmga.
+ At the free surface y = ¢(z,¢) reduced to y = 0:

cos 9_0 Re  gul 9t B sml’?p Re —0
puF? T ay T8z T pare ay = )
cotgapls | 2 vt % . T '
Fp, P YRay T T Hput?
-+ At the plane hard bed y = 1:
26 cos B dof fBul B! W,
Tl =l = 1 _ hakt 3 + - W' = -2 . -
= =w =0 = RQW*“ & ( e ) . v (2.5)

From the first of disturbance equations it is shown that there exists a function ¢z, y) such

. a
9¢ pl = o We look for the solution of {2.4) in the form:

By 9z’

—_ ¢J_(y)eikla:—dt} (26)

with qu =¥, g2 =c', g3 =p", g =3, s = Jyy, e = w', g7 = J]
Substituting {2.6) into the disturbance equations we obtain the differential equations system:

that u'

aspz —tke* Py +1kdy + d5 =0,
ikPa¢'3 Pa . m 3 b + YasPa

ard) — ikull)' cosfigy + —”pT)*— - I—{;a 1 — I IE 2 20 =0,
—ikady -+ f,'éﬁ e 7;:;?(#2 + 7 ‘:f’“”' + ”"Z‘ﬁ" =0,
azdy + 1005y - 7eOkvl cos 6y + Dk, =0,
Ps Ps
ands — ikqél)as‘ﬁl +D*c0¢tl‘, —q, (2.7)‘*
»
Pu. Pucy s an Yazdr

ayde + iksin fuld, — ¢g “RpE v bt = Q,
~vc%asde N qfikc in Bvi"qﬁl
Pa P
puk? 0
01—03+‘7;§, az=03+k7,
Here the accents denote differentiation with respect to y. And now the boundary conditons for ¢;
are

=0

asdr +

az = ilc(v(l) cos f — o).

$Y =0, (1) =0, ¢a(1) =0, ¢:(1) = ~Ng{(1),

Rp? cos d o B 0 ,
' (k2 __F%T)‘ﬁl{ )+ #1{0) =0, —FE,‘;;—“;—'@M(G) + ¢6(0) =
- _—0 2.8
(c(}ng’f + S )¢L(0) + ﬁm(o) +¢3{0} =0, &5(0) =0, (2.8)
28 coz 8

E=o“v?(0)cosl9, N:W

It’s easily seen that the system of egs. {2.7) with the boundary (2.8) is separated into two
groups, one of which only contains ¢;, ¢2, ¢3, ¢4, ¢s. This is related to problem in the zy
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plane with velocity profile 12cosf. From here it is easily proved that it satisfies Squire's theorem.
Therefore it is enough to consider the two-dimensional one with § = 0. Here we have to remark
that Squire’s theorem can be proved only in the case of cylindrical waves, For the general case of

¢clear flow we can see [7].
Eliminating unknown functions ¢, ¢4, #5 we obtain two Orr-Sommerfeld equations for 2,

#q as follows:

P
rfu+eads +esdh + bl +esdh — gl =0,

D« 601}5'2 ' (210)
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3. SOLUTION FOR LONG WAVES
In this case k < 1, hence we can look for approximate solution in k as follows:
1 =910+ k11, d2=da tkda, o=op+koL (3.1)
For the firgt approximation we have:
R4, 3 As . RP?(RN’)‘ - 3F2pq)
—_— + 2 s +A A y Q‘_') = A, Tq = 3
$10 67257 2 Y WA o= A T = Ny T F2pa)
Ay = - REcAS ty = By o Be [ LA\ I ija
(F2%p, — NRy)5, ' * F2p.o ] F2p,&0 L2(F2p, — RNv) *
Ay - arbitrary constant, we can choose 4y = 1. If one ignores sediment concentration then

@y = 3/2, identical to the result obtained by Chia-Shun Yih {1},
For the second approximation we have:
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The constants B; are defined by the following equations:
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From the condition of solution existence for {3.2) we have:

R7D4

—_— R’TD“ } (0

a1 = 10y [D3 - DQ - W 0.3)

}, or Imo = kiry {Dg — Dy —

From (3.3) it is easily seen that in the plane (R, k) the neutral-curves include the curve k=10
and the one:
Dy -Dy — ————— =0, 5.4
3 z 3(F2pu - N.R";‘) ( )
From (3.4) it’s easy to follow the critical Reynolds number for stability with asswnption of
small suspended sediment at free surface:

7w rvE10 — (pa — v¢' ) Es

B {prl - 'TC:‘)E'? - r'TEQ (3.5)
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Neutral-stability suface wiht u = 0.01g/crn®, kD = 0.01g/cms” in 3-D space (R, cotga, ¢*)

From 'ﬁg. 1 we can see stability region in three dimensienal space and dependence of Reynolds
number on the inclined angle & and sediment concentration. o

When the sediment concentration is very small, we approximate (3.5} in ¢* and obtain the
condition of stability as follows:

5 5 1
R<R, - e cotga [—n + —] < R,,
24py 3773

5 . e s .
R, = —cotga, n= il , K = kD - diffusion coefficient
6 Puwdl

If one ignores sediment, it’s easy to obtain again the result of Chia-Shun Yih [1]. From
numerical and analytical solutions for Raynolds number we can see that the sediment flow is more

unstable than the clear one.
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4, DISCUSSION

Based on generalized diffusion theory the two-dimensional model of suspended sedintent trans-
port as well as the boundary conditions of bed concentration and diffusion flux at free surface has
been constructed. On this model the 2-D problem of disturbances has been studied. At last it is
obtainéd flow stability condition for Reynolds according to sediment concentration. From obtained
results it’s shown that disturbances of suspended sediment flow are more unstable. If one ignoves
sediment then the Chia-Shun Yih’s result [1] is obtained again.
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ON DINH CUA DONG CHAY HAT CHIEU MANG BUN CAT

Trong bii bdo ndy cac tic gid di nghitn cdu sw 8u dinh cda ddng chdy hai chifu mang hin
¢At trén mit phing nim nghidng. Hé phwong trinh todn hoc md td dong chiy duoc thu nhin dwa
theo 1y thuyét khuy&ch tin suy réng; cdc didu kién bidn trén ddy va trén mit thoing da dwoe xiy
dung. Da thu nhin dwoe hé phwong trinh déng kin di d€ nghifa cfu bal todn &n dinh. Diuh Iy
Squire dd dwoge chira, cho phép chi c¢in nghién céu sw phat tri€n cda cde kich déng hat chigu trong
bii todn 6n dinh. D&i véi cdc kich ddng dang séng dii, phwong trinh O - Semmerfeld 43 duwoc
khdo sdt 58 va khdo sat gidi tich {khi c4c ndng 43 bln cit bé}. D3 chi ra ring bun cit lo limg lam
dong chdy sém mit l6’n dinh so véi trudng hop khéng ¢b bun cat.
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