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THE LOCAL THEORY OF ELASTOPLASTIC DEFORMATION
PROCESSES AND THE STABILITY BEYOND ELASTIC
LIMITS OF THIN-WALLED STRUCTURES SUBJECTED

TO COMPLEX LOADING
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SUMMARY. The paper is concerned with the complete constitutive relations of elazto-
plastic deformation process theory. Using this theory the stability beyvond elastic limits of
thin-walled structures subjected to complex loading is analysed. The proposed meathod of
loading parameter is a combination of numerical and analytical solutions, Caleulations have
been carried out for rectangular plates and cylindrical shells in order to compare thiz method
and its resuits with other theoretical and experimental works,

1. CONSTITUTIVE RELATIONS OF THE LOCAL THEORY
OF ELASTOPLASTIC DEFORMATION PROCESSES

The analysiz of stress-strain states or the stability of components or structures subjected to
various complex loading beyond limits of elasticity requires a plasticity theory which can describe
comuplex elastoplastic processes of deformation. The theory of elastoplastic deformation processes,
bazed on Tlyushin’s postulate of isotropy satisfies this requirement. But up to now the stress-strain
relationship has contained undetermined functionals.

Assuming some hypothezis, we have constructed a complete streas-strain relationship of the
local theory of elastoplastic deformation processes using hypothesis of local determinancy and
complanarily |1, 2i: :
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This theory containes two material functions { and ¢ depending wpen the materials used.
They are determined from experimental data [2]
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It is significant that fzmd t can be applied for all active and passive deformation processes, i.e.
the stress-strain relationship (1.1), (1.2) can describe all deformation processes with complex load-
ing (not only loading, but unloading as well). The relationship for simple loading process, process
with small and average curvature, unloading process and Prandil-Reuss relations are considered
as particular cases of this theory.

a. Simple loading process

For this process § = 0,
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the relations (1.1)-(1.2) become
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Otherwise, according to the small ela.stbp]a.stic deformation theory for simple loading
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hence the relation {1.4) reduces to (1.3)
In the elastic stage Tu = 3G, ¢' = 3G, from (1.3) we obtain Hookean relationship
R .

Si; =208, _ (1.5)

b. Unloading process

The unloadimg process occurs when ¢ = =, i.e. the direction of the tangent to the continuing
.deformation trajectory is opposite to the stress vector at considered point. Since
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hence the relatios (1.1)-{1.2} become

Siy =20, . o (1.6)

c. Deformation process with average curvature

In this process the value of angle § is small. Restricting to the second-order small values we
obtain from (1.2) ‘
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Substituting into the relations (1.1}-(1.2) gives
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The relation (1.7) is a generalization of Prandt}-Reuss relation for perfectly plastic material
and Prager relation for plastic strain-hardening material.

2. THE STABILITY OF THIN-WALLED STRUCTURES
SUBJECTED TO COMPLEX LOADING

In recent years large development in the elastoplastic analysis of thin-walled structures has
been ohserved. But there is no an estimation about the influence of complex loading on the stability
of structures.

Suppose that components of structures are subjected to external forces which are considered
as loads depending on sone parameter{, When ¢ varies, the deformation process occured by these
loads in structures may be simple or complex.

The instability of the ‘:tructureﬁ is expressed that with t = t, external load reaches some special
value, by this load a stress state cr . and a strain state £} occur respectively in the structure such
that before and up to this state the deformation proce»:q is still determined one-by-one, but after
that there exist neighbouring states, i.e. there exists a bifurcation of equilibrinim states.

One of the main aims of the stability problem is to deterinine this value £;. The value ¢ is
calied a critical value of loading parameter, and respectively external load is called a critical load.
As shown later, the critical load depents on the complexity of loading process.

a. Pre-buckling process
quppoae that a thin-walled structure is subjected to complex loading. At any moment ¢ there
exists a membrane plane stress state in the structure
a1 Tans 011#0: Ty —C
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The strain tensor is determined from (1.1}-(1.2) (with v = 1/2) in combination with bonndary
conditions:
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b. Equations of stability

Suppose, that ai the moment ¢ a bifurcation of equilibrium states appears such that with
an infinitesimal small increment of external load there are poszible incremenis of deformation
(including the bending deformation) in the structure
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§u;, §w - increment of in-plane displacement and deflection of middle surface.
§xiy - increment of curvature and torsion associated with the instability.

k:; - principal curvature of the shell, (k, = 0).
Respectively, we determine siress increments according to (1.1}, (1.2) (with » = 1/2):
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In the case of the defarmation process with average curvature A and B become
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Uzing {2.3), (2.4) we write increments of membrane forces and bending moments in the form
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Written quantities satisfy the stability equations of plates or shells
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Equation (2.1)-(2.7) form a system of fundamental equations for solving a stability problem
of thin plates or shells

3. CALCULATIONS FOR RECTANGULAR PLATES
AND CYLINDRICAL SHELLS

The stability of rectangular plates subjected to complex biaxial compression was analysed
in 3]

[ ]Now let’s consider the stability problem of a cylindrical shell of radins R, thickness h and
length L subjected to complex loading. In this case we choose z lying along the generatrix of the
shell, y = Rf and Z - in the direction of the normal, so that k,, =0, k,, = 1/ R

Suppose that the deformation process in the shell is determined by the constitutive relations
(2.2), {2.5). Since A and P do not depend on variable Z, so that 4; = P, = 0, é1}; depend only
on &g, and §M;; - only on §yyj. '
Stability equations (2.7) become
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Satisfying kinematic boundary conditions with butt-ends simply supported, we can find soln-
tions of the form
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Congsider some particular cases:

a. Cylindrical shell subjected to compression along generatrix

In this case

Ty = 7 O, =0, =1 Tu IUIJ!?
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Substituting these values and §w, ¢ by (3.3) into stability equations {3.1), {3.2) and taking
in account of the existence of nontrivial solition, we receive a relation for finding critical force
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where
Am =maR/L,
i = 3R/h - stiffness of the shell.
Denoting by X = n% Y == AZ /n? rewrite (3.4) as follows
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Since s is determined from simple expression
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Oy =p= ¢(3), go that s =_¢_1(P),

then critical force pi can be found from (3.6).
For a long cylindrical shell A2, & n? we obtain
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b. Cylindrical shell subjected to compression and external pressure
Pre-buckling process is of the form

B n
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where ¢ is a loading parameter. Respectively, deformation increments are determined by following

equations
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The arc-length of the deformation trajectory iz found by
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Since p, ¢ depend on loading parameter p = p{t), ¢ = q(t), so from (3.8) s is determined as a
function of ¢.
In this cases the coefficients of the stability equations (3.1}, (3.2} are the following
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By the same method we get an expression for finding critical load
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Using previcus notation X, ¥ -we rewrite
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From equation {3.10) ¥ is determined as a function of ¢, p, ¢ and then substituted into {(3.11).
Expressing p, ¢ through loading parameter ¢, from (3.8) and (3.11) we can find critical value of
loading parameter ¢, by numerical calculation.

Critical loads are the following

Pe = plts), @ = qltx)
For a long cylindrical shell AZ, < n? we obtain
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Expressing p = p(t), ¢ = g{t), we can find the cfitical value of loading parameter t;. from
(3.12} and (3.8) by numerical calculation.

!



CONCLUSIONS

1. Constitutive relations are formulated completely. Contained in these relations material
functions are already determined. )

2. The local theory of elastoplastic deformation processes can be alpp'iied to the stability
problems of thin-walled structures, when both Pre-buckling process and Post-buckling processes
are complicated,

3. Proposed method of loading parameter gives a way to solve stability problem for all types
of loading.

4. Complex loading process has an essential influence on the stability of structures. Critical
loads are lower than that 1s for simple loading.
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LY THUYET QUA TRINH BIEN DANG DAN DEO
VA BAI TOAN ON DINH NGOAI GIO1 HAN DAN HOI
CUA CAC KET CAU THANH MONG CHIU TAI PHITC TAP

Duwa trén dinh 48 didng huwémg va gid thuyét xdc dinh dia phuong tdc gid 43 x3y dirng dwoe
dang hoin chinh cda Iy thuy&t qua trinh bién dang dan déo. L§ thuy@t chia dung hai ham vie
litu md t4 tinh chit vé hwémg va tinh chit vecto cia vit lidu. Cic him niy cing di dwoc thidt
lip tir cdc 56 Lidu thye nghiém. :

S¢ dung ly thuy&t trén vao bai todn én dinh ngoii gidi han dan hdi cda két ciu thanh mdng
khi qué trinh bifn dang trwéc va sau khi mat 8n dinh d2u 13 phie tap. Pwa ra phwong phip gidi
loai bai todn ndy théng qua tham s§ tal. Gidi bai tedn cu thé v& bin méng chir nhit va vé tru
chiu tai phirc tap. -
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