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NONLINEAR OSCILLATIONS IN SYSTEMS WITH
LARGE STATIC DEFLECTION OF ELASTIC ELEMENTS

NGUYEN VAN DAO
Institute of Mechanics, NONST of Vietnam

ABSTRACT. In mechanical systems the static deflection of the elastic elements iz usual
nof appeared in the equations of motion. The reason is that either a linear model of the
elastic elements or their too small static deflection assumption was accepted.

In the present paper both nonlinear model of elastic ¢lements and their large static
deflection are considered, so that the nonlinear terms in the equation of metion appear
with different degrees of smallness. In this case the nonlinearity of the aystem depends not
only on the nonlinear characteristic of the elastic element bui on its static deflection. The
distingnishing feature of the system under consideration is that if the elastic element has
soft characteristic, the nonlinear system also belongs to the soft one. If the elastic element
has hard characteristic, the system may be either soft or hard or neutral type, depending on
the relation between the parameters of the elastic element and ite static deflection.

The autonomous and non-autonomous systems have been studied. Analytical methods
in combination with computer have been used.

The problem of nonlinear oscillations of elastic structures with large static deflection in

general, and beams, plates in particular, may be studied in a similar maner.

1. INTRODUCTION

Let us consider the simplest oscillatory system which consists of a mass M and the spring
as shown in the Fig.1. The spring supporting the mass is assumed to be nonlinear with the
characteristic

Flu) = cqu+ B,u, (1.1)
_
unstreched B _l__ ' X
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T position :
Fig. 1

go that the spring force acting on the mass M is

e (A —z)+ B, (A - :5)3,
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where ¢, 1s a positive constant and B,1s either positive {hard.characteristic) or negative (soft
characteristic), A is the deformation of the spring at the static equilibrium position. This position
is chosen as the reference position. When z = 0, the spring force ¢, A + ;A% is equal to the
gravitational force Mg, that is
e, A+ B, A% = Mg, _
Measuring the displacement  from the static equilibriam position with x chosen to be positive
in the upward direction, and applying Newton’s second law of motion to the mass M we obtain

Mi4c,z+ Sﬁquz —38,Az%+ f,2° = 0.

It is supposed that A is large and = is enough small, so that in comparison with linear terms, g, z3
is a small quantity of second degree and 8, Az? is of the first degree of smallness:

z : 3 _ ofe? 22 = ofe
E—O(E)r B,z” = 0{e*), 8. ? 0(e),

where ¢ is a small positive parameter. In this case §, A%z is finite.
Taking into account the viscous damping force h % and exciting force P(t, =) which are both
assumed to be small quantities of second degree and introducing the notation
A

= By ?h==2, &f(t,z)= %P(t, z), (1.2)

W2 e £, -+ 3ﬁ0A2 _ 38,4
- M’ M

- M ] £y M ? Egﬁ

we can write the equation of motion of the mass M in the form:

i+ wizs = ey’ — 2 (ht + f=* — f(t, z)). . (1.3)

In comparison with the classical Duffing equation, in the equation {1.3} the small terms appear
with different degrees, most of them are of second degree of smallness. From the structure of the
equation (1.3) one can predict that the influence of the forces on the motion of the mass M can
be found in the second approximation of the solution. Some studies of stationary forced and
parametric oscillations in the systems described by the equation of type (1.3) are given in |1, 2|.

“In the present paper a more general equation will be investigated.

%+ wz = eyz® + 2 F(r, p(7), 2, 2), (1.4)

where 7 is a slow time 7 = &t, F(r, (1), z, £) is the periodic function relatively to ¢ with period
2x which can be represented in the form ' )

N
Flrp,z,8)= ) " F,(r,z3).
n=—N
The coeflicients of this expansion Fy,{r, z, 7} are polynoms of z, £. It is assumed that the momentary

frequency v(7) = %% s slowly changed over the time and that F,{r,z, z}, v(r) have an enough
number of derivatives relatively to r for all finite values of r. We will be specially interested in the

study of the resonance zone when w is near to EV, where p and g are integers.
' q

2. AUTONOMOUS SYSTEM

First, we study a special case of the equation {1.4) when F(r, p(r),z, £} does not depend on
fime: :



Flr, o(r), 2, 4) = Qlz, ). @1

Following to the asymptotic method of nonlinear oscillation [3, 4] the solution of the equation (1.4)
in this case will be found in the form

z = acosf +eu, (a,0) +e®u,(a,0) +... (2.2)

where u;(a,8) are periodic functions of § with period 27 which do not contain the first harmonics -

sin f, cos 8, and a, § satisfy the equations:

? =eA;(a) +e%Az(a) + ...,
_d; : (2.3)
il +eB;(a) + & Bafa) + ...

Substituting these expressions into the equation {1.4) and comparing the coeflicients of = and
2
e? we have;

2
wz(%?%!- + '-"1) = va? cos® f + 2awB; cosf + 2wA, sind,

8%y
2 2
“ ( 562

(2.4)

+ uz) = 2aryu, cosf + Qlacosf, —aw sin 8) +
+ 2awBycosd + 2w Ay sind + R(A,, By},

where R{0, B;) = R(A;,0) = 0. Comparing the coefficients of the harmonics in the first equation
of (2.4) gives:
va?

1
= = = —H1— = #}.
Ai=0, B1=0, u 57 ( 3 cos 2 ) (2.5)

Comparing the first harmonics sin 4, and cos# in the second equation of (2.4) yields:

1
Ay = ﬁ;(sin §.Q(acos , —aw sin )},

2,3 (2.6)

1. ; 5 7a
_E[(cosﬂQ(a cos #, —aw sin #} + 5o ],

B,
where (f) is averaged valued on time of the function f. We consider now two important examples:

Example 1. Duffing equation
Supposing that Q(z, ) = —hz — fz°, we obtain

- o 3 5y
Ay = ---2—0., By = z—wag, a= Eﬁ g (2.7)
Thus, in the second approximation we have
a? 1
m=acos€+sg;3-(1~§coszﬁ), . (2.8)
where a and § are determined from the equations
da g2
22y
dt g (2.9)
df + 2o , ’
e w —
dt 2w



The oscillations are damped with the frequency depending on the amplitude. With the growth of
46 . . . . .
time the momentary frequency — either increases if o < 0 or decreases if o > 0 or is a constant if

e = 0. This is a distingguishing feature of the system with large static deflection. The parameter
o depends on the parameters c,, 8, (spring) and A (static deflection). '

rEﬁcample 2. Van - der - Pol equation

It is assumed that Q(z, ) = —fz° + D(1 — z%)%, where D is a positive constant. We have
aD a® o
=21 E) g
175 s/ 2T "

and the equations of the second approxirhation are

d ) 2
a’ szaD(I“%—),

dt 2

2.10
5 e (2.10
dt w €2w

The oscillation is self-excited with a constant amplitude a, = 2. The essential difference in
comparison with the classical Van - der - Pol oscillator is that the momentary frequency depends
on the parameter o which can be either positive or negative or zero.

3. NON-STATIONARY NON-AUTONOMOUS SYSTEM
The approximate solution of the equation (1.4} in general case will be found in the form
I =acos (Ef,o—{— ) +eu,(r,0,0,0) + e2u, (1,0,0;0) + ..., (3.1)
q

where § = E(p + v and u;{r, a,p,0) are periodic functions of ¢, 4 with period 27 and do not

contain the first harmonics cos#, sind. The unknown functions @ and ¢ satisfy the equations:

% = EAl(T, e, '9’)) -+ EZAZ (TJ @, 1lb) +
o , ] | (3.2)
Tk EV(T) +eBy(r,a,9) + &2 By{r,a, 9} + ...

By substituting the expressions (3.1) and (3.2) into the equation {1.4) and comparing the
coefficients of € and &* we obtain

7y
2074, 2. _ 2 2
(‘r] g +2wu(r)3 50 + w 55 +w u, = ya®cos” f—
_ _ E 3A1 _ r 8.5‘1 .
[(w qu( ) £ ZawBi] cosfd + [(w - EV(T))G 5 ] sin @, (3.3)
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8%u, 8%u,  ,8°

v¥(r) 557 + 2wy (r) 8(,0626 +uw 3;2 + w?u, = 2ayu, cosd + F(r, ¢, acosf, —aw sin 8)
r BAQ P 3441 BAL BA1
- [(w - EV(T))W — 2awBq + Alﬁ; + B;—a}; + 5 an] cos
r aBg BBI 8B1 aBl .
: - JwAz + 24, B, +ah ]
ot [(w qV(T))ﬂ 5y +2wAz + 24, B +adi—— +aB) ae 8, sin ¢
3%u 3%y 3%u 8%y 3%y
- 42 = 42 ! 2 A L 2wA > 1
> { wWaras TN g, T A G0 T Al + wrBiy as
3%u P 8By 8u, 84, du duy du(r)
N
Bt o= TN G 5 oy e ) Y o ar (3.4)
The unknown functions A;, B; and u, will be determined from the equation {3.3). By
comparing the coefficients of harmonics in (3.3) we obtain:
A1 =0, By =0 uﬂ‘i(lmE 20), 0="
1 =0, 1=0, u =0y 5 cos26), —qrp-l—t[). (3.5)
Analogeously, we can find Az, By and u, from the equation (3.4) for the general form of the
function F(r,, =z, £}. However, we will concentrate attention on two important cases:
Case 1. The passage of the system through the principal resonance zone
It is supposed that the function F(r, ¢, 2, ) is of the form
v F(r,p,z,%) = —hi—fz° + Esinp(t), p=g=1, (3.6)
where E is a constant. In this case the equation (3.4) becomes:
a2 a2 a2
v2(7) 8(:2: + 2w (1) 69:;;23 + w? 6:; +w?uy = 2avu, cosf + hawsind — fa’ cos® 8
; S dA 48
) -+ Esin p{t) —~ [(w - 1;(1'))——E - 2ang] cosf + [(w - u[r))a - 4 ZwAg] sin 4.
a9 4 (3.7)
Comparing the coeflicients of sin§ and cosf in (3.7) we obtain
JA
{w —~v(r)) 61})2 — 2awB; = —aa® — Esinvy,
aB
(w—v(r))a 61;’;2 + 2wAs = —haw — Ecosp,
3 542
“=1f e
Solving these equations we have
‘ h
Ay = _ne ———-cos ¥,
. 2 w+ur)
' » (3.8)
B, 2 sin .

T2t Tl

Comparing the coefficients of the other harmonics in {3.7) and solving the equation obtained
we get

1 '12 By s
u, = o2 (3(”—2 + E)a cos 36. (3,9}
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Thus, in the second’approximation we have:

g .
_ gva 1 _
?— ecosf + 27 (1- 3 €08 20), 6= ot) +¥(t), (3.10) 7
where @ and 9 satisfy the equations:
da a [h £ ]
& = T 3 o ) o
dyp ()+e2a 2 e E in 11)
— =w —v[r}+ —a* + ——— sin 1.
dt 2w alw + v(r)}
These equations are solved on the personal computer by using the finite difference method for
e2h - _, &’E _3 2a. g e
the parameters — == 0.5 1072, —~ = 0,158 - 10~% and - = +0.1 {Fig.2), = —0.1
w w w

Tig.3) with the initial values: £ = 0, qp = 1075, = (1. The parameter n = hd for Fig.2 is
o w g

1 = 0.97 + 107% (curve 1, At = 0.04), n = 0.97+ 1075¢ (curve 2, At = 0.4}, n = 1.03 — 10~5¢
{curve 3), n = 1.03 — 1075 {curve 4) and for Fig. 3 is = 1.02— 10~% (curve 1], n = 1.02— 10~ %
{curve 2), n = 0.97 4 1075¢ (curve 3, At = 0.04), 5 = 0.97 + 105 (curve 4, At = 0.4}.

The stationary amplitudes corresponding to the constant values of the frequency v are present-
2

: 2a
ed in the Fig.4 for the values mentioned above of f, E and —; = +0.1 (curve 1), a = 0 (curve
w :
2

2}, Z—za = —0.1 (curve 3). The heavy (dashed) lines in this figure correspond to the stability

{instability) of oscillations.

4,97 .98 299 1.44 101 142
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Comparing the Figs 2, 3 and Fig. 4 it is seen that increasing the velocity of passing through
the resonance, the maximum of the amplitudes decreases and less peaks appear after the resonance
peak. The maximum of the amplitudes of stationary oscillations is biggest.
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Case 2. Passing of the system through the parametric resonance
Assuming that the function F(r, ¢, z, &) has the form

F(r,p,z,%) = —hi — Bz’ +ezcosp(t); p=1, ¢=2, (3.12)

where £ is a constant, In this case the equation for determination of Ay, By and uy is

. 32
2(1‘) +2wu(f)a 35 w? =t 392 +w?u, = 2aqu, cos§ + hawsin § — fa’ cos” §
G}
+ oacos f cos p — [(w E v(r)) 92 _ 2ang] cosf + [( - —u(r)) ] sin 4.
v
(3.13)
By comparing the coefficients of cos§ and sin 4 in (3.13) we have
1 84
(w - —1/( )) —31‘(}—2 — 2awB; = —aa® + %ﬁ cos 21,
( ! ( }) o8 2 4 2wA h 24
w—gw(r wAz = —haw — — sin
EN 2 2 ’
3 5'7
where o = Zﬁ ~ 8 . From these equations we obtain
(wr?
h .
Ay =-—~—a— —e—a~sm2¢,
27 2ur)
2 (3.14)
xa
w2 24p.
T Bk
Hénce, the equations of the second approximation become
da &° ea ‘
— = ——{h in2
dt 2 (ha+ v(r) sin24),
"y 2 {3.15)
dy v(r} €°a , e
— =w— — + ——a® — ———cos 2.
dt 2 2w 2u{r)
c2e _3 szh
These equatlons are solved on the personal computer for the parameters 77 = 891077, — =
I w

2o :
0.002 and —"2_ = 0.02 {Fig. 5}, — = —0.02 (Fig. 6) and with the initial condition ¢ = 0, ap = 0.09,
w w

. t
thg = 0. For the case of Fig.5: u = EZL—) =1+107% (curve 1}, p = 1+ 2- 1075¢ {curve 2) and for
w
the case of Fig.6: p=1— 1075 (curve 1), p=1— 21075 (curve 2)

4. CONCLUSION

The nonstationary autononrous and non - autonomous systems with large static deflection of
elastic elements have been examined. It is turned out that, Althrough the elastic elements are non-
linear, the systems under consideration can become either nonlinear with different characteristics
_ or linear, depending on the relation between the parameters of the elastic elements and their static
deflections. The passage of the systems through the principal and parametric resonances has been
investigated, With the growth of the velocity of passing through the resonance the maximum of
amplitudes decreases and less peaks appear after the resonance peak.
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The most interesting phenomenon in the systems under consideration is that their nonlinearity
depends not only on the nonlinear characteristic of the spring as in the classical theory but also
on the static deflection A. Namely, :

If the spring has soft chasracteristic (8 < 0) then the system under consider action also belongs
to the soft type with more soft characteristic, because ‘

3 5y?
a:_ﬂ__’f__

4 Buw? <0

When the spring has hard characteristic (§ > 0}, the system under consideration belongs to the
hard type if

a>0 or ¢ >TF,4A% (4.1)
and to the soft type if
¢, < T8, A% . . (4.2)
and to the neutral type if |
':l;; = 75{;A2 (43)
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DAO DONG PHI TUYEN TRONG CAC HE ¢6 p0 DAN TINH LON

Viée k& d€n 46 din tinh 1én trong hé dao ddng phi tuyén nhd din t&i phwong trinh chuyén
ddng c6 dang dic biét, trong dé céc s8 hang phi tuy€n xudt hién véi cde 46 nhd khic nhau 0{e) vi
0(£?). K&t qua 13 dd ctng cda hé khdo sit thay d8i, thy thude vio twong quan gira cc thong s8
cta yéu t3 din hbi va 48 din tinh cda né. Ching han, y&u t§ din hdi c6 dfc trung cing, dwdng
céng hudng cé thé mang dic trung mém néu giira céc théng s8 cha hé ¢6 sw phy thude (4.2).

Bai todn cu thé trink biy & diy goi 1én s cin thidt phdi xem xét chi tift hon vin d& dao
dong cida cdc két cdu dan hodi, cic dim, tim cé dd vdng tinh 1én.
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