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QUADRATIC AND CUBIC NON-LINEARITIES
, IN A QUASI-LINEAR
PARAMETRICALLY-EXCITED SYSTEM

NGUVYEN VAN DINH
Institute of Mechanics, NCNST of Vietnam

SUMMARY. A quasi-linear oscillating system always contains weak factors {negative
and positive frictions, exciting forces in resonances, non-linearitiee of restoring forceé) nsually
characterized by a small parameters €. Recently, some articles have diztinguished the degree
of smallness of different factors and interesting phenomena have been found (3, 4]. In the
present paper, using the same manner, we shall consider a guasi-linear parametricaliy-excited
system and the difference between the quadratic non-linearity and the cubic one, will be
observed. '

§1. SYSTEM UNDER CONSIDERATION AND DIFFERENT FORMS
OF ITS DIFFERENTIAL EQUATION

Let us consider a guasi-linear parametrically-excited system described by the following differ-
ential equation:

4+ 1%z = Br* — y2° 4+ Az — hi + 3¢z cos 2, {1.1)

where = is standard oscillatory variable; 2¢ > 0, 2v > 0 are intensity and frequency of the para-
metric excitation; A = (v? — 1) is detuning parameter; A > 0 is linear damping coefficient; g, ~ are
coeflicients of the quadratic and cubic non-linearities, respectively; overdots dencte differentiation
with respect to time t.

By standard variable we mean the. “original” one, divided by an appropriate positive number
so that the maximum of the absolute value |z| is close to unity. Let us denote the small parameter
by & and suppose that h and g are of order of smallness 2. Depending on the order of smallness
of 8, v, A, the differentizl equation (1.1) can be written in different forms, among them, the most
interesting forms are: '

-if B, 4, A are of the same order &% as h and ¢, we have:

i+ 1Pz = e*{fz® — vz + Az — hi + 2qz cos 2ut}, (1.2}

- if B, v, & are of the same order ¢, the differential equation (1.1) becomes:
£+ 1%z = e{fz® — y2° + Az} + *{—hi + 2z cos 2vt}, (1.3)
- at last if 8 is of order ¢ while ~, A are of order €2, we have:
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i+ vz = e{fr’} + *{ —yz> + Az — hi+ 2gz cos 2vt}, (1.4).

For the sake of simplicity, 7 is assumed to be positive while 8 may by either positive or negative.
The case in which v and A are of different orders must be omitted by the reason presented below,
at the end of §4.

§2. SYSTEM WITH THE NON-LINEARITIES OF ORDER &?

First, we study the case, described by the differential equation (1.2). .Using the asymptotic
method [1}, the solution of (1.2} is found in the form:

x = acos ¥+ euz(a, ¥, 0) + szug(a, ¥, ),
a = eAq(a,0) + % Az (a, 6), (2.1)
§ = eBi{a,0) + e Byfa,0), ¥ =rt4+4.
where @, § are amplitude and phase of the oscillatory regime, respectively; uy, us (A1, By, Az; B2)
are unknown functions of a, ¥, #{c, ), which are periodic with period 2r relative to 1, 8(8).
Substituting (2.1) into (1.2), equating the coefficients of like powers of ¢ in both sides, then
indentifying the terms with the same harmonics, we obtain:
A1=D, Bl=0, U]_:O,
— 2vA; = hav + gasin 26, (2.2)

3
-~ 2wvaBy = Aa — nyaa + gqa cos 24.

Thus, for new variables a and #, in the second approximation, the differential equation are of the
form:

a= _525_{;“, + gsin 24},
Y (2.3)

§= ——1-52{4& - Eqag + qcos 28}
2w 4 S '

The stationary oscillation is determined by equating zero the right-hand sides of the system
{2.3):

hi + gsin 26 = 0,

3 2.4
A—anz-i—qcost?:D. 2.4)

Eliminating @ from {2.4} leads to a relationship between the amplitude o and the frequency v:

3 2
W{a, V2 == [Eqaz - A] —~Ap =0, Ap=gq°~h%72 _ (2.52)

or

3
Sy0? = (v~ 1) £ VA, (2.5b)
In order {o study the stability of the stationary oscillation (ag, fg}, the pertubations a, 64
are introduced, namely:

@ = ag + 8a, # = g+ 84. ~ (2.8)
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Substituting {2.6) and into (2. 3) using (2.4) and linearizing the resulting equations, v obtain
" the variational equations:

(6a) = —a—oqcos%’o - &4,

. 3 1 (2.7)
(56y = 1 - =nad - 6a+ qs1n290 éd.
vag 4
The characteristic equation of the variational system (2.7) is:
ay
) —— cos26 BW
- =gl 2 sin20p—o| dg
vag 4 v
Since k > 0, the condition for stability is given by the inequality:
Wlag,v?) _
g—-%?”'—”)>o or +v/A;>0 (2.9)
2

From (2.9) and (2.5), it follows that the oscillation corresponding to the amplitude gy and
the phase fy as the stability condition of the stationary oscillztion do not depend on the quadratic
non-linearity; only the cubic one is the decisive factor so that ihe present system iz nearly identical

to the classical parametrically-excited one [1, 2] with only a little difference in their forms: e is .

replaced by &2,

§3. SYSTEM WITH THE NON-LINEARITIES OF ORDER -

For the second case, described by the differential equation {1.3), the same a.symptotlc method
is applied. The unknown functions in the asymptotic expansion are:

1 3
A]_ = 0, B]_ = —E{A —_ Z']’GQ},
ﬁ02 ﬁ 2 ,ms

U1 905 T gz ORI gz cos By, (3.1)
— 2vAz = hra + gasin 26,
e 3 g2 BB 5 39 o :
- 2vaB, = 4_1»’2-[A - Z"fﬂ- ] + ag‘a — 128”20. + ga cos 26,
and the differential equations, in the second approximation, for ¢ and ¢ of the form:
2
€ .
éz=—§£{hu+qsm20}, . :
e 3 2 1 3 .2 5B? 32 (3.2)
fo= o Zgpa_ 2 2——.{—-~—A—~— 2 207 2 4 }
2o (8= 19 o gm A~ vl + 55’ — et Haces2t ),
‘ 5% 38
where o0 = — : —~7.

4
The amplitude a and the phase § of the stationary oscillation satisfy the following equations:

hy + gsin2f =0

77 (37°) 7l —1-20) (31e%)+ (5.3)
2oy

2
e +geos2f =0,

+* -1+
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and, after eliminating 4, the relationship between a and v is obtained:

i) = {5z ()

+(U2_1)+E5§}E}2_A1=0 ' (3.4a)

or

5 /3 2 1 3
2 (P} (a1 2 (— 2)
24,72 (4""’) 757 (3 Mg’ )+

+ (2 - 1)+ ii_é_;_)f FVA; =0 (4.3b)

The equation (3.4b) admits the solution:

-3 1 . 6 9
Z’m" = g(3b’“ —1-20){1 -/ Az),
3.5}
_ 1007 4 (v® —1)? (
Az=1- {3ua—1-2a)2{(" V"4 ivm}

{The other solutions of the equation {3.4b) (sign -+ before /A1) must be rejected as meaningless,
since the corresponding amplitude is toc large for standard variable). Expanding +/A; and ne-
glecting the terms of third and higher powers with respect to {1 - 1), o, /A, we obtain a more
simptle relationship:

i—-yaz (v ~1) - (v 22;1)2 (v? — 1)o £ /AL {3.6)

As in §2, to analyse the stability of the stationary vscillation {ay, 6, we use:
- the variational equations:

(8a) = —ajnqcos 20q - 64,
{3.7)

o = i i () - 07 < 1= o) oo 1,

- then, the characteristic equation:

[+ 73] aW{GQ, )
ho ——t =0 3.8
g Hho+ — 57 da {1.8)
The stability condition is as previously:
aw
——L;O—’—) >0 or /4 >0 (3.9)
ao :

Thus, the same conclusion as in §2 is obtained: the oscillation corresponding to the larger
{smaller} amphtude is stable (unstable).

The relationship (3.6) shows that, in the first approximation, the system: described by the’
differential equation (1.3) belongs to ha.rd kind and the qua.dratlc non-linearity (the term (v* —1)o)
makes it less hard.

Figure 1 shows the resonant curves a = a{v?) for a typical case: h% = 0,00010, ¢% = 0,00011,
7 = 0,16, ¢ = 0(a) and ¢ = 0, 2(b) (the formulae (3.5) and (3.6) give practically the same curves).
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§4. SYSTEM WITH THE NON-LINEARITIES OF DIFFERENT ORDERS

The third case, described by the differential equation (1.4}, is more interesting: the quadratic
non-linearity is now of order & while the cubic is of order £2.
The asymptotic method gives us successively:

fa? _ pa?
A]_ = 0, Bl = 0, Uy = 5;13 - *6—-'*— Cos 2¢,
— 2vAg = hvae + qusin 26, {4.1)

1 5% 4
—,ZUG’BZ = (;5 - ;;2-) 6 a® + Aa+ qacos 2:9
where |

-4

B
R gﬁzi

#Fld"_‘

and
v

\ £'a .
a= _E{}W +gsin 26},

4.2)
. g2 1 1y 5 (
i (- D) o)
207 "2 Gﬁ a +A+qcoq%€ ,
The amplitude @ and the phage § of the stationary regime satisfy the equations:
hv + gsin2¢ =0, : ' : . .
1 2 4.3
(—2———5)ia + A+ geos2d =0, (+3)
v I

from which, after eliminating ¢, we obtain:
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W(a,v?) = {(U—l2 - -;15) %,6%2 + A}2 ~ Ay =0, (4.42)
oxr: ) 5ﬁ2 .
(ﬁ - ﬁ) at = (- 1) % VA, (4.4b)

It is easy to form the variational system:

(6a)' = wﬂq cos 20, - 66,
v

. 1 /1 562 o5 . 1 (4.5)
(69) = ————;( ) 5 GGqu31n260-5t9,

and its characteristic equation:

2
2, 00 OW(ao,v?)
e thet 4p2 Bao (4-6)
The stability condition is:
BW{GO Vz) 1 1
Wla,v?) _ o (L - L)va _
Far > or T a0 A; >0 (4.7)

From (4.4b) it follows that the oscillation with the larger {smaller) amplitude corresponds to

the sign + (—)} before /A if (—1— N ui) > 0 and to the sign — (+} before /A, if (—1— - }5) <0
* V*

Hence, the inequality (4.7} leads to the same conclusion as in §2, §3: the osc1llat10n corresponding
to the larger (smaller) amplitude is stable {unstable).

The interesting phenomenon in the third case is that the character (soft-hardness) of the
system under consideration depends on vZ, i.e. on both coefﬁment.s F and ~ simultaneously (see

(4.4b)): ‘

- if /2 is sufficiently large (v is sufficiently small relative to ,62.], then (Viz - —:—2) > 0 for all values
v? 2 1, therefore the system belongs to soft kind, )

- if 12 is sufficiently small (v is sufficiently large relative to %), then (;}5 - ;12—) < 0 for all values

12 =3 1, therefore the system becomes hard one,

. 1 1y, . . .
- if v2 = 1, the (_,_ - -——2—) is close to zero, the system is neutralized: in the plane (1%, a), the
V2

resonant curve a = a(v*) disappears (since a is too large or does not existe) or degenerates into
two straigh lines, nearly parallel to the ordinate axis.
Figure 2 shows the resonant curves for fixed va.lues h? = 0,000050, ¢ = 0,00051, 82 =0, 0240

and for various values v? = cofa), v? = 2(b), vZ = 4—(c) (the resonant curves lean to the left),

2 = —(d} vi= Z( e) (the resonant curves lean to the right).

Remark We have omitted the case in which v and A are of different orders To clear up
this question, let us consider the following differential equations:

E4viz = e{ﬂzz —qz®} + 2{Ax — hi + 29z cos 2ut} (4.8a)
£ 412z = e{ﬂz2 + 5:r} + 52{ — vz ~ ki + 29z cos 2vt} (4.8b}
For (4.8a), we obtain B; = 3va*/8v and the equation § = By + €2 B, = 0 is of the form:
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3
“2a% +£%B, ' : (4.9)
v

From {4.9), it follows that ¢ must be of order e. Therefore, it is necessary to standardize again
the oscillatory variable z. Indeed, dividing the both sides of (4.8a) by a small appropriately chosen .
positive numbers d. {of order max|z|), we obta.in, {or new variable y = z/¢.., a differential equation
in which v is replaced by -, = va?. Since a2 is small, the order of smallness of ., may be €2 and
the differential equation (4.82) may be transformed to another one of type {1.4).

Analogously for (4.8b} we obtain B; = —A/2v and the equation § = 0 becomes:

A -
—ey £B; =0 {4.10)

" The latter equation may only be statisfied with very larger value a so that the “restandardiza-

tion” is also necessary. Here, . must be large, v, may be of order ¢ and the dlfferentla,l equation
{4.8Db) is transformed to the type {1. 3)

a &
080
0.49
] : ; 7 ) ve 4
g0 T|1|nl||1||r||||1|irlrz»aaxi|l|ul|l'lll L
- 8.0 ~-4.814 a.060 - 0.840 5.§28
Fig. 2 '
CONCLUSION

The above analyses reveal the difference between the quadratic nen-linearity and the cubic
one in a quasi-linear parametrically-excited system. I the non-linearities are of the same order
of smallness, the cubic is the dominant factor (y > 0, the system belongs to hard kind}. On the
contrary, if the non-linearities are of different orders of smallness, the character (soft-hardness) of
the system depends on both them, in equal degree.

This publication is completed with financial support fljom.the National Basic Research Pro-
gram in Ndtural Sciences. '
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PHI TUYEN BAC HAI VA BAC BA TRONG
-MOT HE DAO PONG A TUYEN THONG 50

Khdo sit hé dao ddng 4 tuvén thong 50 trong dé yéu t0 dan hdi phi tuyen dwere bifu difn bédi
hai £8 hang bic hai va bic ba. Néu hai s8 hang trén twong déng & cap £ vi e?, tic dong cila chung
14 twong dwong vA hé cé thé cb tinh mém hodec ctng. Ngwye lai, néu chiing ér cling cip, s6 hang
bic ba quy&t dinh tinh m&m hodc cling ctia hé.

DAI HOI DAI BIEU TOAN QUOC LAN THU 3
HOI CO HOC VIET NAM

Ngiy 6 thiang 12 nim 1992 i Co hoc Viét Nam di t8 chivc thinh cng Dai hoi dai bitu todn
qude [3n thit 3. Sau khi kifm didm lai cdc hoat ddng cda Hai trong 5 nim qua (1587-1992}, thio
luin v quyét dinh phuwong hwéng cdng tac HEE trong 5 ndm t&i {1992- 1997) Pai hoi 43 biun Bac

_chdp hanh Trung wong héi nhiém ky 3 (1992- 1997]
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(Phé chd tich), Khéng Doan Dién (Phé tong thw k}'f) Bui Anh Dinh, Pham Huyen
(Phé chd tich thir nhat), Nghiém Hiu Hanh, Nguyén Vin Hu-o"ng, Nguyen Xuin
Hung (Phé chd tich), Pham Hong, Nguyén Vin Hoi, Nguyén Thé Hing, Dwong
Ngoc Hai, Nguyén Nhuw Khii, Pham Vin Loi, Nguyén An Nién (Phé chd tich),
Nguyé&n Vin Ngb, Nguyén Diéc Phan, Nguyén Vin Phé, Nguyén Thién Phic,
Phan Ky Phing (Phé chi tich), Dio Vin Phy, Tran Sy Phiét, Nguyén Thi Ngoc
Quyén, D3 Sanh (Téng thw kf), Nguyén Tai, Lé Ky Thanh, Nguyén Trudmg Tién,
Trin B4 Tinh, Nguyén Hoa Thinh (Phé chi tich), Nguyén Thi Trung, Nguy#n
Vin Veong.

* Trong s8 1, 1993 do thifu x5t khi soan thdo chiing 6i dwa thigu hai trwéng hop phén cong
13 Phé chil tich - Xin thanh thit xin 133 d35¢ gid vi BCH Trung Uong Héi.
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