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SlJ]v{MARY .. A quasi-linear oscillating system always contains weak factors (negative 
and positive frictions, exciting forces in resonances, non-linearities of restoring forces) usually 
c-haracterized by a small parameters e. Recently, s~me articles have distinguished the degree 
of smallness of different factors and interesting phenomena have been found [3, 4]. In the 

present paper, using the same manner, we shall consider a quasi-linear parametrically-excited 
system and the difference between the quadratic non-linearity and the cubic one, will be 

observed. 

§1. SYSTEM UNDER CONSIDERATION AND DIFFERENT FORMS 
OF ITS DIFFERENTIAL EQUATION 

Let us consider a quasi-linear parametrically-excited system d.;:.snibed by the following differ­
ential equation: 

(1.1) 

where x is standard oscillatory variable; 2q > 0, 2v > 0 are intensity and frequency of the para~ 
metric excitation; tl = (v2 -1) is detuning parameter; h > 0 is linear damping coefficient; {J, 1 are 
coefficients of the quadratic and cubic non-linearities, respectively; overdots denote differentiation 
with respect to timet. 

By standard variable we mean the. "original" one, divided by an appropriate positive number 
so that the maximum of the absolute value lxl is close to unity. Let us denote the small parameter 
bye and suppose that h and q are of order of smallness e2 • Depending on the order of smallness 
of /3, 1, .6., the differential equation (1.1) can be written in different forms, among them, the most 
interesting forms are: 
- if {J, "f, .6. are of the same order e2 ash and q, we have: 

;; + v2 x = o2 {,8x2 -')x3 + b.x- hi+ 2qx cos 2vt}, 

- if {3, /, fJ. are of the same order e, the differential equation (1.1) becomes~ 

- at last if f3 is of order e while 1, Ll. are of order e 2 , we have: 
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(1.2) 

(1.3) 



(1.4} 

For the sake of simplicity, 1 is assumed to be positive while {3 may by either positive or negative. 
The case in which 1 and l:l are of different orderS must be omitted by the reason presented below, 
at the end of §4. 

§2. SYSTEM WITH THE NON-LINEARITIES OF ORDER <2 

First, we study the case, described by the differential equation (1.2). Using the asymptotic 
method [1], the solution of (1.2) is found in the form: 

x =a cos ..P + eu1 (a, ,P, B)+ <2 uz(a, ,P, B), 

a=<A,(a,B)+<2 Az(a,B), (2.1} 
. 2 
B = eB,(a, B)+ e Bz(a, B), ,P = vt +B. 

where a, 0 are amplitude and phase of the oscillatory regime, respectively; Ut, u2 (A1, Bt, A2, B2) 
are unknown functions of a, 1/J, 8(a, 8), which are periodic with period 211" relative to 1/J, 0(8). 

Substituting (2.1) into (1.2}, equating the coefficients of like powers of e in both sides, then 
indentifying the terms with the same harmonics, we obtain: 

At = o, Bt = o, Ut = o, 
- 2vA2 = hav + qasin28, 

3 
- 2vaB2 = D.a - -1a3 + qa cos 28. 
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(2.2} 

Thus, for new variables a and 8, in the second approximation, the differential equation are of the 
form: 

a= -e2 ~{hv + qsin2B}, 
2v 

. 1 2 3 2 
B =--<{D.- -')'a + qcos2B}. 

2v 4 , 

(2.3} 

The stationary oscillation is determined by equating zero the right· hand sides of the system 
(2.3}: 

hv + q sin 28 = 0, 

3 
C,- 4')'a2 + qcos2B = 0. 

(2.4} 

Eliminating 0 from (2.4} leads to a relationship between the amplitude a and the frequency v: 

(2.5a) 

or 

In order to study the stability of the stationary oscillation (ao, Bo), the pertubations 5a, 50 
are introduced, namely: 

a= a0 +Sa, B = B0 +50. (2.6} 
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Substituting (2.6) and into (2.3), using (2.4) and linearizing the resulting equations, w• obtain 
the variational equations: · 

• ao 
(6a) = --qcos200 · 60, 

v 
• 1 3 2 1 . 

(60) =- · -7a0 · 6a + -qsm2Bo · 60. 
vao 4 v 

The characteristic equation of the variational system (2. 7) is: 

- ao cos20 
v 

1 3 2 q ·-"'a -sin2Bo- e 
vao 4 ° v 

- 2 h ~ aw(ao,v2
) 

-e+e+ 4 2 a v ao 

Since h > 0, the condition for stability is given by the inequality: 

=0 

(2.7) 

(2.8) 

(2.9) 

From (2.9) and (2.5), it follows that the oscillation corresponding to the amplitude a0 and 
the phase Do as the stability condition of the stationary oscillation do not depend on the quadratic 
non-linearity; only t.he cubic one is the decisive factor so that the present system is nearly identical 
to the classical parametrically-exciteQ one [1, 2]· with only a little difference in their forms: e is 
replaced by e2 • 

§3. SYSTEM WITH THE NON-LINEARITIES OF ORDER s 

For the second case, described by the differential equation {1.3), the -same asymptotic method 
is applied. The unknown functions in the asymptotic expansion are: 

1 { 3 2} A1 = 0, B, = -
2

..., t:.- 4"/a , 

pa2 pa2 "'a3 
u1 =-- -cos2¢ + -- cos3,P, 

2v2 6v2 32v2 

- 2vA2 = hva + qasin2B, 

a [ 3 2]2 5P
2 

3 3"1
2 

5 - ZvaB2 =- t:.- -7a +-a ---a + qacos28, 
4v2 4 6v2 128v2 

and the differential equations1 in the second a.pproximation 1 for a and 0 of -the f9nn: 

s 2 a 
it= --{hv + qsin2B}, 

2v 

· s 3 2 e
2 

{ 1 [ 3 2]2 5P
2 

2 37
2 4 } 8=--{t:.--"'a }-~- t:.--7a +-a ---a +qcos2B, 

2v 4 2v 4v2 4 6v2 128v2 

· sp2 3 
where u = - · -7 6 . 4 . 

(3.1) 

(3.2) 

The amplitude a and the phase f) of the stationary oscillation satisfy the following equations: 

hv + qsin29 = 0, 

5. ( 3 2) 2 
1 ( 2 ( 3 •) -- -"'a - - 3v - 1- 20') -7a + 

24v2 4. zv2 4 (3.3) 
(v2- 1)2 

+ (v2 -1) + 
4

v2 + qcos28 = 0, 
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and, after eliminating&, the relationship between a and v is obtained: 

or 

{ 5 (3 2)2 1 (3 ) W(a v2
) = -- -1a - -(3v2

- 1- 2<7) -1a2 + 
' 24v2 4 2v2 4· 

("2- 1)2 }2 
+(v2 -1)+ -Ll.,=O 

4v2 

5 (3 ")2 1 { 2 ) (3 2) -- -7a· - - 3v - 1 - 2<7 -')a + 
24v2 4 2v2 4 

{vz 1)2 
+ (v2

- 1) + ----- 'f VL\.~ = 0. 
4~.-·2 

The equation (3.4b) admits the solution: 

_3 •0 6( 0 )( r;;-) ~rya"' = ~ 3v"" ~ 1 - 2u 1 - y ~2 , 
4 5 

10v2 
{ 2 {v2

- 1)2 r;-} 
Ll.z = l- 3{3v2- 1- 2tr)2 (v - 1) 4v2 ± V £:., · 

(3.4a) 

(4.3b) 

(3.5) 

(The other solutions of the equation (3.4b) (sign -1- before~) must be rejected as meaningless, 
since the conesponding amplitude is too large for standard variable). Expanding ~ and ne­
glecting the terms of third and higher powers with respect to (v2 

-· 1), u, ~'we obtain a more 
simple relationship: 

As in §2, to analyse the stability of the stationary oscillation (au, &0 ), we use: 
- the variational equations: 

( 
, • ao 

3aj = --qcos28o ·50, 
v 

(ae)" = --
1
- {z · - 5

- (~1a~)
2

- -
1
-2 (3v2

- 1- a) (~1a~) }oa. ~ _q_ sin 2&o · 5.9, 
vao 24v2 4 2v 4 l-' 

- then, the characteristic equation: 

2 h ao aw{ao, v2
) 

e + e + 4v2 aao =0 

The stability condition is as previously: 

(3.6) 

{3.7) 

(3.8) 

(3.9) 

Thus, the same conclusion a.s in §2 is obtained: the oscilla-tion corresponding to the larger 
(smaller) amplitude is stable (unstable). 

The relationship {3.6) shows that, in the first approximation, the system described by the 
differential equation {1.3) belongs to hard kind and the quadratic non-linearity (the term (v2 -1)<7) 
makes it less hard. 

Figure 1 shows the resonant curves a= a(v2 ) for a typical case: h2 = 0, 00010, q2 = 0, 00011, 
1 = 0, 16, "= O{o) and a= 0, 2(b). {the formulae (3.5) and (3.6) give practically the same curves). 
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Fig. 1 

§4. SYSTEM WITH THE NON-LINEARITIES OF DIFFERENT ORDERS 

The third case, described by the differential equation (1.4), is more interesting: the quadratic 
non-linearity is now of order e while the cubic is of order e2 . 

The asymptotic method gives us successively: 

A1 = 0, B1 = o, 
f3a2 f3az 

u1 = -
2

- -
2 

cos2t/;, 
2v 6v 

_:_ 2v A2 = hva + qa sin 28, 

( 
1 1 ) 5(32 

3 - 2vaB2 = 2- 2 -a + .6..a+ qacos28, 
v v* 6 

where 

and 
<2a a= --{hv+qsin28}, 
2v 

. •
2
{(1 1)5?2 } e=-- --- -(3"a +b.+qcos28 

2v v2 v'; 6 . ' 

The amplitude a and the phase 8 of the stationary regime satisfy the equations: 

hv + qsin2B = 0, 

( 
1 1 ) 5(3

2 
2 -- - -a + t> + q cos 28 = 0 v2 v; · 6 ' 

from which, after eliminating e, we obtain: 
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(4.1) 

(4.2) 

(4.3) 



or: 

( _!:_ - _!:_) 5{32 ao = -~vz - 1) ± ,fi:;, v2 v; 6 1
' 

It is easy to form the variational system: 

• ao 
(oa) = --q cos 200 ·50, 

v 

• 1 ( 1 1 ) 5{3
2 

2 1 . (50)=----- -aoa+-qsm2B0 ·5B, 
vao v 2 v't 6 v 

and its characteristic equation: 

z h ao oW(ao, v 2
) _ 

e+e+4z a -O v ao 

The stability condition is: 

(4.4a) 

(4.4b) 

(4.5) 

(4.6) 

(4.7) 

From (4.4b) it follows that the oscillation with the Iaeger (smaller) amplitude corresponds to 

the sign+(-} before~ if ( ~-~) > 0 and to the sign-(+) before ~if ( ~- ~) < 0. 
v ~ v ~ 

Hence, the inequality (4.7) leads to the same conclusion as in §2, §3: the oscillation corresponding 
to the larger (smaller) amplitude is stable (unstable). 

The interesting phenomenon in the third case is that the character {soft-hardness) of the 
syst.em under consideration depends on v: 1 i.e. on both coefficients {3 and "' simultaneously (see 
(4.4b)): 

-if v~ is sufficiently large (tis sufficiently small relative to /1 2 ), then 

v 2 
Rt 1, therefore the system belongs to soft kind, 

-if v'f is sufficiently small (1 is sufficiently large relative to {32 ), then 

v 2 ~ 1, therefore the system becomes hard one, 

( ~- ~) > 0 for all values 
v v. 

( ~- 1
2 ) < 0 for all values 

v v. 

- if v: ~ 1, the (~- 1
2

) is close to zero, the system is neutralized: in the plane (v2 , a), the 
v "'· 

resonant curve a = a(v2) disappears (since a is too large or does not existe) or degenerates into 
two straigh lines, nearly parallel to the ordinate axis. 

Figure 2 shows the resonant curves for fixed values h2 = 0, 000050, q2 = 0, 00051, {3 2 = 0, 0240 

and for various values v; = oo(a), v; = 2(b), v'f = ~(c) (the resonant curves lean to the left), 
4 

v; =~(d), v'f =~(e) (the resonant curves lean to the right). 

Remark. We have omitted the case in which 1 and A are of different orders. To clear up 
this question, let us consider the following differential equations: 

x + v 2 x = e{f3x2
- ')X

3
} + e2 {Ax- h:i; + 2qxcos2vt} 

x + v 2 x = e{f3x2 +ox}+ e2
{ -')x3

- h:i; + 2qx cos 2vt} 

For (4.8a), we obtain B1 = 3')a2 /Bv and the equation iJ = eB, + e2 B2 = 0 is of the form: 
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( 4.8a) 

(4.8b) 



37 2 . 2 
e-a +• Bo = 0 

8v 
(4.9) 

From {4.9}, it follows that a2 must be of order e. Therefore, it is necessary to standardize again 
the oscillatory variable x. Indeed, dividing the both sides of (4.8a) by a small appropriately chosen 
positive numbers aoi. (of order max fxl), we obtain, for new variable X= x/a*, a differential equation 
in which 1 is replaced by '1• = 1aZ. Since aZ is small, the order of smallness of "f . .., may be e2 and 
the differential equation (4.8a) may be transformed to another one of type {1.4). 

Analogously for {4.8b) we obtain B 1 = -D./2v and the equation iJ = 0 becomes: 

D. 
-•- +t?B2 = 0 

2v 
( 4.10) 

The latter equation may only -be statisfied with very larger value a so that the "restandardiza.­
tion" is also necessary. Here, a* must be large, 1* may be of order e and the differential equation 
{4.8b) is transformed to the type (1.3). 
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Fig. 2 

CONCLUSION 

0.010 0020 

The above analyses reveal the difference between the quadratic non-linearity and the cnbic 
one in a quasi-linear parametrically-excited system. H the non-Iinearities are of the same order 
of smallness, the cubic is the dominant factor ('"Y > 0, the system belongs to hard kind). On the 
contrary, if the non-Iinearities are of different orders of smallness, the character (soft-hardness) of 
the system depends on both them, in equal degree. 

This publication is completed with financial support from .the National BaSic Research Pro­
gram in Nat ural Sciences. 
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PHI TUYEN BAC HAl VA BAC BA TRONG 
·MQT Hl);DAO DQNG A TUY.EN THONG s6 

Khao sit h~ dao d{>ng a tuyen. thOng sO trong d6 ye"u tO din h6i phi tuyen drrgc bi~u di~n b&i 
hai sO h~ng b~c hai va b~c ba. Neu hai sO h~ng tren trrong lfng b dip e vi e2 , tic d9ng cU. a chUng 
li hrd'ng d1rcmg va h~ c6 th~ c6 tlnh m'em ho?.c cli-ng. Ngm;rc 1~, neu chllng Ct cling cap, sO h<Pig 
b~c ba. quyift d!nh tlnh m~m ho~c cli-ng ctla h~. 
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