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A NUMERICAL METHOD FOR STUDYING
HOPF BIFURCATION OF PLANE POISEUILLE FLOW

TRAN VAN TRAN
Instiiuie of Mechanics NCSR Vietnam

SUMMARY. The Hopf bifurcation of plane Poiseuilie flows is studied numerically. On
the base of the Tigorous theory worked out by Joseph and Sattinger [1], a detailed effective and
simple algorithm for numerical determination of the type of the above mentioned bifurcation
ig proposed. The obtained result shows that the bifurcation at the lower branch of the linear
gtability neutral curve iz supercritical meantime at the upper branch the one is subascritical.

1. INTRODUCTION

In the hvdrodynamical stability theory the plane Poiseuille flow is often taken as a good
example for treatment of different approaches and methods of investigation. As iz known, the
linear stability problem for this flow has been studied very well for long time by many authors
using 2 vast set of both analytical and numerical methods, for example [2, 3, 4].

The nonlinear stability analysis has been started by the works of Stuart [5, 6] and his method
of formal amplitude expension has bsen developed.in [7, 8, 9, 10]. These works relate to Landau
concepiion of hifurcation and the authors’s effort concentrates on calcalation of the Landau’s
constant.

From the early seventies the Hopf bifurcation theory has been developed for the Navier-Stokes
equations. Many interesting and important results have been obtained [1, 11, 12]. It is excellent
that these theoretical achievements have been confirmed experimentally, for example [13]. The
matier iz formed so good that the nature of the transition to turbulence in fluid motions seems to
be understood with the aid of the hifurcation theory [14]. :

The determination of the type of the Hopf bifurcation for concrete fluid flows iz very interesting
problem. [t is necessary to note that for doing this a very cambersume computational procedure
is needed. The method given in [15] is a way for direct application of rigorous theory [1] to solving
the above mentioned problem for the Poiseuille flow. The conclusion made in [8] is that: on the
upper branch of the neutral curve the bifurcation is subcritical while on the lower branch it turns
out supercritical. In [15] the calculation shows that subcritical bifurcation takes place at some
neighbourhood of the minimal critical point and at the both parts adjacent to this arc on the
upper and lower branches the Hopf bifurcation is supercritical. In this paper we use a method
similar to one of [15] and the obtained resnlt here allows to make the same conclution (see Tab.
1} as in [8]. The disagreernent with [15] concerning the type of the bifurcation in the domain of
the minimal critical point and at the upper branch of the neutral curve is caused by the fact that
the solution of the first order problem in [15] contains only terms sin 26 and cos 26 (see (8.7) of
[15]) whiles in the present paper this solution includes also terms sin® § and cos? 4 (see (18)). The
method presented here may be used for flows with a free surface or interface too.
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2. PROBLEM FORMULATION

Our analysis will be restricted to two-dimensional model. As is known, if we choose a co-
ordinate system located at the middle of the channel with z-axis directed downstream, y-axis
directed perpendicular to the flow and use the maximal velocity and a half-height of the channel as
reference values then velocity profile of the stationary plane Poisenille flow is written in the form
(fig. 1)

Uly)=1-y% V=0 (2.1)

It is known that at small Reynolds numbers Re this flow is stable and at moderate Re 1t may loge
its stability. Then a secondary flow which bifurcates from (2.1) may appear to be either stationary
or time periodic. As is proven in [1], near the critical Reynolds numbers of the linear stability time
periodic motions bifurcating from (2.1) exist and they are stable with respect to small disturbances
if the bifurcation occurs at Re > Re, (supercritical) and in the opposite case they will be unstable.
Our aim is to determine the type of this bifurcation at a region near the neutral curve,

Fig. 1. Stationary plane Poiseaille low

Suppose that U(y)+u(z, v, t); v(z,y,¢); p(z, v, t} is a new motion bifurcating from (2.1). Then
the problem for finding it is written as follows:

du Bu u+U) 8p 1
- e T 2 Ay =0 2.2)
+(U+u) +1) 3y +33: Re b (2.2)

E)v dv dp 1

— +{U — — 4+ = — —Ay=0 3
8t+( —i—u)a +U8y Eial> y = (2.3)
L 2.4
Er + dy (2.4}
u{£1) = u(£1} =0 {2.5)
ulz,y, t) = u(z, ut+T) oz, uit)=vlzy,t+T)h ple,yt) =plzy i+ T) {2.8)

3. METHOD OF SOLUTIGN

Asis indicated in {1, 16] the solutions of the above problem exist in a neighbourhood of every
critical Reynolds number Re, at which the spectral problem of (2. 1) {2.6} has a pair of eigenvalues
+iwg and they can be presented in the form:
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u= Y e lu(z,ys ”—Z Pt (g, s); p= et M,y 8);
n=0 ) n=0
w = wo +swy +€wy +...; Re=Re(l+eR +eRy+...) {3.1)

where s = wt, € 15 a value similar to the disturbance amplitude and defined bj’ formular (9.3) in
[16]. It is proven for this case that wypq = 0 and Rapyq =0for £=0,1,2,3,... so

w = wq + 7wy + ofe*); Re = Re,[1+? Ry + ofe*)] (3.2)

hence the type of the Hopf bifurcation should be defined by R;. If Rs is positive then the bifurcation
is supercr1t1cal and in the opposite case one has subcritical bifurcation.

Substituting now (3.1) and (3.2} into (2.2) - (2.6) and collecting all terms of the same order
of ¢ we get a sequence of linear nonhomogeneous problems for u®, v™, p®. They are: °

At zero-th order:

0 0 o Aul 0

wou, + Uuy + U — — +p, =0 {3.3a)
Re,
Av®
0 ) 0 _
wovy + Uwy — Re. +py, =0 {3.3b)
uy+ vy =0 (3.3¢)
wl{£1) = v°(£1) =0 {3.3d)
At Brst order:
1 1 y 1 Ad 1 0,0 9. 0 :
wouy, + Uug + U'v gt = {uu + vy {3.4a)
1 1At 0 ,0,0y b)
wo v, -i—Uvz-—Eery-—m{uovm-i-ﬂ vy) {3.4b)
ul + v; =0 {3.4¢)
ul(£I) = »' (1) =0 (3.4d)
At second order:
’ A . . Ay
wou?Z + Uul + U'W? — Eu_ +p2 = ~(w2u8 + ulud + u%ul + vl + o ul + Bo RJ )
ge s/ (8.5a)
Ad®
wovf + UU?, — A 4 p? = —(wZ-ug + ulvg + ueui + ot 4 W0 4 R, d )

- Rﬁc ¥ ¥ v RBC (3 Sb}
ui+vl=0 (3.5¢)
w?(£1) = ¥ (£1) =0 , © (3.54)

Here the lower index denotes derivation with respect to the corresponding variable. As is known
the necessary and sufficient condition for solvability of these non-homogeneouns problems is that
their right-hand side must be orthogonal to solution of the adjoint problem. For determining R,
in this paper the following procedure is worked out:

3.1. Integration of the linear problem and its adjoint one

The zero-th order problem coincides with the linear stability problem so if the pertubed stream
function is presented in the form [2]:
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vz, u,t) = p(y) explia(z - ct)}

then we get
lV — 207" + a'p —iaRe (U - ¢)(p" — aPp) — U'p] =0 i (3.6}

(1) = ' {£1) =0 . (3.7)

where (3.6) is the Orr-Sommerfeld equation and it has been studied very ‘well. Here we use the
Thomas’s finite difference method [3] to calculate the eigenfunction @ (y) for every pair (e, Re.(a))
of the neutral curve. It is necessary to note that for plane Poiseuille low symmetry disturbances
are most unstable so insted of (3.7} here we use the condition:

p(=1) = /(1) = p(0) = "(0) = 0 (5.7)

Now following Thomas we divide interval [—1,0] into N equal subintervals using grid points
vo=—1,%1,...,yn = 0 and present ©(y) through a function g(y) as follows:

Then derivatives of ©(y) can be expressed in the form:

1 1 2
Dp = ubg+ Oth'); Do = (8 + 7)o+ O(°); Dlp = 6 + O(n")

where h is a step of the finite difference scheme (A = 1/N}, and

§2g{y) = gly — h) — 2g(y) + gly +R); wbo(y) =059y + &) - gly — B)]; &%= (%)%

Using these formulae for approximating {3.6) one obtains in every grid point yu(k = 0,1,..., N}
a finite difference equation of the form:

1

Argr_z + Begr 1+ Cogr + Digear1 + Exgryz =90

where grse means g{ys = £+ h) (£ = 0,1,2). It is obviously that for approximation (3.6} and
(3.7") at boundary points yg, 1, Yn-¢ and yy one must take some fictitious grid points, which
are denoted by y_-, y—1, yv+1 and yn1o. The first two points of them of course lie lower than yq
while the last ones are arranged above yy. Thus we obtain a system of &N + 5 algebraic equaiions
of the above form for detemining N + 5 values of g(y) at N -+ 5 grid points including 4 fictitious
ones. The determinant of this system must be equal zero in order to exist a nontrivial solution.
This condition is used to find eigenvalue ¢, Here the line inversion method is applied for calculating
the system determinant and the Newton method is used to find ¢ as a root of it. Affer ¢ is found,
by back line iversicn one computes eigenfunction ¢{y} and its derivatives easily.

Now we denote:

wly) = aly) +ab(y) with 7 = 4/~1. Then u®, 2° can be writéen in the form:

Q

v = a'cosd — b siné; v? = alasind -+ bcos §) (3.8}

where 8 = az + sg; 59 = wot and the prime means derivation with respect to variable y.
Next we must derive the adjoint problem from the linear one. Its equations have been con-
ducted in [16] (see {11.2)) so taking again the stream function of the adjoint velocity in the form

¥ (z,y,1) = ¢ (y) explia{z — ct)]
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we have

TV —2a%0"" 4 ate" tiaRe (U +c)(p"" — o) + W' =0 (3.9)

e (E1) =e"(x1) =0 (3.10)

It is mecessary to note that if at Re = Re.(c) we have ¢ = ¢, as a eigenvalue for the linear

problem then in (3.9) one must take ¢ = —c,. For checking this we have calculated determinant

of the hoth systems of finite difference equations for (3.6}, (3.7} and (3.9), (3.10) using Thomas’s

scheme [3]. The obtained results show that the value ¢ = —c, satisfies the adjoint problem very

well (see table 1, where parameters o, Re,, ¢, are taken from table 1 of [15], A and A* are the

above mentioned determinant for the linear and adjoint problem respectively). To compute ©* we

use again Thomas’s method. Now writing ¢* = a*{y) +:6*(y), one gets for complex conjugate of
the adjoint velocity:

u" = a" " cosf + b s b +i(a* sind — b cos ) (5.11)
v' = al-a*sinf + b cosf +i{a” cos 8 + b sin )] '

3.2. Integration of the first order problem

Substitution of (14} into the right-hand side of (3.4a) and (3.4b) yields:

a
E(a’z S L. a'a”) sin 26 + o'b cos20 + ab” sin# — a'b cos® 6,

and —a?{aa’ + b8’} respectively. These expressions suggest to find a partial solution of {3.4} in the
form: .

ul = m(y) sin 26 + n{y) cos 26 + h(y}sin®d + g{y) cos® 9
v! = —2aM(y) cos 28 + oW (y) sin 26
pt = ply)sin 20 + g{y) cos 20 + £{y) | (3.12)

f

M) = [ mieyts; W) = [ (06) + 919) — A0)s

—1

Substituting {3.12} into {3'4a) and {3.4b) we can obtain the equations for determining func-

ticns-coeilicients as follows:
£= —a?(a® +5%)/2

W' = —aRe,ab” _ (3.13a)
" = aRe,a’b ' (3.13b)
(1) = g{£1} =0 ~ (3.13¢)

There are also four equations for i, n,p and ¢. By eliminating p and g in these equations we
cayn reduce them to the two following ones: -

MY — 8a2M’ 4 166 M + Re UW" 1 2aRe, (1 — 2ol )W = %H_ec(b’b” —a'a" + aa' — 88’

_ - {(3.14a)

WiV — 8a°WH 4 16a*W — 4Re U; M" — BaRe, (1 — 2al1)M = aRe/(ab™ + a™b — a"b — a'b")
: {3.14b)
M(+1}) = M'(£1) = W(+1) = W'(+1) = 0 (3.14c)
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where U3 = a(U — ¢.). :

As mentioned above for the two-dimensional Poiseuille stability problem symmetrical distur-
bances are most unstable, so here we take a{y) and b{y) even funciions. Hence h(y) and g(y) are
even functions too but M and W are always odd functions. The integration of {3.13) is no problem
but that of {3.14) should meet with great difficulties because of the large term Re in the left-hand
side of the equations. To overcome this here following Orszag [17] we apply the Galerkin method
to integrate (3.14). To do this we need to construct a system of basic functions. Here the following
functions are chosen:

92{n+1(y) = Tanta(y) — 0.5afn + 1) Ts(y) + [0.5n(n+ 1} — 1]Ti(y) {3.15)

where n = 2,3,... and T (y) are Chebyshev polinominals. It is obviously that these gy (y) are odd
funetions and they satisfy {3.14c}.
Next substituting the formal expansions:

N N
M= Z Ond2n41; W= Z anZn-{-l (3'16}
=2 n==2

into the left-hand side of (3.14) and demanding that the difference between the resulting expression
and the right-hand side be orthogonal to gun41 (n = 2,3,..., N) with respect to the inner product:

(1,9) = [ 1hali)(a - )7y

one obtains 2N — 2 Galerkin eguations for 2N — 2 coefficients o, and b,,. After these coefficients
are found we use {3.16) to calculate M, W and their derivatives. ‘ :

3.3. Calculation of R,

The equations for deter mination of H; and ws are obtained by multiplying the right-hand sides
of (3.5a) and {3.5b) by «* and v* respectively and integrating the sum of the resniting expressions
over domain {z € {0,27/a};y € -1, 1]}. We have:

1 2nfa - 1 2rfe
fy f f (u*Au? + " A" )dzdy + wgf / (w*u? + v o ) dady =
S10% Z1 o
1 o
= - [ f [u*(ulug +ulul + Ulug + vou;) + ot (utol + ulul + v1v3 + uov;}]d:z:dy
J _ : .
Z100

It should be noted that alihough general solution of the first order preblem is a sum of the
partial solution just found above and a solution of the zero-th order problem given by (3.8} but
under the above meptioned integration one can take the partial part only because the second pars
gives nothing in the result of this integration.

4. NUMERICAL RESULT AND CONCLUSION

The caleulation has been carried out for parameters of the neutral curve given in {3.9). For
integration of equation (3.14) by Galerkin method described in §3.2, heve 21 {V = 23) functions
ox(y) are taken. The obtained resulbs presented in table 1.
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The obtained result shows that R, is negative (subcritical bifurcation) on the upper branch
while it is positive (supercritical bifurcation) on the lower branch (Fig. 2). It is interesting te note
that the bifurcation on the both branches occurs in a domain lying completely in the unstable
region of Poiseuille How. May it be a reason of the fact that no finite-amplitude stable equilibrinm
motion has been observed for plane Poiseuille flow in practice?.

Table 1

o RE, Cr Fal A* Ra/Re, Wy
0.650 22424 0.1656 -1.E-7,-3.E-7 -4.5-6,.1.E-6 5.64 -3:5.59
0.700 163556 0.1823 -4.E-7,-3.E-6 "-S.E-ﬁ, 2.5-6 8.00 -38.78
0.750" 12461 0.1933 8.E-7, 1.E-8 ~-1.F-6,-2. -6 11.20 -41.87
0.800 9882 0.2136 1.E-7,-1.E-6 -2.E-8, 6.E-7 13.40 -486.15
0.850 8141  0.2278  5.E-7, L.E6 -1.E6, 1L.E6 - 15.97 -50.65
0.900 6965  0.2408  3.E-7,5.E7  -1.E-6.8.F-7 16.80 -55.72
0.925 6540 0.2467 3.E-7, 2. E-7 —1.E—6,—'1.E—6 16.53 -58.43
0.950 6208 | 0.2522 7.E-8,-2.E-6 -1.E-8, 2._E—6 15.36 -61.39
1.000 5815 0.2612 2.E-7, 1.E-6 -1.E-6, 1.E-8 11.72 -67.93
1.021 5772 0.2642 1.E-7, 3.E-6 -1.E-6,-3. -6 216 -71.38
1.050 5890 0.2664 2.E-7, 1.E-6 -2.E-6,-8. E-7 4.92 -77.55
1.078 6314 0.2658 -3.E-7, 3.E-6 -3.F-6,-3.7-6 G.67 -85,28
1.090. 7024 31,2624 1.E-8,-3.E-6 -2.E-6, 5.F-6 -2.36 -96.58
1.095 7613 0.2591 1.E-6,-2.E-6 -3.E-6, 4.E-8 -3.48 -104.8
1.096 7947 (0.2572 6.E-7, 6.E-7 -4, E-6, 1.E-6 -3.76 -109.8
1.096 93586 0.2497 1.E—6,—7.E—7 -5.5-6, 4. E-6 -4.69 -128.7
1.095 9895 0.2470 -4 E-7, 4.E-6 -8.E-6,-8.E-8 -4.65 -137.0
1.080 11217 0.2410 2.E-6,-2.E-6 -7.E-6, 7.E-6 -4.97 -183.3
1.075 14307  0.22902  3.E6,2E6  -1.E5 1.E5 451 -195.8
1.050 153860 0.2147 -5.E-6, 1.E-5 -2.E-5, 4.F-6 -4,36 -236.3
1.020 26360 0.20058 -5.E-6, 1.E-5 -4.E-5, 1.E-5 - -h.06 -307.3
1.000 31896 0.1921 9.F-6,-1.F-6 -3.F-5, 4. E-5 ~4.43 -335.6
0.980 38329 0.1842 8.1-6, 2.E-6 -5.E-5, 6.E-5 -3.46 -391.9

' ol

1,095

1.07%

1.021

Ra
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vE MOT PHUONG PHAP 6 NGHIEN CTU PHAN NHANH HOPF
cUA DONG CHAY PUADEL TRONG KENH PHANG

Duwra trén co s& 1y thuyét chit ché cda cic téc gis Joseph vi Satfinger dwa ra, trong bii nay

trinh biy mét thujt todn gidi s8 don gidn va tién lgi d€ x4c dinh dang cia phin nhénh Hopf cho
ddng chdy Puadel phing. K& qui nhin dwge cho thiy phin nhinh & nhénh trén cia dwdng cong
trung gian 13 trwéc t61 han cdn & nhinh dwéi 13 trén giéi han. K& qui phl hop véi céc tic gia
trwée nhin dwye bing phwong phip khie.




