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A NUMERICAL METHOD FOR STUDYING 
HOPF BIFURCATION OF PLANE POISEUILLE FLOW 

TRAN VANTRAN 

Institute of Mechan£cs NCSR Vietnam 

SurviMARY. The Hopf bifurcation of plane Poiseuille flows is studied numerically. On 
the base of the rigorous theory worked out by Joseph and Sattinger [1], a detailed effective and 
simple algorithm for numerical determination of the type of the above mentioned bifurcation 

is proposed. The obtained result shows that the bifurcation at the lower branch of the linear 
stability neutral curve is supercritical meantime at the upper branch the one is subscritical. 

1. INTRODUCTION 

In the hydrodynamical stability theory the plane Poiseuille flow is often taken as a good 
example for treatment of different approaches and methods of investigation. As is known 1 the 
linear stability problem for this flow has been studied very well for long time by many authors 
using a vast set of both analytical and numerical methods, for example [2 1 3) 4]. 

The nonlinear stability analysis has been started by the works of Stuart [5 1 6] and his method 
of formal amplitude expension has been developed .in [7, 8, 9 1 10]. These works relate to Landau 
conception of bifurcation and the authors 1s effort concentrates on calculation of the Landau's 
'2onstant. 

From the early seventies the Hopf bifurcation theory has been developed for the N a vier-Stokes 
equations. Many interesting and important results have been obtained [1, 11, 12]. It is excellent 
that these theoretical achievements have been confirmed experimentally) for example [13]. The 
matter is formed so good that the nature of the transition to turbulence in fluid motions seems to 
be understood with the aid of the bifurcation theory [14[. 

The determination of the type of the Hopf bifurcation for concrete fluid flows is very interesting 
problem. It is necessary to note that for doing this a very cumbersume computational procedure 
is n€.eded. The method given in [15] is a way for direct application of rigorous theory [1] to solving 
the above mentioned problem for the Poiseuille flow. The conclusion made in [8] is that: on the 
upper branch of the neutral curve the bifurcation is sub critical while on the lower branch it turns 
out supercriticaL In [15] the calculation shows that subcritical bifurcation takes place at some 
neighbourhood of the minimal critical point and at the both parts adjacent to this arc on the 
upper and lower branches the Hopf bifurcation is supercritical. In this paper we use a method 
similar to one of [15] and the obtained result here allows to make the same conclution (see Tab. 
1) as in [SJ. The disagreement with [15J concerning the type of the bifurcation in the domain of 
the minimal critical point and at the upper branch of the neutral curve is caused by the fact that 
t.he solution of the first order problem in [15] contains only terms sin2B and cos2B (see (8.7) of 
[151) whiles in the present paper this solution includes also terms sin2 e and cos2 e (see {18)). The 
method presented here may be used for flows with a free surface or interface too. 
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2. PROBLEM FORMULATION 

Our analysis will be restricted to two-dimensional model. As is known, if we choose a co­
ordinate system located at the middle of the channel with x-axis directed downstream, y-axis 
directe.d perpendicular to the flow and use the maximal velocity and a half-height of the channel as 
reference values then velocity profile of the stationary plane Poiseuille flow is written in the form 
(fig. 1) 

v =0 (2.1) 

It is known that at small Reynolds numbers Re this flow is stable and at moderate Re it may lose 
its stability. T.hen a secondary flow which bifurcates from (2.1) may appear to be either stationary 
or time periodic. As is proven in [1], near the critical Reynolds numbers of the linear stability time 
periodic motions bifurcating from (2.1) exist and they are stable with respect to small disturbances 
if the bifurcation occurs at Re > Rec (supercritical) and in the opposite case they will be unstable. 
Our aim is to determine the type of this bifurcation at a region near the neutral curve. 

y 
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Fig. 1: Stationary plane Poiseuille flow 

Suppose that U(y) + u(x, y, t); v( x, y, t); p(x, y, t) is a new motion bifurcating from (2.1). Then 
the problem for finding it is written as follows: 

au au a( u + U) Bp 1 
--+(U+u)-+v +-----llu=O 
at ax By ax Re 

(2-2) 

av av av ao 1 - + (U + u)- + v- + ~- -llv = 0 
at ax ay ay Re 

(2.3) 

au av 
--+-=0 ax ay (2.4) 

u(±l) = v(±l) = 0 (2.5) 

u(x, y, t) = u(x, y, t + T); v(x, y, t) = v(x, y, t + T); p(x, y, t) = p(x, y, t + T) (2-6) 

3. METHOD OF SOLUTION 

As is indicated in [1, 16] the solutions of the above problem exist in a neighb.ourhood of every 
critical Reynolds number Rec at which the spectral problem of (2.1)-(2.6) has a pair of eigenvalues 
±iw0 and they can be presented in the form: 
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= = = 
u = L en+lun(x, y, s); v = L en+lvn(x, y, s); p = L en+lpn(x, y, s); 

n=O n=O n=O 

(3.1) 

where s = wt, e is a value similar to the disturbance amplitude and defined by formular (9.3) in 
[16]. It is proven for this case that Wzk+l = 0 an"d R2 k+I = 0 fork= 0, 1, 2, 3, ... so 

(3.2) 

hence the type of the Hopf bifurcation should be defined by R2 • If R2 is positive then the bifurcation 
is supercritical and in the opposite case one has subcritical bifurcation. 

Substituting n~w (3.1) and (3.2) into (2.2) - (2.6) and collecting all terms of the same order 
of e we get a sequence of linear nonhomogeneous problems for un, vn, pn. They are: 

At zero-th order: 

At first order: 

At second order: 

u0 + v0 = 0 X y 

u 0 (±1) = v0 (±1) = 0 

1 U 1 U' 1 L'.u
1 

1 ( o o o o) wou.!l + ux + v - ~R + Px =- u ux + v uy 
ec 

1 1 L'.v
1 

1 ( o o o) wov, + Uvx- ~R + Py =- uovx + v vy 
ec 

u! + v~ = 0 

u 1(±r) = v1 (±1) = o 

u2 + vz = 0 
X y 

u2 (±1) = v2 {±1) = 0 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.5b) 

(3.5c) 

(3.5d) 

Here the lower index denotes derivation with respect to the corresponding variable. As is known 
the necessary and sufficient condition for solvability of these non-homogeneous problems is that 
their right-hand side must be orthogonal to solution ,ef the adjoint problem. For determining R2 

in this paper the following procedure is worked out: 

3.1. Integration of the linear problem and its adjoint one, 

The zero-th order problem coincides with the linear stability problem so if the pertubed stream 
function is presented in the form [2]: 
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then we get 

,P(x, y, t) = IO(Y) exp{iC>(x- ct)} 

IOIV- 2cx 210" + cx 410- icxRec[(U- c)(10"- cx 2 10)- U"10] = 0 

10(±1) = 10'(±1) = 0 

(3.6) 

(3.7) 

where (3.6) is the Orr-Sommerfeld equation and it has been studied very 'well. Here we use the 
Thomas's finite difference method [3] to calculate t~e eigenfunction ¥-?(Y) for every pair {a, _flee( a)) 
of the neutral curve. It is necessary to note that for plane Poiseuille flow symmetry disturbances 
are most unstable so insted of (3.7) here we use the condition: 

10(-1) = 10'(-1) = 10(0) = 10"(0) = 0 (, "') v.' 

Now following Thomas we divide interval [ -1, OJ into N equal subintervals using grid points 
Yo = -1, Y1, ... , YN = 0 and present IO(Y) through a function g(y) as follows: 

52 54 

IO(Y) = (1 + B + 
360

)g(y) + O(h4
) 

Then derivatives of IP(Y) can be expressed in the form: 

where his a step of the finite difference scheme (h = 1/N), and 

o2 g(y) = g(y- h)- 2g(y) + g(y +h); JJ.og(y) = O.S[g(y +h)~~ g(y- h)]; 54 = (5 2
)

2 

Using these formulae for approximating (3.6) one obtains in every grid point Yk ( k = 0, 1, ... , N) 
a finite difference equation of the form: 

Ak9k-2 + Bk9k-l + Ckgk + Dk9k+r + E<9k+z = 0 

where 9k±£ means g(yk ± £ * h) (£ = 0, 1, 2). It is obviously that for approximation (.3.6) and 
(3. 7') at boundary points y0 , y 1 , YN _ 1 and YN one must take some fictitious grid points, which 
are denoted by y_ 2 , y_ 1 , YN+l and YN+ 2 . The first two points of them of couue lie lower than y0 

while the last ones are arranged above YN. Thus we obtain a system of N + 5 algebraic equations 
of the above form for detemining N + 5 values of g(y) at N + 5 grid points including 4 fictitious 
ones. The determinant of this system must be equal zero in order to exist a nontrivial solution. 
This condition is used to find eigenvalue c. Here the line in version method is applied for calculating 
the system determinant and the Newton method is used to find c as a root of it. After cis found, 
by back line iversion one computes eigenfunction cp(y) and its derivatives easily. 

Now we denote: 
IO(Y) = a(y) + ib(y) with i = y'=I. Then u0, v0 can be written in the form: 

u0 = a1 cosB- b1 sin&; ~~ 0 =o:(asin()+bcose) (3.8) 

where 0 =ax+ s0 ; s0 = w0 t and the prime means derivation with respect to variable y. 
Next we must derive the adjoint problem from the linear one. Its equations have been con-, 

ducted in [16] (see (11.2)) so taking again the stream function of the adjoint velocity in the form 

,P'(x, y, t) = 10'(y) exp[icx(x- ct)] 

45 

1 'i 
I 

I I 
I:. 



we have 

.IV 2 2 '"-' 4 '+. R [(U+ ).( "' 2 ')+2U' •'] 0 'P - o: 'P r a r.p tO ec c <p - a 'P i.p = 

1". (±1) = 1""(±1) = 0 

(3.9) 

(3.10) 

It is ·necessary to note that if at Re = Rec(o:) we have c = Cr as a eigenvalue for the linear 
problem then in (3.9) one must take c = -c,.. For checking this we have calculated determinant 
of the both systems of finite difference equations for (3.6), (3.7) and (3.9), (3.10) using Thomas's 
scheme [3). The obtained results show that the value c = -cr satisfies the adjoint problem very ~. 
well (see table 1, where parameters o:, Rec, c,. are taken from table 1 of [15], D.. and L'.l. * ?-Te the L 
above mentioned determinant for the linear and adjoint problem respectively). To compute rp" we f' 
use again Thomas's method. Now writing <p"' = a"Jy) +ib*(y), one gets for complex conjugate of 
the adjoint velocity: ) 

• •' e b'' · e ·( •' · e b"' e) u = a cos + sm + 2 a sm - cos 

v• = a[-a• sine+ b' cose +i(a"cose + b" sine)j 
(3.11) 

3.2. Integration of the first order problem 

Substitution of (14) into the right-hand side of (3.4a) and (3.4b) yields: 

~(ar 2 - b' 2 + b'b 11
- a1a11

) sin2B + a'b' cos2B + ab 11 sin2 e- a11 bcos2 &; 

and -et 2 (aa 1 + bb') respectively. These expressions suggest to find a partial solution of (3.4} in the 
form: 

u 1 = m(y) sin ze + n(y) cos2e + h(y) sin2 e + g(y) cos2 B 

v 1 = -2aM(y) cos 28 + aW(y) sin 28 

p1 = p(y)sin28 + g(y) cos2B + E(y) 
y y 

M(y) = I m(\)d); W(y) =I (2n(l) + g(l)- h(l))d\ 
-1 -1 

(3.12) 

Substituting (3.12) into (3'.4a) and (3.4b) w~ can obtain the equations for determining func­
tions·coeffi-eients as follows: 

h11 = -aRecab 11 

l' = cx.Rec a'1b 

h(±1) = g(±1) = 0 

(3.13a) 

(3.13b) 

(3.13c) 

There are also four equations for m 1 n 1 p and q. By eliminating p and q in these equations we 
can reduce them to the two following ones: 

M 1
V- 8o. 2 M 11 + 16a4 M + RecU1 W" + 2a:Rec(l- 2aUI)W = 9!_Rec(b'b 11

- a1a" + aa 111
- bb 111

) 
2 . (3.14a) 

Vl 1v- 8o?Wu + 16a 4W- 4RecU1 M"- 8a:Rec(l- 2oU1)M = aRe~(ab 111 + a111b- a1'b 1
- a'b") 

(3.14b) 

M(±1) = M'(±l) = W(±l) = W'(±1) = 0 (3.14c) 
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where U, = a(U- en)· 
As mentioned above for the two-dimensional Poiseuille stability problem symmetrical distur­

bances are most unstable, so here we take a(y) and b(y) even functions. Hence h(y) and g(y) are 
even functions too but M and liV are always odd functions. The integration of (3.13) is no problem 
but that of {3.14) should meet with great difficulties because of the large term Rein the left-hand 
side of the equations. To overcome this here following Orszag [17] we apply the Galerkin method 
to integrate (3.14). To do this we need to construct a system of basic functions. Here the following 
functions are chosen: 

q;n+l(Y) = T2n+l(Y)- 0.5n(n + 1)T,(y) + [O.Sn{n+ 1)- 1jT,(y) (3.15) 

where n = 2, 3, ... and Tk(y) are Chebyshev polinominals. It is obviously that these qk(Y) are odd 
functions and they satisfy (3.14c). 

Next substituting the formal expansions: 

N N. 

M = L anq2n+li W = L bnq2n+l (3.16) 
n=Z n=Z 

into the left-hand side of {3.14) and demanding that the difference between the resulting expression 
and the right-hand side be orthogonal to 92n+l (n = 2, 3, ... , N) with respect to the inner product: 

1 

(!,g)= J f(y)g(y)(l- y2)-lf2dy 

-1 

one obtains 2N- 2 Galerkin equations for 2N- 2 coefficients an and bn. After these coeffinents 
are found we use (3.16) to calculate M, Wand their derivatives. 

3.3. Ca]culation of R2 

The equati0ns for determination of R2 and w 2 are obtained by multiplying the right-hand sides 
of (3.5a) and {3.5b) by u* and v* respectively and integrating the sum of the resulting expressions 
over domain { x E [0, 21r jaj; y E [-11 11}. We have: 

1 z~;o 1 z~;~ 

R2 J J (u'Llu0 +v•6.v0 )dxdy+w2 J J (u·u~+v'v:;)dxdy= 
-1 0 -1 0 

1 2trjo 

=- r J [u*(u1 u~ + u0 u! + v 1 u~ + v0 u~) + v*(u 1 v~ + u0
v! + v 1 v~ + v0 v~)]dxdy 

J ' 
-1 0 

It should be noted that although general solution of the first order problem is a sum of the 
partial solution just found above and a solution of the zero-th order problem given by (3.8) but 
under the above mentioned integration one can take the partial part only because the second part 
gives nothing in the result of this integration. 

4. NUMERICAL RESULT AND CONCLUSION 

The calculation has been carried out for parameters of the neutral curve given in (3.9). For 
integ'ra.tion of equation (3.14) by GaJerkin method described in §3.2, here 21 {N = 23)_ functions 
qk (y) are taken. The obtained results presenr,ed in table 1. 
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The obtained result shows that R2 is negative (subcritical bifurcation) on the upper branch 
while it is :eositive (supercritical bifurcation) on the lower branch (Fig. 2). It is interesting to note 
that the bifurcation on the both branches occurs in a dqmain lying completely in the unstable 
region of Poiseuille flow. May it be a reason of the fact that no finite-amplitude stable equilib·ium 
motion has been observed for plane Poiseuille flow in practice?. 

" 

0.650 
0.700 
0.750 
0.800 
0.850 
0.900 
0.925 
0.950 
1.000 
1.021 
1.050 
1.075 
1.090 
1.095 
1.096 
1.096 
1.095 
1.090 
1.075 
1.050 
1.020 
1.000 
0.980 

1.095G!.t 

1. 075 
i. Q21 

22424 
16355 
12461 
9882 
8141 
6965 
6540 
6208 
5815 
5772 
5890 
6314 
7024 
7613 
7947 
9356 
9895 

11217 
14307 
19360 
26360 
31896 
38329 

c, 

0.1656 
0.1823 
0.1983 
0.2136 
0.2278 
0.2408 
0.2467 
0.2522 
0.2612 
0.2642 
0.2664 
0.2658 
0.2624 
0.2591 
0.2572 
0.2497 
0.2470 
0.2410 
0.2292 
0.2147 
0.2005 
0.1921 
0.1842 

· sta blei 
i 

5771 

~ 

Table 1 

-l.E-7,-3.E-7 
-4.E-7,-3.E-6 
B.E-7, l.E-6 
l.E-7,-l.E-6 
5.E-7, l.E-6 
3.E-7, 5.E-7 
3.E-7, 9.E-7 
7.E-8,-2.E-6 
2.E-7, l.E-6 
l.E-7, 3.E-6 
2.E-7, l.E-6 

-3.E-7, 3.E-6 
l.E-6,-3.E-6 
l.E-6,-Z.E-6 
6.E-7, 6.E-7 
l.E-6,-7.E-7 

-4.E-7, 4.E-6 
2.E-6,-2.E-6 
3.E-6,-2.E-6 

-S.E-6, l.E-5 
-5.E-6, l.E-5 
9.E-6,-l.E-6 
8.E-6, 2.E-6 

~~, unstable 

-4. E-6,-l.E-6 
-3.E-6, 2.E-6 
-l.E-6,-2.E-6 
-2.E-6, 6.E-7 
-l.E-6, l.E-6 
-l.E-6,-S.E-7 
-l.E-6,:l.E-6 
-l.E-6, 2._E-6 
-l.E-6, l.E-6 
-l.E-6,-3.E-6 
-2.E-6,-8.E-7 
-3.E-6,-3.E-6 
-2.E-6, 5.E-6 
-3.E-6, 4.E-6 
-4.E-6, l.E-6 
-S.E-6, 4.E-6 
-S.E-6,-S.E-8 
-7.E-6, T.E-6 
-l.E-5, l.E-5 
-2.E-5, 4.E-6 
-4.E-5, l.Fr5 
-3.E-5, 4.E-5 
-5.E-5, 6.E-5 

' 
Fz·g. 2: Bifurcation diagramma 
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5.64 
8.00 

11.20 
13.40 
15.97 
16.80 
16.53 
15.36 
11.72 
9.16 
4.92 
0.67 

-2.36 
-3.48 
-3.76 
-4.69 
-4.65 
-4.97 
-4.51 
-4.36 
-5.06 
-4.43 
-3.46 

Re 

-~5.59 

-38.78 
-41.87 
-46.15 
-50.65 
-55.72 
-58.43 
-61.36 
-67.93 
-71.38 
-77.55 
-86.28 
-96.58 
-104.8 
-109.8 
-128.7 
-137.0 
-153.3 
-195.8 
-236.3 
-307.3 
-335.6 
-391.9 
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VE MOT PHUONG PHAP SO NGHIEN CTJU PHAN NHANH HOPF 

° CD A DONG CHAY PUADEL TRONG KENH PRANG 

D~a tren ccr sl:t lY thuye't ch~t che crl.a d,c tic gilt Joseph va Sattinger dtra ra, _trong bai nay 
trlnh bay m9t thu~t to<in gilU s5 dan gilm va ti~n lqi d~ xic d1nh d<fng cda ph§.n nh<inh Hopf cho 
dOng chlty Puadel phing. Ke't que\. nh~n du-qc cho thiy phfi.n nhinh l:t nhinh tren ctl.a du-Ong cofig 
trung gian 1a tru·&c t&i hc:n cOn & nhinh dU'&i H tren gi&i hq,n. Kg't qui phil h91J v&i c<i.c tic gi~ 
tnr&c nh~n du·qc b~ng phuang ph<ip khic. 


