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SOLUTION OF DISCRETE OSCILLATING SYSTEM
ON PERSONAL COMPUTER

DINH VAN PHONG
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Technical University of Hanot

SUMMARY. The article is devoted a algerithm for deriving mass matrix, stiffness
matrix and damping matrix for osciliating discrete system. The algorithm is common setting
equation of motion. This technique enables solving different problems of oscillating system,
especialy a problem of parameters optimization, by nomerical methods. Comparisen of
different methods realized on personal computers was done.

Oscillating systems find many applica;tions in a technical life. In this article some results
of researching on computers are discussed. Most of technigues mentioned below were realized on
286X and 386X based personal computer and FORTRAN-77 is choosen as a programming language.
Because of simplicity we will consider only discrete systems. It means that system could consist of
elements of 3 types: mass, spring and damper and these features of system are concentrated. But
the scheme is arbitrary: free or with a frame, simple or branched. Some of them are shown on the
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Fig. 1. Examples of discrete oscillating system

Just now we will work in a different way than normal methods when solving “by hand”. We
will give one common algorithm of setéing equations of motion for all types of oscillating system.
Let’s assume that forces will affect masses which are concentrated, rigid and unsprung. Springs
and dampers are massies and dampers are viscous e. g. dertved force is proportional to a speed.
For such a system with n degrees of freedom we have a well-known system of equations of motion:
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M+X+B£+Ki=ﬂﬂ (1)

where

M i s a mass matrix of the system_

K is a stifness matrix

B is a damping matrix

[ is a vector of acting force

X 1s a vector of displacements.

For deriving matrices M, K, B we use the absolute system of coordinates. In our case of
discrete system with properties mentioned above the mass matrix is diagonal and on the diagonal
there are masses of bodies
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Deriving the stifness matrix is more complicated. Here we show directly its properties:

- A stiffness matrix is symmetric

- Elements of the stifness would he

ki; =0 < # 7 iHi-th and j-th bodies are not connected

kij = ~Up ¢ 7 I i-th and j-th bodies are connected by m-th spring which has the stiffness
U

On the diagonal;

K =3 C,, where ¥, O, is a sum of all smﬁness at springs that are connecied directly with
i-ik body.

Thig formule is general and it pays as well az for systems with a frame. Ti is useful when we
want 1o have automatic setting equation of motion, :

A similar formale is derived for the damping malrix. Instead of stiffness of a spring we should
have damping. A form of & vector of forces is evident.

How we can ses that tie stiffness matrix (as well as the damping matrix) is symetric and thin.
So by using convenient numbering of bodies this matrix will have non-zero elements concentrated
in a band along a diagonal, and the width of the band is:

w=max|m—k +1 (2)

where m and k are the numbers of arbitrary bodies which are directly connected.
This diagonal form of stiffness matrix is more convenient both for storage in a memory and

jime consuring on computers. We recommend using a algorithm of Cuthill-McKee [2], (both

backwards and forewards) for renumbering masses.

The algorithm for setting egunation of motion is a base point for a soluiion of considered
system. We will show some results in following domains: eigenvalues and eigenvectors of the
system, time-history of vibration of the system and a optimization of parameters

1} In order to find eigenvectors and eigenvalues of the system we consider a matrix equation:
MX+KX=0 (3)
This equation leads to a equation:
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MC-KC (4)

where A is a eigenvalue, ' is eigenvector.
Because of a symetricity of matrix X a QL method for a tridiagonal matrix is saitable [3]. So
in advance we must transform equation (4) into standard form by using Choleski’s separation:

M=LL" . | (5}

As the mass ma,trlx M is diagonal, [ is diagonal again and L = LT, so we obtain a standard
equation:

(L KLY (5O =MLQ) (6)
A riding matrix (L H L 1) is symetric again and we can use the mentioned QL method.

2} Time-History of vibration
When damping of the system is general we should transform equation (1) into the form:

-KE 0] [x B M] [X f
- ML e ")
o M X M O X o
or:
~Pu+Ni=g
where
-K 0 X B M f
0 M X M G aQ

The dimeansion of the problem is two-times greater but F and N are both syretric. A well
known method of Runge-Kutia could be used to solve equations {7].-

In the cases where we could suppose the condition of proportional damping some methods of
numerical intergratior are better. For example when we have Rayleigh’s damping:

B=oay M+a K ‘ (&}

two methods of Newmark and Wikon are very elegant and convennient as a proportionality of 8
enables one useful transform of matrix K. :

Amnother way is using main coordinates. This technique leads to a system of n single differential
equations which could be solved separately by Duhamell’s integral.

Two points of this domain should be ireated carefully on PC: a problem of a memory and
time-step for numerical integration. A size of required memory depends on used langnage and
compiler but perhaps the size of a data segment exceeds 64 Khyte that will complicate a storage
and handling data and influence time consuming. As a time-step we recommend %o choose a value:

A< 1/10fmax {9)
where fray is the greatest frequency of a system

f= \/I/Z‘ﬂ'.

A greater step leads to accumulation of numerical errors ané they can affecs like a nndesirable
damping. '

3) Optimization
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Higher stage of solution.is optimization of parameters (mass, stiffness and damping). Author
of this article have tested a lot of methods of optimization on computers and the comparison of
these methods was done in the frequency domain. We can set a following task:

‘Riding fanction

F = Z w; (A — Al‘b]z — min

where A;, @ = 1,n is desirable set of eigenvalues,

A; are eigenvalues of the system.

A similar task could be set in the amplitude domain but the form of riding function should
be choosen carefully. Note that we are speaking about numerical optimization, it means that at
each stage of a optimization process the system iz better if it gives a smaller value of the riding
function. Also, we consider only parameter optimization. '

The tests on computers showed that following methods are convennient for our task:

- Conjugate gradient method {Fletcher-Reevse’s method} -

- Fletcher-Powell’s method

- Rosenbrock’s method, -

The best of them is conjugate gradient method for its precision and time-consuming,

Other methods: Box’s algorithm or Glass-Copper’s method were tested but the resuits were
not so good,

One difficult can appear in a opfimization process: Values of stiffness of springs are greater a
lot than values of masses. This leads to a “zigzag” aproaching and doesn’t allow to reach precise
result. Some szpecials technique of optimization should be applied in order to gain better results

2]

A simple example: :

We tonsider an example to illustrate a problem. A torsional system in Fig. 2 has 5 inertia
bodies and 6 springs, The values of parameters are following: -

my = Skgm? g = 314:gm2 Ma = Skgm2
my = Bkgm? mg = 2kgm? ’
e = 10° Nm/jrad . Cp = 2-10° Nm/rad g5 =4 -10° Nm/rad

Cy =T7-10° Nm/rad Cs =2 10° Nm/rad Cs = 10° Nm/rad
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Fig. 2
The problem of eigenvalues is solved easily. The system has a spectrum:

104.2 201.1 269.3 4499 643.2 rad/s

- The most difficult task is a problem of optimization. Let’s suppose that retained spectrum is
not convennient and a constructor want to achieve better spectrum, say for example

90 260 300 450 650 rad/s.
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Not all of parameters could be changed but only 1-st, 3-rd and 4-th bodies and 1l-st, 5-th and 6-th
springs. ‘

In most cases the task of optimization require a lot of CPU time. For illustration we give in
the Tab. 1 some value of solution on different 286X and 386X hased PC. Rosenbrock’s method is
used and gives the result:

my = 4.056 ma = 6.584 me = 6.329 kgm?
¢ = 1.063 . 10% Cy = 4.832 - 10° Co = 1.34-10° Nm/rad

Tab. 1
PC Math. Coprocessor CPU time
Fujitkma 286, 8Mhz none 11 min 32 sec
Universal Computer 286, 8Mhz none 22 min 52 sec
Winn 2886, 16Mhz none 15 min 35 sec
Winn 2886, 8Mha none 23 min 47 sec
Olivetti 286, 16Mhz present 2 min 32 sec
Unitron 386, 32Mhz none " 5 min 52 sec

CONCLUSION

The algorithm for deriving mass, stifiness and damping matrix enables automatic solving the
problem on personal computers. But experience showed that some difficulties could appear and
we should be careful when using different methods because only some of them are convennient for
OUr PuUrpose.
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GIAI HE DAO DONG ROI RAC TREN MAY VI TINH

Bai bio dwa ra mdt thuit toin d8 xiy dung cdc ma trin d§ cirng, ma trin hé s§ cén vi ma
trin khdi lwong 381 véi hé dao dbng réi rac. Thujt todn nay 13 téng quit cho ¢t cd cic dang
khéc nhau cda hé dao doung va tao co s& cho vige 14p phuong trinh dao d8ng tric tiép trén may
tinh. Phwong phip niy cho phép gidi quy# nhidu bii todn khiac nhaun bing cdc phwong phip =8,
d¥c biét 13 bai todn 81 wu tham sd. C4¢ phwong phip khic nhaun ciing dwoc so sénh khi dwoc s
dung trén may tinh.
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