
Journal of Mechanics, NCSR of Vietnam T. XV, 1993, No 2 (21 - 26) 

GENERALIZED DIFFUSION THEORY OF 
MICROMORPHICLY DEFORMABLE PARTICLE-FLUID 

CONTINUUM AND BUBBLE-LIQUID TWO-PHASE FLOWS 

NGUYEN VAN DIEP 

Institute of Mechanics, NCSR of v~·etnam 

ABSTRACT. In the paper [1] the basic concepts and equations were derived for the 

micromorphicly deformable particle-fluid two-phase flows, the constitutive equations have 

been constructed. The flow os fluid with deformable sPherical particles, when the particle 

only expands radially, rotates and translates, is- considered in this paper. For this case one 

can obtain the full motion's equations system. These equation together with the constitutive 

equations are sufficient to determine all of unknows, and they can be used to study the bub­

ble-liquid two-phase flow. The problems of kinematk wave and acoustic wave propagation 

in the bubble-liquid two-phase flow is studied. 

INTRODUCTION 

The problem of multiphase flow of fluids or gase with deformable particles is attracting the 
great attention of scientists. 

In the paper [1] a general continuum theory have been developed for two-phase fiows of fluid 
with deformable particles, where the relative motion between phases and the micro-deformation 
of particles are taken into account. 

In this paper the generalized diffusion theory, developed in [2] has been used to study the 
relative motion between constituents phases. The micromotion has been taken into account by 
generalizing the Eringen's theory [3, 4] of mixtures for micromorphic materials 1 ·where the mi­
cromotion of particles is considered as simple micromotion, but the micromotion of carrier fluid 
is kinematicly depent of particles micromotion and it is determined by extending the theory of 
potential motion of fluid with moving and deformable bodies [5]. 

The simplest case of developed theory, when the particles of spherical form only expands 
radially, rotates and translates is considered now. 

1. THE MOTION EQUATIONS SYSTEM 

We will consider two-phase flows of an liquid with def?rmable spherica.l particles. Suppore 
that during a micro-deformation process a particle can only expand radially) rotate and translate. 
It meand [1] 

/J =vaG+ V1 · E, 
I= fo('J 

(1.1) 
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where Vis tensor of micro-velocity gradient, characterizing the deformaion rate of the micro-volume 
of particle, P0 - scalar, characterizing the radial extention rate of particle, !71 - vector of particle 
rotation velocity, G- unit tensor of 2nd order, E- permutation tensor, 1- tensor, characterizing the 
micro-inertia of particle of arbitrary form, Io - scalar, characterizing the micro-inertia of spherical 
particle. 

Ill' this case it can be shown [1] that <b - the potential of fluid micro-motion induced in a 

moving spherical particle haS a form: 

1> =(Ill- U2) ·~u +vog,vo' 

- l-R3 

<I>.~-2€~ (12) 
R3 

<I>v, ~ -- ' r ~ rei. 
r 

In the expressions (1.2) U1 and U2 are translating velocity vector of particles and liquid 
respectively, ~u- potential of fluid micro-motion induced in a translation of spherical particle, lf>v

0 

- a radially extention, R - radius of particle, (- relative position vector Of the considered fluid 
point with respect to the position of center mass of particle, r - its absolute yalue. 

Taking into account the results of [1] we can obtain the following expressions for the generalized 
induced mass tensors 

wher P2 - mass density of liquid. 

M~ MoG, 

I~ o; 

N~ N0 GG, 

It can be shown that Io has the form 

where p1 - mass density of particle·. 
The micro-pressure tensor ?f* can be written in the form 

Then, we obtain the following motion equations system 
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(1.3) 

{14) 

(15) 



(1.6) 

(
dl"lv0 5 ) (dl"lv0 ) . (]" _, 

nNo ~+;;vo +nlo -d-
1
-+v5 +n(No+lo) Pi 'V)vo= 

= P~lo +1r~- xo+ \7 -I12, 

(
dl"lv1 ) (]" -) 

nlo ~ + VoVl + nlo Pi . \1 vl 

- - 1- - -
= p~£1 + Tf +\lAo- 2\l X Au+ \7 · .\21; 

In the equations system (1.6), the first is particle number conservation equation 1 the 2nd -
mixture mass conservation, 3th - particle mass conservation, 4th - mixture momentum balance, 
5th- particle generalized diffusion, 6th- particle volume change, 7th - particle .rotation oBe. 

In obtaining equations (1.6) we suppose that 

P2 = const; 

4 3 31r R Pl =canst; 

Moreover we have the following relationships 

vo = _l_[·JI~IR + (]~ v)R]; 
R at Pi 

4 3 
<p = -1rR n. 

3 

( 1 71 
. - I 

(1.8) 

In (1.6)- (1.8) n is number of particles in a unit volume of the flow; If a- certain character­
istic mean velocity, expressed linearly in terms of liquid and particles velocities by some system 
of normalized weighing factors aki ]a- generalized diffusion flux of particles; p~ and P2 -fictiv-e 
mass densities of particle a.nd liquid respectively; p - mean mass density of mixture; ({) - volume 
concentrati~n of particles; 7 - density of the external body force acting on mixture; 71 and f 2 

- density of the external body force acting on particles and liquid respectively; p 1 - generalized 
chemical potential; p- thermodynamical pressure; Tf! r;! F ~a"'/ XO! Ao! >:) 11 ).121 :\21 - general­
ized thermodynamical forces; d(a) j dt- full time derivative determining the change over time with 
respect t.o a coordinate system moving at the characteristic velocity Va; the operator D(,.t) j Dt -
time derivative determining the change over time with respect to a generalized Lagrangian coor­
dinate system moving and deforming at velocity Ua [lj; the operator{-)~ scalar product and (x) 
- vector product between two closest indices of tensor quantities. 
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Together with the constitutive equations [1], the equations system (1.6) - {1.8) can be con­
sidered as the equations of motion of the fluid-deformable spherical particle two-phase media. In 
particular they can be used for predicting the bubble-liquid two-phase flows. This equations system 
will-be analyzed in the next chapter. 

2. SIMPLE CASED OF BUBBLE-LIQUID TWO-PHASE FLOWS 

a) Case 1: 
Consider the case ~hen there is no relative motion between phases, the spherical partiCle only 

expands radially, the liquid mass density and the total mass of a particle are constant, the motion 
is isothermal, and the dissipative terms can be neglected. Then, it can be shown that the equations 
of motion have the form 

dn· -
- +n'V ·U= 0; 
dt 
d -
dt (PI 10) +PI p('V · U) = 0; 

4 3 
1.p = 31r R n; p 2 = canst; 

d a --
-( ... ) = -( ... )+(UV)( .. ), 
dt at 

{2.1) 

In (2.1) ~he last equation determines the chinge of the paricle radius R. It is necessary to note 
that the micro pressure 1r~ has to be determined by giving a concrete form of the internal energy 
of two-pha,se flow [1]. But, here in comparing with the Rayleigh's equation [6] we can set 

• 4 3 ( 2a) 7ro=37rR n= p,-p-R 

where p 1 is the gas (or vapor) pressure inside a particle, a- the surface tension. 
In addition, it is necessary to consider the equation of state for the gas (or vapor) 

particle. As usu-al [6], we may assume the following state equation 

Pl = const 
PI 

Equations (2.1)- (2.3) are sufficient to determine all the unknows. 
b. Case 2: 

(2.2) 

inside the 

{2.3) 

When there is no particle rotation, the mean- volume velocity of the two-phase. Flow is used, 
the volume concentration of particles.Js small, the mass density of gas (or vapor) can be neglected 
with respect to the liquid mass density, the dissipative terms in the momentum balance equation 
and the particle radial expansion equation can be neglected, then the equations of motion will have 
the following form 

d(v) - - - -v 
dt-(PI\0) + P1\0'V Uv = -V · J . ; 

V U v = I ~ \0 (d{:: \0 + V · ~:) ; 
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- ---~- I 

d(v)[Jv - - R(v) (]v) 
(1- p)pz -- = {1- p)pzg- 'ilp + pz~ -

dt Dt P1 
{2.4) 

d(v)J" (]v -)-v (- J(v)[J") 2ppf- 2ppf -v -- + --. 'i7 J = -2pp, g- -- - -, -('ilp,) - --a.J ; 
dt P1 r.p dt pz p,l'l"o ,T pz 

-· 3 · 2 ( J" -) · 3 ( J" -) 1 ( 2cr) RR + -R + R - · 'i7 R +- - · 'il R =- p1 - p--
2 P1'P 2 Pl'P pz - R 

4 3 4 3 tl 
ip = 31rR n; 31rR Pl =canst; Pl =canst 

where 

Uv = pU, + {1- p}Vz; J" = P1'P{V1- Uv); 
. dlvl R .. Jlvl fl. di"l a -

R=-----;;;-; R= ------;J.t; dt( ... )= a/··)+{Uv 'il)( .. ); (2.5) 

Dlv) J(v) -- _ - __ 
Dt ( ... ) = dt( ... )+ [(. ) 'V]Uv+ ( ... )('il Uv); 

3. THE PROPAGATION OF KINEMATIC WAVE AND ACOUSTIC WAVE 
IN THE BUBBLE-LIQUID TWO-PHASE FLOWS 

To determine the velocities of a kinematic and acoustic waves propagation in the bubble-fluid 
two-phase flows we suppose that [4] 

('ilp,) T = 0, Pl = P p,tro, 

Then, the one-dimensional equation system (2.4} can be shown to have the following form 

ap ap 'P ap pu ap au 1 aJ 
-+u-+--+ --+p-+ -- =0, 
at ax p at p ax ax Ap a X 

ap ap J ap au ' 1 aJ 
-+u----- (1- p)- + -- =0 
at . ax Ap2 ax ax Ap ax ' 

(3.1) 

J pz ap ( pzuJ) ap au [ 2pz}l au --+ 1+-- -+(1-p)pz-+ (1-p)pzu--- --
ApZ at ApZ ax at Ap ax 

Pz aJ pzu aJ 
--. ---- = (1- p)pzg; 

Ap at Ap ax 

au au aJ ( J aJ - 2pAp-_- ZpApu- + - + u + --) -_ = 
at ax at App ax 

Pl 1 where, we put - = ~ , A =.canst. 
P1 A 

The characteristic equation of the system (3.1) has a form 

(u- >.) [- p(1 - 3p)pz (u- >.)3- (1- 4p)pzJ (u- >.)2 + (1 + pzJZ) (u- >.) + ___{___] = 0 (3.2' . 
p Apz A2p3 App I 

From the equation (3.2) one can see that the first characteristic velocity of equations system 
(3.1) is equal 

(3.3) 
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When there is no relative motion between bubbles and the carrier liquid (that means J = D") 
from the characteristic equation (3.2) we can obtain the following characteristic velocities: 

.xg3=u±aol ( 3.4) 

where 

ao = V 1"(1 _1'31")P2 ; 
(3.5) 

It is obvious that a0 is the velocity of acoustic w_ave propagation in motionless bubble-liquid 
two-phase media. It is coincided with the know. result [6]. 

Taking into account of (3.3) and (3.5) the characteristic equation (3.2) can be transformed 
into following equation 

where we put 

3 1 - 41" 2 ( I" ') z + ___ ,z - 1 + --.-g z-, = o 
1-31" 1-31" 

u-A 
Z=-­

ao 

J 
g=---

Ap\Oao 

(3.6) 

(3.7) 

In general the dimellsionless parameter cis smalll and the equation (3.6) can be .solved by the 
following expanding 

z = Zo + oZ1, 

By this way it can be shown that the equation (3.6) has 3 following characteristic velocities 

J 

(3.8) 

From (3.8) the characteristic velocities .A 2 ,3 can be considered as the velocities of acoustic wave 
propagation 1 ..\ 4 - the velocity of kinematic wave propagation in bubble-liquid two-phase flows. 

The problem of damping or amplification of these waves during the propagation in bubble­
liquid two-phase flows will be the subject of further investigations. 

This Publication is completed with financial support from the National Basic Research Pro­
gram in Natural Sciences. 
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