CONVEC'TIVE MOTION IN BINARY MIXTURE

NGO HUY CAN
Institure of Mechanics

In the paper the problem of convective motion in a binary mixture is studied. In the binary mixture convective motion is caused not only by gradient of temperature but also by gradient of concentration.

1. BASIC EQUATIONS

For the mathematical description of convection in a binary mixture, the Boussinesq approximation of the equation of motion, the heat equation and the diffusion equation will be assumed [1]

$$
\begin{align*}
\frac{\partial v}{\partial t}+(v \nabla) v & =-\frac{1}{\rho_{0}} \nabla p+\nu \Delta v+g\left(\beta_{1} T+\beta_{2} C\right) \gamma \tag{1.1}\\
\frac{\partial T}{\partial t}+v \nabla T & =\left(\chi+\alpha^{2} D N\right) \Delta T+\alpha D N \Delta C \tag{1.2}\\
\frac{\partial C}{\partial t}+v \nabla C & =D \Delta C+\alpha D \Delta T \tag{1.3}\\
\operatorname{div} v & =0 \tag{1.4}
\end{align*}
$$

Where the following notations are used: v denotes the velocity, p - the pressure, T, C the temperature and the concentration in the mixture, ρ - the equilibrium state density of the mixture, g - the acceleration of gravity, β_{1}, β_{2} - the heat and concentration coefficients of volume expansion of the mixture, D - the diffusion coefficient, ν - the viscous coefficient, χ - the coefficient of heat conductivity, α, N - thermodiffusion and thermodynamics parameters, γ - the unit vector of vertical upward axis x_{3} in the cartesian coordinate system $O x_{1} x_{2} x_{3}$.

We consider the system of equations (1.1) - (1.4) with the following boundary and initial conditions:

$$
\begin{align*}
v & =0, \quad T=T_{1}, \quad C=C_{t} \quad \text { on } S \tag{1.5}\\
\left.v\right|_{t=0} & =v(0),\left.\quad T\right|_{t=0}=T(0),\left.\quad C\right|_{t=0}=C(0) \tag{1.6}
\end{align*}
$$

In [1] it has been proved that if

$$
\begin{equation*}
\nabla T_{0}=-A \gamma, \quad \nabla C_{0}=-B \gamma \tag{1.7}
\end{equation*}
$$

where A and B are constants then there exists an equilibrium state.
The problem (1.1) - (1.6) are written in dimensionless form. For this purpose some dimensionless quantities are introduced: L denotes a reference length, L^{2} / ν - a reference time, χ / L - a reference velocity, $A L$ - a reference temperature, $B L \chi / D$ - a reference concentration, $\rho_{0} \chi \nu / L^{2}$ - a reference pressure.

Instead of the system (1.1) - (1.6) we get

$$
\begin{align*}
& \frac{\partial v}{\partial t}+P_{1}^{-1} v \nabla v=\Delta v-\nabla p+R_{1} T \gamma+R_{2} C \gamma \tag{1.8}\\
& P_{1} \frac{\partial T}{\partial t}+v \nabla T=(1+a) \Delta T+\frac{a}{b} \Delta C \tag{1.9}\\
& P_{2} \frac{\partial C}{\partial t}+P_{1}^{-1} P_{2} v \nabla C=\Delta C+b \Delta T \tag{1.10}\\
& \quad \operatorname{div} v=0 \tag{1.11}\\
& \quad v=0, \quad T=T_{1}, \quad C=C_{1} \quad \text { on } S \tag{1.12}\\
& \left.v\right|_{t=0}=v(0),\left.\quad T\right|_{t=0}=T(0),\left.\quad C\right|_{t=0}=C(0) \tag{1.13}
\end{align*}
$$

Where R_{1}, R_{2} are the heat and diffusion Rayleigh numbers:

$$
\begin{equation*}
R_{1}=\frac{g \beta_{1} A L^{4}}{\nu \chi}, \quad R_{2}=\frac{g \beta_{2} B L^{4}}{\nu D} \tag{1.14}
\end{equation*}
$$

P_{1} is a Prandlt number and P_{2} is a Smidth number:

$$
\begin{equation*}
P_{1}=\frac{\nu}{\chi}, \quad P_{2}=\frac{\nu}{D} \tag{1.15}
\end{equation*}
$$

a, b are defined by:

$$
\begin{equation*}
a=\frac{\alpha^{2} N D}{\chi}, \quad b=\frac{\alpha D A}{\chi B} \tag{1.16}
\end{equation*}
$$

Using (1.7) from the system of equations and boundary conditions (1.8) - (1.12) we receive the linear equations describing the small convective motion in the mixture:

$$
\begin{gather*}
\frac{\partial v}{\partial t}=\Delta v-\nabla p+R_{1} \gamma T+R_{2} \gamma C \tag{1.17}\\
P_{1} \frac{\partial T}{\partial t}=(1+a) \Delta T+\frac{a}{b} \Delta C+v \gamma \tag{1.18}\\
P_{2} \frac{\partial C}{\partial t}=\Delta C+b \Delta T+(v \gamma) \tag{1.19}\\
\operatorname{div} v=0 \tag{1.20}\\
v=0, \quad T=0, \quad C=0 \quad \text { on } S \tag{1.21}\\
\left.v\right|_{t=0}=v(0),\left.\quad T\right|_{t=0}=T(0),\left.\quad C\right|_{t=0}=C(0) \tag{1.22}
\end{gather*}
$$

2. EXISTENCE THEOREM

The following Hilbert spaces are used throughout:

$$
L_{2}(\dot{\Omega})=H_{2}(\Omega) \times H_{2}(\Omega) \times H_{2}(\Omega)
$$

with scalar product and norm:

$$
\begin{aligned}
(u, v)_{L_{2}(\Omega)} & =\sum_{i=1}^{3} \int_{\Omega} u_{i} v_{i} d \Omega, \quad\|v\|_{L_{2}(\Omega)}=\left\{(v, v)_{L_{2}(\Omega)}\right\}^{1 / 2} \\
\tilde{L}_{2} & =\left\{v \in L_{2}(\Omega), \quad \operatorname{div} v=0, \quad v_{n}=0 \quad \text { on } S\right\}
\end{aligned}
$$

$$
\begin{aligned}
W_{2}^{1}(\Omega) & =H_{2}^{1}(\Omega) \times H_{2}^{1}(\Omega) \times H_{2}^{1}(\Omega) \\
H_{2}^{1}(\Omega) & =\left\{p \in H_{2}(\Omega), \nabla p \in H_{2}(\Omega)\right\} \\
H_{2,0}^{1}(\Omega) & =\left\{p \in H_{2}^{1}(\Omega), p=0 \text { on } S\right\} \\
W_{2,0}^{1}(\Omega) & =H_{2,0}^{1}(\Omega) \times H_{2,0}^{1}(\Omega) \times H_{2,0}^{1}(\Omega) \\
\widetilde{W}_{2,0}^{1}(\Omega) & =\left\{v \in W_{2}^{1}(\Omega), \operatorname{div} v=0, v=0 \text { on } S\right\}
\end{aligned}
$$

Likely as it has been done in [2] we can prove that the equations (1.17)-(1.20) with the conditions (1.21) are equivelent to the following equations in space $\tilde{L}_{2}(\Omega)$ and $H_{2}(\Omega)$

$$
\begin{align*}
\frac{d v}{d t} & =-A_{1} v+R_{1} B_{12} T+R_{2} B_{13} C \tag{2.1}\\
P_{1} \frac{d T}{d t} & =-(1+a) A_{2} T-\frac{a}{b} A_{2} C+B_{21} v \tag{2.2}\\
P_{2} \frac{d C}{d t} & =-A_{2} C-b A_{2} T+B_{31} v \tag{2.3}
\end{align*}
$$

Where the operator A_{1} is self-adjoint positive definite in $\tilde{L}_{2}(\Omega)$, its inverse operator is positive and compact, the operator A_{2} is self-adjoint, positive definite in $H_{2}(\Omega)$ its inverse operator is positive and compact. The operators $B_{12}, B_{13}, B_{21}, B_{31}$ are defined by

$$
\begin{aligned}
& B_{12} T \equiv \gamma T, \quad B_{13} C=\gamma C \\
& B_{21} v=(v \gamma), \quad B_{31} v=(v \gamma) .
\end{aligned}
$$

Definition. The generalized solution of problem (1.17) - (1.22) is called the solution of the following problem in space $\widetilde{L}_{2}(\Omega) \times H_{2}(\Omega) \times H_{2}(\Omega)$:

$$
\begin{align*}
\frac{d X}{d t} & =-A X+B X \tag{2.4}\\
\left.X\right|_{t=0} & =X(0) \tag{2.5}
\end{align*}
$$

Where

$$
X=(v, T, C)^{\perp}
$$

$$
A=\left[\begin{array}{ccc}
A_{1} & 0 & 0 \\
0 & \frac{1+a}{P_{1}} A_{2} & \frac{a}{P_{1} b} A_{2} \\
0 & \frac{1}{P_{2}} b A_{2} & \frac{1}{P_{2}} A_{2}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & R_{1} B_{12} & R_{2} B_{13} \\
\frac{1}{P_{1}} B_{21} & 0 & 0 \\
\frac{1}{P_{2}} B_{31} & 0 & 0
\end{array}\right]
$$

It is clear that the equation (2.4) and the system of equations (2.1) - (2.3) are equivalent.
From (1.16) it follows that the constant a is positive, the constant b may be positive may be negative.

We consider the case when $b<0$. We rewrite the operator A in the form

$$
A=\left[\begin{array}{ccc}
A_{1} & 0 & 0 \\
0 & \frac{1+a}{P_{1}} A_{2} & -\frac{a}{P_{1}|b|} A_{2} \\
0 & -\frac{1}{P_{2}}|b| A_{2} & \frac{1}{P_{2}} A_{2}
\end{array}\right]
$$

In the equation (2.4) setting $X=E^{1 / 2} \mathrm{C}$ we get

$$
\begin{equation*}
\frac{d Y}{d t}=-E^{1 / 2} A E^{-1 / 2} Y+E^{1 / 2} B E^{-1 / 2} Y \tag{2.6}
\end{equation*}
$$

where

$$
E=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{P_{1}|b|}{a} & 0 \\
0 & 0 & \frac{P_{2}}{|b|}
\end{array}\right], \quad Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right]
$$

It is easy to see that

$$
A_{1}=E^{1 / 2} A E^{-1 / 2}=\left[\begin{array}{ccc}
A_{1} & 0 & 0 \\
0 & \frac{1+a}{P_{1}} A_{2} & -\left(\frac{q}{P_{1} P_{2}}\right)^{1 / 2} A_{2} \\
0 & -\left(\frac{a}{P_{1} P_{2}}\right)^{1 / 2} A_{2} & \frac{1}{P_{2}} A_{2}
\end{array}\right]
$$

and

$$
\begin{gathered}
\left(A_{1} Y, Y\right)=\left(A_{1} Y_{1}, Y_{1}\right)+\frac{1}{P_{1}}\left(A_{2} Y_{2}, Y_{2}\right)+\left(\left(\frac{a}{P_{1}}\right)^{1 / 2} A_{2}^{1 / 2} Y_{2}-\left(\frac{1}{P_{2}}\right)^{1 / 2} A_{2}^{1 / 2} Y_{3}\right)^{2} \\
A_{1}^{-1}=\left[\begin{array}{ccc}
A_{1}^{-1} & 0 & 0 \\
0 & P_{1} A_{2}^{-1} & -\left(a P_{1} P_{2}\right)^{1 / 2} A_{2}^{-1} \\
0 & -\left(a P_{1} P_{2}\right)^{1 / 2} A_{2}^{-1} & P_{2}(1+a) A_{2}^{-1}
\end{array}\right]
\end{gathered}
$$

It is clear that the operator \mathcal{A}_{1}^{-1} is positive and compact and the operator A_{1} is self-adjoint positive definite.

In the case when $b>0$ the operator \mathscr{A}_{1} get a form

$$
A_{1}=\left[\begin{array}{ccc}
A_{1} & 0 & 0 \\
0 & \frac{1+a}{P_{1}} A_{2} & \left(\frac{q}{P_{1} P_{2}}\right)^{1 / 2} A_{2} \\
0 & \left(\frac{a}{P_{1} P_{2}}\right)^{1 / 2} A_{1} & \frac{1}{P_{2}} A_{2}
\end{array}\right]
$$

In the same way we can prove that the operator \mathcal{A}_{1} is self-adjoint positive definite, its inverse operator is positive and compact.

So we obtain [3]
Theorem 2.1. The problem (1.17) - (1.22) get an unique generalized solution.

3. SPECTRUM THEOREM AND CONVECTIVE STABILITTY

In (2.1) - (2.3), (2.6) setting

$$
v=v_{1} e^{-\lambda t}, \quad T=T_{1} e^{-\lambda t}, \quad C=C_{1} e^{-\lambda t}, \quad Y=Y_{1} e^{-\lambda t}
$$

we get

$$
\begin{align*}
\lambda v_{1} & =A_{1} v_{1}-R_{1} B_{12} T_{1}-R_{2} B_{13} C_{1} \tag{3.1}\\
P_{1} \lambda T_{1} & =(1+a) A_{2} T_{1}+\frac{a}{b} A_{2} C-B_{21} v_{1} \tag{3.2}\\
P_{2} \lambda C_{1} & =A_{2} C_{1}+b A_{2} T_{1}-B_{31} v \tag{3.3}\\
\lambda Y & =A_{1} Y_{1}-B_{1} Y_{1} \tag{3.4}
\end{align*}
$$

Using the theorem 10.1 in [4] we obtain
Theorem 3.1. The spectrum of the problem (3.1) - (3.3) is discret. Excepting a finite number of the spectrum points others ones are contained in the sector $-\varepsilon<\arg \lambda<\varepsilon, \pi-\varepsilon<\arg \lambda<\pi+\varepsilon$. The system of eigenfunctions of the problem is complete in the space $W_{2,0}^{1}(\Omega) \times H_{2,0}^{1}(\Omega) \times H_{2,0}^{1}(\Omega)$.

From the system of equations (3.1) - (3.3) we get

$$
\begin{align*}
\lambda\left(v_{1}, v_{1}\right) & =\left(A_{1} v_{1}, v_{1}\right)-R_{1}\left(B_{12} T_{1}, v_{1}\right)-R_{2}\left(B_{13} C_{1}, v_{1}\right) \tag{3.5}\\
\lambda P_{1}\left(T_{1}, T_{1}\right) & =(1+a)\left(A_{2} T_{1}, T_{1}\right)+\frac{a}{b}\left(A_{1} C_{1}, T_{1}\right)-\left(B_{21} v_{1}, T_{1}\right) \tag{3.6}\\
\lambda P_{2}\left(C_{1}, C_{1}\right) & =\left(A_{2} C_{1}, C_{1}\right)+b\left(A_{2} T_{1}, C_{1}\right)-\left(B_{31} v_{1}, C_{1}\right) \tag{3.7}
\end{align*}
$$

From (3.5) - (3.7) it follows

$$
\begin{align*}
& \left(\lambda-\lambda^{*}\right)\left\{\left\|v_{1}\right\|^{2}+R_{1} P_{1}\left\|T_{1}\right\|^{2}+R_{2} P_{2}\left\|C_{1}\right\|^{2}\right\}=0 \tag{3.8}\\
& \left(\lambda+\lambda^{*}\right)\left\{\left\|v_{1}\right\|^{2}-R_{1} P_{1}\left\|T_{1}\right\|^{2}-R_{2} P_{2}\left\|C_{1}\right\|^{2}\right\}= \\
& =2\left\|A_{1}^{1 / 2} v_{1}\right\|^{2}-2 R_{1}(1+a)\left\|A_{2}^{1 / 2} T_{1}\right\|^{2}-2 R_{2}\left\|A_{2}^{1 / 2} C_{1}\right\|^{2}- \\
& -2 \frac{R_{1} a+b^{2} R_{2}}{b}\left(A_{2}^{1 / 2} C_{1}, A_{2}^{1 / 2} \dot{T}_{1}\right) \tag{3.9}
\end{align*}
$$

$$
\begin{align*}
& \left(\lambda+\lambda^{*}\right)\left\{\left\|v_{1}\right\|^{2}+R_{1} P_{1}\left\|T_{1}\right\|^{2}-R_{2} P_{2}\left\|C_{1}\right\|^{2}\right\}= \\
& =2\left\|A_{1}^{1 / 2} v_{1}\right\|^{2}+2 R_{1}(1+a)\left\|A_{2}^{1 / 2} T_{1}\right\|^{2}-2 R_{2}\left\|A_{2}^{1 / 2} C_{1}\right\|^{2}- \\
& +2 \frac{a R_{1}-R_{2} b^{2}}{b}\left(A_{2}^{1 / 2} C_{1}, A_{2}^{1 / 2} T_{1}\right)-4 R_{1} \operatorname{Re}\left(B_{12} T_{1}, v_{1}\right) \tag{3.10}
\end{align*}
$$

$$
\left(\lambda+\lambda^{*}\right)\left\{\left\|v_{1}\right\|^{2}-R_{1} P_{1}\left\|T_{1}\right\|^{2}+R_{2} P_{2}\left\|C_{1}\right\|^{2}\right\}=
$$

$$
=2\left\|A_{1}^{1 / 2} v_{1}\right\|^{2}-2 R_{1}(1+a)\left\|A_{2}^{1 / 2} T_{1}\right\|^{2}+2 R_{2}\left\|A_{2}^{1 / 2} C_{1}\right\|^{2}-
$$

$$
\begin{equation*}
+2 \frac{-a R_{1}+R_{2} b^{2}}{b}\left(A_{2}^{1 / 2} C_{1}, A_{2}^{1 / 2} T_{1}\right)-4 R_{2} \operatorname{Re}\left(B_{13} C_{1}, v_{1}\right) \tag{3.11}
\end{equation*}
$$

$$
\left(\lambda+\lambda^{*}\right)\left\{\left\|v_{1}\right\|^{2}+R_{1} P_{1}\left\|T_{1}\right\|^{2}+R_{2} P_{2}\left\|C_{1}\right\|^{2}\right\}=
$$

$$
=2\left\|A_{1}^{1 / 2} v_{1}\right\|^{2}+2 R_{1}(1+a)\left\|A_{2}^{1 / 2} T_{1}\right\|^{2}+2 R_{2}\left\|A_{2}^{1 / 2} C_{1}\right\|^{2}-
$$

$$
+2 \frac{a R_{1}+R_{2} b^{2}}{b}\left(A_{2}^{1 / 2} C_{1}, A_{2}^{1 / 2} T_{1}\right)-4 R_{1} R e\left(B_{12} T_{1}, v_{1}\right)-
$$

$$
\begin{equation*}
-4 R_{2} \operatorname{Re}\left(B_{13} C_{1}, v_{1}\right) \tag{3.12}
\end{equation*}
$$

The equality (3.8) implies that if $R_{1}>0, R_{2}>0$ then λ are real, i.e all the perturbations in the mixture in crease or decrease monotonely.

In the case when $R_{1}<0, R_{2}<0$ from (3.9) we get

$$
\begin{aligned}
& 2 R e \lambda\left\{\left\|v_{1}\right\|^{2}+\left|R_{1}\right| P_{1}\left\|T_{1}\right\|^{2}+\left|R_{2}\right| P_{2}\left\|C_{1}\right\|^{2}\right\}= \\
& =2\left\|A_{1}^{1 / 2} v_{1}\right\|^{2}+2\left|R_{1}\right|(1+a)\left\|A_{2}^{1 / 2} T_{1}\right\|^{2}+2\left|R_{2}\right|\left\|A_{2}^{1 / 2} C_{1}\right\|^{2}+ \\
& +2 \frac{a\left|R_{1}\right|+b^{2}\left|R_{2}\right|}{b}\left(A_{2}^{1 / 2} C_{1}, A_{2}^{1 / 2} T_{1}\right)
\end{aligned}
$$

This inplies that $R e>0$ if

$$
\begin{equation*}
\frac{a\left|R_{1}\right|+b^{2}\left|R_{2}\right|}{2 b\left(\left|R_{1}\right| \cdot\left|R_{2}\right|(1+a)\right)^{1 / 2}}<1 \tag{3.13}
\end{equation*}
$$

In the case when $R_{1}>0, R_{2}<0$ from (3.10) it follows that $R e \lambda>0$ if

$$
\begin{equation*}
R_{1}<\gamma_{1} \gamma_{2} \quad \text { and } \quad \frac{a R_{1}+b^{2}\left|R_{2}\right|}{|b|\left(R_{1}\left|R_{2}\right| a\right)^{1 / 2}}<1 \tag{3.14}
\end{equation*}
$$

where γ_{1}, γ_{2} are the minimum eigenvalues of the operators A_{1} and A_{2}.
In the case when $R_{1}<0, R_{2}>0$ from (3.11) it follows that $R e \lambda>0$ if

$$
\begin{equation*}
R_{2}<\frac{\sqrt{2}}{2} \gamma_{1} \gamma_{2} \quad \text { and } \quad \frac{a\left|R_{1}\right|+b^{2} R_{2}}{\sqrt{2}|b|\left(R_{2}\left|R_{1}\right|(1+a)\right)^{1 / 2}}<1 \tag{3.15}
\end{equation*}
$$

In the case when $R_{1}>0, R_{2}>0$ from (3.12) it follows that $R e \lambda>0$ if

$$
\begin{equation*}
R_{1}<\frac{1}{2} \gamma_{1} \gamma_{2}, \quad R_{2}<\frac{1}{4} \gamma_{1} \gamma_{2}, \quad \frac{a R_{1}+b^{2} R_{2}}{b \sqrt{2 a R_{1} R_{2}}}<1 \tag{3.16}
\end{equation*}
$$

(3.13) - (3.16) are sufficient conditions for convective stability in the mixture but not necessary.

Conclusion. In the paper the existence and spectrum theorems have been proved some sufficient conditions for convective stability in a binary mixture are obtained.

This Publication is completed with financial support from the National Basic Research Program in Natural Sciences.

REFERENCE

1. Gershuni G. Z.; Zhukhovits E. M. Convective stability in incompressible fluids. Moscow, 1972 (in Russian)
2. Ngo Huy Can, Nguyen Xuan Huy and Ta Ngoc Cau. On the convective motion in a micropolar viscous fluid. Int. J. Eng. Science vol. 27, No 10 1183-1202 (1989).
3. Krein S. G. Linear differential equations in Banach spaces (Moscow, 1967) (in Russian).
4. Gokberg I. X., Krein M. G. Introduction to theory of linear non self-adjoint operators in Hilbert space (Moscow, 1965) (in Russian).

Received November 11, 1992

CHUYỂN ĐộNG ĐỐI LUUU TRONG HỖN HỢP CHẤT LÓNG HAI THÀNH PHẦN

Trong bài báo đâ chứng minh định lý tồn tại duy nhất nghiệm và định lý về cấu trúc phổ cho bài toấn tuyến tính về chuyển động đối lưu nhiệt trong hỗn hợp chất lỏng hai thành phần. Đã thu được một số điều kiện đư để chuyển động đối lưu trong hổn hợp ổn định.

