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ON THE MOTION OF INCOMPRESSIBLE VISCOUS FLUID 
WITH FLOTATION ON FREE SURFACE 

TRAN THU HA 

Institute of Mechanics NCSR Vietnam 

In the works [1, 15j the problems about the motions of ideal fluid contained in an 
elastic bottom vessel or in a solid vessel with flotations on the free surfaces were investigated. 
In this paper we consider the motion of incompressible viscous tluid contained in a vessel 
with flotation on the free surface. The unique existence theorem of solution is proved, the 
spectrum structure and the completeness of the characteristic vector system are studied. 

1. FORMULATION ON THE PROBLEM . 

Let us introduce an incompressible viscOus fluid contained in a vessel. On the solid boundary 
S the boundary condition- v = 0 where v = ( v1, t'2, v3) is the velocity of the fluid particles. As 
in the work [1] it is supposed that the weighable particles of some substances float on the fre!i! 
smface r. On the free vibration process they a.re not acting each with other or their interaction is 
negligible. From the dynamical of view, the availability of the no~ interacting one another particles 
floating on the free fluid surface r may be interpreted when the free surfac.z is regarded M weighable 
surface with surface density of mass distribution o(x) (x E f) where o(x) 2: 0 and may become 
zero indentically in some subregions of the region r. 

We consider the elementary conclusion of the boundary condition for the free weighable surface 
r. As in the works [1, 2, 3] we write the second Newton law for the element AT of the free surface 
at the point X E r. In the linear approximation this law is written in· the following form 

av3 [ av3 l .:;rs(x)at = Af p- 2pv ax
3 

- pge on r 

avi av3 
T;3(v) =-a . +-a = 0, i = 1,2 on f 

X3 Xi 

Here p is the fluid pressure, p- the fluid density1 v - the coefficient of kinematic viscousity. 
Taking V3 = au at into consideration in the equation ( 1.1) we get 

a [ av3] 8
2

v3 
at p- 2pv ax3 = pgv3 + 5(x)at2 

If S(x) = 0, the condition (1.2) become the condition of the problem in the work [4]. 
As in the works [3, 4] we get the boundary problem describing the motion of the fluid: 

av 1 1 
- =--'\7p+v.:;v+-f at P P 
div v = 0 

v=O 
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a [ av3] . 82
u3 

at p- 2pv ax
3 

= pgv3 + o(x) at2 on r 
T13(v) = T23(v) = 0 On f 

p(x, o) = p 0 (x), v(x, o).= v0 (x), av(x. o) I = v1(x) 
at •=o 

2. FUNCTION SPACES AND AUXILIARY PROBLEMS 

Denote £2(0) by the space of quadratically integrable vector-functions v in fl. 
In [llj the following decomposition of £2(0) is given 

where 

I2(o) = { v 

G(O) = {v 

£2(0) = L,(fl) E!) G(O) 

v E L2(0), 
v E L2(fl), 

div v = 0, Vn = 0 on S} 

v = \lp, p = 0 on r} 

In [3] the Veill's decomposition of L2(fl) is given as follo":s: 

L2(n) = J,(n) EB Jo(O) 

where 

J,(n) = { v v E I2(0), v = Vp} 

J0 (fl)={u uEL2(0), u·n=Oonr} 

Here n is the external normal of the free surface r. 

(1.6) 

(1.7) 

(1.8) 

Let us define W:£,0 (0) a8 the space of vector functions u E L2(fl) getting generalized derivaties 
of the first order and vanishing out - side some compact subsets of S. Their scalar product in 
Wi 0 (0) is defined as follows 

so 

llullw,',,(O) = [(u, u)w,>_,(ol]'
12 

In [3] the decomposition of W:£, 0 (0) is given as follows: 

wJ-,0 (0) = Wi (D) EB Ui (n) 

where 

- 1 { 1 W2 (D)= u :0 u E W2 0 (0), 
' ' ' 

U}(n) = { v v E Wi 0 (0), 
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Denote H 2(r) by the space of quadratically integrable functions <pEr. Let H;'/
2(r) be the 

duel space of Hi/2 (r) [12]. We define the space Ho, H+, H_ as follows: 

,1z -1/2(r) Ho = Hz(r) 8{1}, H+ =HonH2 , H_ = HonH2 . 

Problem 1. Let there be given a vector-function hE l2(0) we seek a vector-function v(l) 

and a function p{l) so that the following equations and conditions are satisfied: 

- vlJ.vl 1 1 + ~'Vp(ll = h, divv(ll = 0; in f! 
p 

vl 11 = 0; on S 
a Ill 

p(l)- 2pv...}2_ = 0; r,,( vll)) = 0 (i = 1, 2) on r 
ax3 

Problem 2. Let there be given a function 'I! E H~ we seek a vector-function v( 2 l and a 
function p( 2) so that the following equations and conditions-.a.re---sat-isfi-ei1:~'"-:,-,_- ,._:;_::~7_;.~~-~:K:'-:,,-.-

1 
- vlJ.vl 2 1 + -'Vp(21 = 0, divvl 2 1 = 0; in f! 

p 

vl2) = 0; on S 

a (21 
p(Z)- 2pv...}2_ = 1Ji; Ti3(v(2)) = 0 (i = 1, 2) on r 

ax3 

In [4] we find the following lemmas: 

Lemma 1. For the vector function hE Z2 {0) there exists the unique generalized solution of 
the problem 1. This solution iB the vector-function v( 1 l satisfying the equality: 

(vl
1
1,v)wi.oiO) = (h,vlz,(o)' Vv E Wz', 0 (f!) 

The operator A~ 1 giving the solution of the problem ( v{I) = A;_- 1 h) is positive and compact, it 

maps L2 (f!) into W,/, 0 (0) and D(A:/2
) = Wz', 0 (f!), Ai/2

W,/, 0 (0) = L2(f!) .. 

In [4] it was proved that Ai/2 W,/(f!) ""Jo(O) and Ai12 Ui(O) = J,(O) 

Lemma 2. For the function W E H ~ there exists the unique generalized solution of the 
problem 2. This solution is the vector-function v( 2 ) satisfying the equality: 

(vl21,s)Wi.oiO) = (W,,s)H,' /S"' s,lr 

The operator Q giving the solution of the problem ( v(2) = QW) is compact and it maps H _ into 
Wi o(fl). 

3. THE UNIQUE EXISTENCE THEOREM OF THE SOLUTION 

Using the lemmas 1, 2 we can prove that the equations (1.3), (1.4) with the conditions (1.5) 
- (1.7} are equivalent to the following equation system 
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- -1 d A-1 + -1A-1/ v - -v dt 1 v v 1 

d<p cP 
- dt = pg-yv + 6(x) dt2/v 

(3.1) 

Here <p = ~p + 2vp8vs/8xs and the operator 1 : W:} 0 (fl) * H+ is linear continuous (I is the 
trace operator) such that --yu = restriction of u · n to r' for every u. E Wi 0 (0). It is obv.ious that 

"(ttEH+· 
Let us introduce the operator Co = jQ. In the works [3, 4 1 5] was proved that operator 

Co : H_ ::::::> H+ is positive and compact in the space H0 . 

Let us realize in (3.1} the change of variable for formula v = A~ 1 / 2 ~~ p = G~ 1 /2 ry. Then from 
(3.1) we get · 

( = -v-1~A- 1 ~+v- 1V'~+ _!:_A- 112 ! 
dt 1 pv 1 

dry d2 

- dt = pgCoV ( + 6(x) dt2 CoV c 
(3.2) 

Here the operators v = C~ 1 ;2,A~ 1 /2 : Lz(fl) * Ho and v· = A:/2QCo- 1/ 2 : Ho * Lz(fl) are 
bounded [3, 5]. It iB easy to check that vv• =I: H0 * H0 . Then it follows that Ker v• = ¢. 

Indeed, we have: 

so v· ( = 0 only in the case ( = 0. 
Let us differentiate the first equation of (3.2) with respect to t, then from (3.2) we get t.h~ 

following equation 

d( ( -lA-1 -1'( )A )dz( --•A ' 1 A-1121' 
dt = - v 1 + v u x o dt2 - pgv o~, + Pv 1 , t 

Here the operator Ao = v·cov is compact in the space L2(fl). 

{3.3) 

Let us denote the operator B = v- 1 A.1 1 + v- 10(x)A0 • It is obvious that the operator B is 
positive and compact. 

Let us denote ( = B~. Replacing (in the equation (3.3) by (we get 

2' ' 
d ( = -B-ld(- -lC't.L _!:_A-1/0lf' 
dt2 dt pgv <; r- pv 1 • t (3.4) 

Wh<flre C = A0 B- 1 and the operator -B- 1 is definite negative. It is obvious that the operator 
-C(B-lt- 1 = -AoB- 1 B = -Ao = -AoBB- 1 is corrlpad 1 nonpo15itive and perfectly subordi­
nates to the operator B- 1 . 

The initial condition of equation (3.4) is written as follows: 

(3.5) 

Therefore, using the theorem 3.3 of the work [6] w•e obtain that the equation (3.4) with the 

initial condition (3.5) gets the unique solution~ for every (€(0), ~;(o)) E BL2 (0) x BL2 (fl) and 

1: E C(L2(0), [o, Tl). So, for the problem (1.3)- (1.8) 'We get the following theorem: 

Theorem 1. Let there be given v0 (x) E W,',0 (fl), v' (x) E W,',0 (fl), f(x, t) E C 1 (L2 (0), [0, Tl), 
p0 (xJir E H_ there exists the unique solution v(x, t) E. Wi_ 0 (fl) of the problem (1.3)- (1.8). 
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4. ON THE SPECTRUM STRUCTURE AND THE COMPLETENESS 
OF CHARACTERISTIC VECTOR SYSTEM 

In this paragraph we 'll study the equation system (3.2) in the case when the vector function 
f(x,t) = 0. Writting the solution of this equation syskm a.s e(x,t) = exp(-.\t)e(x) and ry(x,t) = 
exp(-.\t)rJ(x) we get 

( 4.1) 

It is easy to check that if A= 0 in the system (4.1) then (~,ry) = (0,0}. Indeed, if.\= 0 it 

follows from (4.1) that 

But in the previous the operator Co is positive in the space Ho and VV* = I: H 0 ::::> H0 , it 
follows from (4.2}, that v- 1 ry = v~ = 0 and e = 0. 

Therefore, zero isn't the characteristic value of the system (4.1) we get the followL.•g equation 

or 

The characteristic values of L(.\) coincide with the one of the bundle LI(A) =I ~AB- pgv- 1 ), -l A0 . 

In the case when Re ,\ < 0, using the properties of the operators B and Ao we have 

It follows that the real parts of t.he characteristic values At.. (k = 1, co) of the bundle L 1 (>.) or 
of L(A) from (4.3) are positive. It shows that the motions of the fluid with flotation on t:h{' free 
surface are stable. 

1 

Since the operator B and ..40 are compact) using the results of the work [13] we get th-e 
characteristic values ,\k of the bundle L(A) are discrete and get finite algebraic mnltiplidt,y, 

If I.\ I> pgv~ 1 1iAoll the bundle L(A) may be written as follows 

"Nhere 

M 

G,(A) = L rn+lv-"p"g" A~B and liGr(.:l)l! * 0 as !AI* co 
n=2 

Since in the case when j.Aj > pgv- 1 ))Ao I! the operator I-). -l pgv- 1 A.o is rev;;rsible~ we consider 

instead of L(,\) the bundle FI{A}. 'i'he operator Ao = V"CoV = V'"CoV(Al-Irl' is compa.ct <md 

AoAi12 = A~/ 2 Qr: fVi, 0 (.n) :o::? Z:2 (f1) is unbounded. Using the definition of tb~ work [6) we get 
that. the operator A 0 perfectly subordi!Iat.es t.o the operator AJ. with the order which is less than 
1/2. Hence) using the consequence 9.4 (7, p. 56] and the results of t.he works [3; 8, 9] we get the 
following estimation~ 
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where N(r, B) and N(r, v- 1 A~~·) are the spectrum distribution functions of the operators B and 
v-1 A11 in the region 1>.1 < r and c1 = v-312mes !l/{37r)2 [8]. 

Therefore, using the theorem 1 of the work [9] and the formula {4.4) we get 

N(r,L(>.)) = N(r,Ft(>.)) = N(r, v- 1 A1 1 )[1 + o{1)] = c1 r312 [1 + o{1)] as r =>- oo {4.5) 

Because of the characteristic values ).,k of the operator v- 1 A1 get the limit at infinity and 
from {4.5), the characteristic values .).k of the bundle L(>.) get the limit at infinity. 

Since the operator B is positive and compact the operator AoB is compact and !IG1{>..)jj => 0 
as 1>.1 =>- oo, using the formula {4.5) and the results of the work [10, Theorem 1] we get that 
the characteristic and associative vector system of FI(>.) or either of L(>..) in the case when lA I > 
pgv-1IIAoll is complete in the space L2{!l) excepting the finite defect. 

Theorem 2. The characteristic values .).k (k = 1, oo) of the bundle L(>.) are discrete, get a 
finite algebraic l!lultiplicity and the limit at infinity and the following estimation is satisfied 

In the Case when j..\j > pgv- 1 1JA0 jj the characteristic and associative vector system is complete in 

L,(!l) excepting the finite defect. 
If 1>.1 < IIB-'11 the bundle L(>.) may be written as follows: 

L(>.) =>.(I- >.B)F2(>.) 

where 

G2{>.) = L .)."-1pgv- 1B" is compact and IIG2(>.)11 =>- 0 as 1>.1 =>- 0. 
n=2 

In the work [5] the orthogonal projectors P1 = V*V onto J,(!l) and P2 =I- P1 onto J 0 {!l) 
were produced. It is clear that Ker V = J0 {!l) and P2V* = P2V'VV* = P2P1 V* =D. 

At first we consider the operator A0 = V* CV. After operating two sides of the equation 
(I- >.V'CoV)~ = 0 by the operators P1 and P2 we get 

P1~- >.P1 V'Co V(P1 + P2)E = 0, P2E = 0 

So we get P,E- >.V'CoV P1 ~ = 0 or F3(>.)P1 ~ =o V*(I- ).Co)V P1E =D. But in the previous 
KerV* = ,P KerV = lo{!l) and P1 ( E J,(!l), the characteristic values .).k of the operator Co 
coincide with the characteristic values of the bundle F3 (.).) = V • (I- .).C0 ) V or either with the one 
of the operator Ao = V*Co V. 

Hence, using [8] we get 

N(r, pgv- 1Co) = N(r, pgv- 1 Ao) = c2r
2 [1 + o{1)] as r =>- oo ( 4.6) 

v 2 mes r 
where c2 = 

2 2 
. 

p g 1611" 
After operating two sides of the equation F 2 (>.n = 0 by the operators P 1 and P 2 we get 
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P1~- pgv- 1 P1BAoP1~- pgv- 1 >. - 1 P1AoP1 (- P1Gz(>.)AoP1E = 0 

Pz( = pgv- 1PzBAoP1( + PzGz(>.)AoP1€ 
(4. 7) 

It follows from (4.7) that the characteristic values Ak of the bundle F2 (>.) are coincided 
with .the characteristic values of the bundle F4 (>.) = P1 - pgv-1 P1 BA0 P1 - pgv- 1). - 1 P1 AoP1 -
P1 G2 (>.)A0 P1 • Since the operator Ao = P1AoP1 is positive in the space J1(0), using the results 
of the work [9, theorem 1j and the formula (4.6) we get the following estimation 

( 4.8) 

Because of the characteristic values .A,k 1 of the operator pgv- 1 A0 get the limit at 0, using 
the formula (4.8) we obtain that the characteristic values Ak of L(>.) get the limit at 0. Using the 
theorem 1 of the work [10] and the formula (4.7) we get that the characteristic and associative 

vector system {P1 €kj}~::::• of the bundle F4(>.) or either of L(>.) in the case when[>.[< j[Bjj-1 
is complete in J,(O) excepting the finite defect. 

Theorem 3. The characteristic values Ak of the bundle L(>.) get the limit at 0 and the 
following estimation is satisfied 

In the case when lA! < IIBII-1 the characteristic ans associative vector system {P1ek }~:_~',:k is 

complete in the space JI(f!) excepting finite defect. 
In the case when the coefficient of the kinematic viscosity v is sufficiently big so that the 

estimation pgv-1j[A0 jjj[Bjj < 1/4 is satisfied, we introduce the following regions 

where 

1) G1 = { >. 

2) Gz = { >. 

>. < [1- t:.;;z]IIBII-1/z, >. > o} 
.b [1+ t:.ifz]IIB[j-1/2, ,\> o} 

L'. 1 = 1- 4pgv- 1 [[Ao[[j[B[I 

Using the methods of the works [7, 14[ we easily get the following result 

Theorem 4. lf the coefficient of kinematic viscosity v satisfies the estimation pgv- 1 IIA0 II liB[[ 
< 1/4, the characteristic values ).,k are positive and only belong to the regions G1 , G2 and the 
problem (4.1) gets the following properties. 

a) In the region G1 the characteristic values .X.k get limit at 0 and the following estimation is 
satisfied 

the characterist.ic vectors {Pl-E"k}:=l are complete in the space J1{fl) and haven't got any asso­
ciative vector and construct the Riss basic of their linear shell. 

b) In the region G2 the characteristic values ).,k get limit at oo and the following estimation 
is satisfied 

N(r,L(>.)) ':" N(r,v- 1A~ 1 ) = c1r3/2[1 + o(1)] as r""' oo, 

the characteristic vectors { ~k} ;:"=
1 

are complete in the space Z:2(1l) and haven't got any associative 
vector. 
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VE CHUYEN DONG CUA CHAT LONG NHOT 

KHONG NEN DIJQ'C CO V~T Nch TREN Mi).T THOANG 

Thong b?ti bio ni'ty ChUng ta nghien cltu chuy.1n d9ng cd.a chclt l6ng khOng n€n dwqc c6 v?.t 
n5i t:ri!n m~t tlwing. D5. chlrng mimh tinh chit tOn t<;ti duy nhat nghi~m, nghien ctl-u cS:u trUe phS 
-.rft tlnh ch2tt; d:3.y cda. hq vector rieng. 
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