Tap chi Ce Hoc Journal of Mechanics, NCSR of Vietnam T. XV, 1993, No 1 (37 — 44)

ON THE MOTION OF INCOMPRESSIBLE VISCOUS FLUID
| WITH FLOTATION ON FREE SURFACE

'TRAN THU HA
Insistute of Mechanics NCSR Vietnam

In the works [1, 15} the probleme about the motions of ideal fluid contained in an
elastic bottom vessel or in a solid vessel with flotations on the free surfaces were investigated.
In this paper we consider the motion of incompressible viscous finid contained in a vessel
with flotation on the free surface. The unique existence theorem of solution is proved, the
spectrum structure and the completeness of $he characteristic vector system are studied.

1. FORMULATION ON THE PROBLEM

Let us introduce an incompressible viscous finid contained in a vessel, On the solid boundary
S the boundary condition v = 0 where v = (v1,v2,v3) is the velocity of the fluid particles. As
in the work {1] it is supposed that the weighable particles of some subsiances float on the free
surface I'. On the free vibration process they are not acting each with other or their interaction is
negligible, From the dynamical of view, the availability of the no-interacting one another particles
floating on the free fluid surface I' may be interpreted when the fres zurface is regarded ag weighable
surface with surface density of mass distribution 6(z) {z € ') where §{z} > 0 and may become
zero indentically in some subregions of the region I',

We consider the elementary conclusion of the boundary condition for the free weighable surface
T". Asin the works [1, 2, 3] we write the second Newton law for the element AT of the free surface
at the point z € T'. In the linear approximation this law is written in the following form

303 _ 3U3 _ ‘:] .
ATH(z) 52 = aT[p 2pr5.2 = pef] onT B
; 3
riz{v) = gg—‘; 323 =0, =12 onT

Here p is the fluid pressure, p - the fluid density, v - the coefficient of kinematic viscousity.
Taking vs = 3£/t into consideration in the equation (1.1} we get

a

ot
If §{z} = 0, the condition (1.2) become the condition of the problem in the work [4].
As in the works {3, 4] we get the boundary problem describing the motion of the fluid:

dv 82U3 )
[P - 2PV5‘$—2‘] = pgos +6(z) (1.2}

dv 1 1

— ==V : - in £}

5 = Ve vAuE S in (1.3)
dive =0 in 0} (1.4)
v=20 on 5 {1.5)
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3 Bua] - 8%v3
5t [r— 2| = et i@ 57 onT
Tla(l)) = 1'23(1.)) =0 on I’
dv(z, 0
o0 =), o(m0)=(@), 2O g

t=0

2. FUNCTION SPACES AND AUXILTIARY PROBLEMS

Dencte L3(0?) by the space of quadratically integrable vector-functions v in 2.
In [11] the following decomposition of L;({1) is given

L(0) = L (%) @ G(N)

where
Ly(0) = {v : ve L), dive=0, v,=00nS5}
G0} = {v rveLy{l), v=Vp, p=0on I'}
In {3] the Veill’s decomposition of ﬁg(ﬂ) is given as follows:

L2(0) = J1(0) & Jo(02)

where

={u : véig{ﬂ), U=Vp}
={u: uEEz(ﬂ), u-n=0o0nT}

Here n is the external normal of the free surface T,

(1.6)
(17)

(18)

Let us define W} (1) a8 the space of vector functions u € Lg(ﬂ] getting generalized derivaties
of the first order and vanishing out - side some compact subsets of §. Their scalar product in

W3 0(f1) is defined as follows

3
(u,v w;om vaum_.vu,‘.dn
z=1

50
' 1/2
”“”w!om] [(” bt W‘o(ﬂ)]
" In [3] the decomposition of W ;(§1) is given as follows:
Wz'l,n(ﬂ) = Wzlfn) D Uz}(ﬂ]
where

WHA) = (v ou e Who(), wa=0onT)
Ul{ﬂ) {v :hUEWQ‘O(ﬂ), v=Vp}
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Denote Hy(T') by the space of quadratically integrable functions ¢ € I'. Let H”Uz( T') be the
duel space of H;/z(l‘) [12]. We define the space Hy, H,, H_ as follows:

Ho = Hy(T)e {1}, H: =H0(1H;"2, H_ “H nH—lfz( T).

Préblem 1. Let there be given a vector-function h € ig(ﬂ) we seek a vector-function u(1)
and a function p(*) so that the following equations and conditions are satisfied:

—vAdt 4 1'("f'p(” =h, divelt =0 inQ
p .

o) = 0; on S
e

pM— 2002 =0, na(v)=0(=1,2) onT
I3

Problem 2. Let there be given a function ¥ € H_ we seek a vector-function »(2) and a
function p(2} so that the following equations and conditions-are- satisfied -

— vAu®) + E"?.?’p(z) =0, div p(3) = 0; in §}
P ‘
ut?) = 0; . on 8
(2) gug? (2) :
p! = 2pv e ¥, ma{v¥}=0(=12) onT

In [4] we find the following lemmas:

Lemma 1. For the vector funciion h € ig(ﬂ) there exists the unique generalized soluticn of
the problem 1. This solution is the vector-function v(!} satisfying the equality:

(U(l]’v)wio(ﬂ) (h U)L (@) Yu € Wzljo(ﬂ)

The operator A;l giving the solution of the problem (v{l] = Al"lh) is positive and compact, it
maps iz(n) into W3 () and D(Ai/g] =W; (), AI'IZWZIO[Q) (). .
In [4] it was proved that Ai‘lzﬁfl[ 1) = Jp{N) and Al/zUl(ﬂ = J1{2)

Lemma 2. TFor the function ¥ € H_ there exists the unique generalized solution of the
problem 2. This solution is the vector-function v(%) satisfying the equality:

(o, Vs = (B1s)g, 70 =50l

The operator @ giving the solution of the problem (‘U(Z} = Q‘I’) is compact and it maps H_ into
- Wyp(Q).

3. THE UNIQUE EXISTENCE THEOREM OF THE SOLUTION

Using the lemmas 1, 2 we can prove that the equations (1.3), (1.4) with the conditions {1.5)
- (1.7) are equivalent to the following equation system
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' 1 d
e thl vy Tr AT ‘
(3.1

— ‘;_‘f = pgyv + 6(z )::z'w
Here ¢ = —p + 2vpdvs/8z3 and the operator v : W3o(02} = Hy is linear continuous (v is the
trace operator) such that 4u = restriction of u -7 to [ for every u € ngo(ﬂ} It 18 obvmus that
yue Hy.

_ Let us introduce the operator Cp = vQ. In the works {3, 4, 5} was proved that operator
Co + H_ = H; is positive and compact in the space Hy.

Let us realize in (3.1) the change of variable for formula v = _1_1/26, p= Go_l/zry. Then from
(3.1} we get
£=— dA TV L — ATy
(3.2)
dn d?
il pgCoV &+ 5(333 12 CoV &

Here the operators V = C¥1/21A71/2 ~2(Q) = Hy and V* = AingCO_l/z: Hy = Ez(ﬂ) are
bounded [3, 5]. Tt is easy to check that VV* = I: Hy = Hy. Then it follows that Ker V* = ¢.
- Indeed, we have: ' .

(66, = (VV*E,8) g = (VEV Gy 0y YEEHS

go V7€ = 0 only in the case £ =0.
Let us differentiate the first equation of (3.2) with respect to ¢, then from (3.2} we gat the
following equation

d &
ri:‘té =—(v AT 417z )Ao) E — pgv Aot + '—A e (3.3)

Here the operator 4o = V*CV is compact in the space :Evg(ﬂ'}. :

Let us dencte the operator B = v YAT* + v~ (z)Ap. It is obvious that the operator B is
positive and compact. '

Let us denote ¢ = BE. Replacing £ in the equation (3.3) by £ we get

~

dzg leé -1 —1/" ¥ 4
——— T B —_— ﬂ “ 3.
di? dt gr UE 'h 1 ft ( )

Where C = AgB 7! and the operator —B ™% is definite negative. It is obvious that the operator
~C{B" Y7l = w4 BB = ~ Ay = ~AgBB~! is compact, nonponsitive and perfectly subordi- -
nates to the operator B~E,

The initial condition of equation (3.4) is written as follows:

&o) = BAY?Y, &(0) = B4 (3.5)

Therefore, using the theorem 3.3 of the work [6] we obtain that the eqﬁa.tion (3.4) with the
initial condition {3.5) gets the unique solution & for every (E(O), g0) e Bzz(ﬂ) X BEQ(Q) and
e c:*(frlg(n), [0, T]}. So, for the problem {1.3) - (1.8) ‘we geé the following thecrem:

Theorem 1. Let there be given v%(z} € W1 (Q), v (z) € W], (0}, flz,t) € CF (Ez(ﬂ), [0, 77),
pofz)|r € H_ there exists the unique solution v(z, t) € W {01} of the problem (1.3) - (1.8).
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4. CN THE SPECTRUM STRUCTURE AND THE COMPLETENESS
OF CHARACTERISTIC VECTOR SYSTEM

In this paragraph we "I study the equation system (3.2} in the case when the vector function
Flz, t) = 0. Writting the solution of this equation system as €(z,t) = exp(—At)£(z) and n(z,t) =
exp(—At)n{z} we get

&= z,«"l}\Aflf + Wi An = paCoV E+ 5[$)A200V§ (4.1)

Tt is easy to check that if A = 0 in the system (4.1} then (£,7) = (0,0). Indeed, if A = G it
follows from {4.1) that

E=u" Wy CVeE=0 (4.2)

But in the previous the operator Cy is positive in the space Hy and VV* = I: Hy = Ho, it
follows from (4.2}, that v iy =V&=0and £ =0
Therefore, zero isn’t the characteristic value of the system (4.1) we get the following equation

Ae— 2 (v AT ¢ ST Ag) E — par T Al = 0

or

L{NE = ME~ XBE — pou™ Aok = 0 | (4.3)

The characteristic values of L{}) coincide with the one of the bundle L1 (A} = I—-AB—pgr "1 A7 4,
in the cose when Re A < 0, using the properties of the operators H and Ag we have

Red

RC(LI{’\)FE) g)zﬁ{(]) = (Er ‘f)z)(n] - Re’\(B‘EJ S)Zg(ﬂ} - T‘“—“(ADEJ {:')E,[ﬂ) = {Lf: E)z:{ﬂ)

[Al o

v

it follows that the real parts of the characteristic values A, {k = 1, 00) of the bundle L, {}) or
of L{A} fromn (4.3) are positive. It shows that the motions of the fluid with ﬂo};ation on the free
surface are stable.

Since the operator B and Ap are compact, using the results of the work {13] we get ihe
characteristic values Ay of the bundle L{}} are discrete and get finite algebraic multiplicity.

If [Al > pgu [l Aol the bundle £,{A) may be written as follows

LAy = MI— A" pgr ™ A ) Fu( D)

where

Fi(3) =7 —pgr ™ 4aB — AB — Gy ().
[e+]
GuAl = D AT TR ARB aud JGH(A)] = 0 as [A]= oo

n=2

Since in the case when |A| > pgv~ ! 4gll the operator I—X71pgr ™t Ag is reversible, we consider
instead of L{}\} the bundle Fi{A}. The operator Ap = V"V = V*COV(}A!;“"}@ 5 compact and
Ae;.rii/z = Ai/zQF: Wil = L{n) is unbounded. Using the definition of the work {6] we get
that the operator Ay perfecily subordinates to the operator A; with the order which is less than
1/2. Hence, using the consequence 9.4 [7, p. 56| and the results of the works [3, 8, 9] we get the
following estimation:
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N(r,B) = N(r,v71A7Y + pgo™ 40) = N(r, v TATY) = c'1r3/2[1 +o(l)] asr = = (4.4)

where N(r, B) and N(r, u_lAfl') are the spectrum distribution functions of the operators B and
p~1A7" in the region [A] < r and ¢; = v™%/?mes 0/(37)? [8].
Therefore, using the theorem 1 of the work {9] and the formula {4.4) we get

N(r,L(A)) = N(r,F1())) = N{r, U_LAl_l)[l +o(1})] = clr3/2[1 +of1)] as r = o (4.5)-

Because of the characteristic values Ay of the operator v *A; get the limit at infinity and
from (4.5}, the characteristic values Ay of the bundle LA} get the limit at infinity.

Since the operator B is positive and compact the operater Aq B is compact and ||G3{A}|i =0
as [A] = oo, using the formula (4.5) and the results of the work {10, Theorem 1] we get that
the characteristic and associative vector system of Fj(A) or either of L{A) in the case when }A| >

pgv | Ap|| is complete in the space ig{ﬂ) excepting the finite defect.

Theorem 2. The characteristic values Ax (k = 1, oo} of the bundle L{)\} are discrete, get a
finite algebraic multiplicity and the limit at infinity and the following estimation is satisfied

N(r, L) = N(r,v ™ A7Y) = exr®[1+ o(1)] s || = oo

In the case when [A| > pgr™!||4o|| the characteristic and associative vector system is complete in

E.z(ﬂ} excepting the finite defect.
If |A| < {|B~!|| the bundle L{}) may be written as follows:

L)) = A(I — AB)F(3)

where

Fo(A) =1 — pgr B Ay — pgr~ PA7 4 -- G3()) Ao,
e e)
Ga(A) = Z A pguT B™  is compact and ||Go(A)[ = 0 as [A] = 0.

n=2

In the work [5] the orthogonal projectors Py = V*V onto J1 {2} and P, = I — P; onto Jo(f1)
were produced. It is clear that Ker V = Jy(Q) and BV* = BV*VV* = P, PV* = 0.

At first we consider the operator Ay = V*CV. After operating two sides of the equation
(I — AV*CyV)€ = 0 by the operators Py and P: we get

P& AP VG V(P + P)é=0, Fé=0

So we get Pr& — AV*CoV PiE = 0 or F3(A}Pi€ = V*{I— AC,)V Pi£ = 0. But in the previous
KerV* = ¢ KerV = Jo(R2) and Pi & € J1{(1), the characteristic values Ap of the operator Cp
coincide with the characteristic values of the bundle F3{A\}) = V*(I — AC,)V or either with the one
of the operator Ag = V*CyV. :

Hence, using (8] we get

N(r, pgu__lco) = N(.r,pgv‘le) = czrzil‘—l— o(1)] as r‘=>- oo {4.6)

vimes T

p2y? 16w :
After operating two sides of the equation F3(A)§ = 0 by the operators P, and P; we get

where cq =
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P& — pgr ' PLBAYPIE — pgv T IAT PLAGPIE — P1G2 (M Ao Pr§ = 0
Pyt = PQV-IPQBA()Plg -+ PQGZ(A)AOP]_E
1t follows from {4.7) that the characteristic values Ax of the bundle Fp()) are coincided
with the characteristic values of the bundle Fy{A} = Py — pgv~™ P, BA Py — pgu— AP AgPy —
PiG3(A) Ao P1. Since the operator Ag = P1AoP) is positive in the space Ji({1}, using the results
of the work [9, theorem 1] and the formula (4.6) we get the following estimation

(4.7)

N{r,L(X)) = N(r, Fs(3)) = N(r™ %, pov ' Ao)[L+ o{1)] = ear*[1+ o(1)jas r =0  (4.8)

Because of the characteristic values A of the operator pgr ™Ay get the limit at 0, using
the formula (4.8) we obtain that the characteristic values Ay of L(A) get the limit at 0. Using the
theorem 1 of the work [10] and the formula (4.7} we get that the characteristic and associative

FELTE Of the bundle Fy(A) or either of L(}) in the case when [A| < || B|?

o
k=100
is complete in J1 () excepting the finite defect.

vector system {Pl 'fkj

Theorem 3. The characteristic values A; of the bundle L(}) get the limit at 0 and the
following estimation is satisfied

N, L(,\)) = N(r71 pgr™'Cp) = car ¥+ o(1)] asr=0.

F=1,mg .

In the case when |A| < §|B||™! the characteristic ans associative vector system {Plfk el oo

complete in the space J({1) excepting finite defect.
In the case when the coefficient of the kinematic viscosity v is sufficiently big so that the
estimation pgr~ | Ao || [ Bl < 1/4 is satisfied, we introduce the following regiors

1) G ={r: A<[t-al?]|B|"Y% >0}
2) Go={): A>[1+al?) B2 a>0)

where

Ar=1-dpgr™ | Aol | BY
Using the methods of the works |7, 14] we easily get the following result

Theorem 4. If the coeficient of kinematic viscosity v satisfies the estimation pgr || Aq| | Bl
< 1/4, the characteristic values dg are positive and only belong to the regions Gy, G and the
problem {4.1) gets the following properties

a) In the region @, the characteristic values A, get limit at 0 and the following estimation is
satisfied

N(r, LX)} = N(r~ ! pgr™'Co) = cor ?[1 4 o(1)] as r = 0,

the characteristic vectors {P1 fk}
clative vector and construct the Riss basic of their linear shell.

b) In the region G the characteristic values Ax get limit at oo and the following estimation
is satisfied

:c_l are complete in the space J1{{l) and haven’t got any asso-

N(r,L(/\}) =4 N(r,yvlfil_l) = c1r3/2[1 + o{1}] as r = o0,

the characteristic vectors {ﬁk }:o are complete in the space L;((}) and haven't got any associative

=1
vector.
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Vi CHUYEN DONG CUA CHAT LONG NHOT
KHONG NEN DUQC ¢O VAT NOI TREN MAT THOANG

Trong bii bio ndy Ching ta nghién citu chuyén ddng cida chit ldng khéng nén dwoc ¢d vit

A N - . 2, L P P " “n ~ ,a
ROt trén mit thedng. DA ching mimh tinh chat 66n tal duy nhat nghiém; nghién ctu ciu fric phd
v& tich chat ¢4y cda hé vector riéng.
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