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SUBLAYER EFFECT NEAR THE WALL IN
THE PRESENCE OF SVEDOV - BINGHAM FLOW

NGUYEN HUU CHI & PHAM HOAI THANH
Hanot Technology University

SUMMARY. In this paper we study the stationary How of viscous - plastic fluid in the horizontal
cylindrical tube (Svedov Bingham's flow) with the assumption of existence of the viscous adherent
sublayer near the wall. The obtained results are estimated and compared with those of Svedov -
Bingham flow. We also inspect the “near the wall effect” which was showed in the work of Smoldurevy

& Xaponov and have some notes and estimation about it.

§1. INTRODUCTION

The viscous - plastic liquid model (Svedov - Binghamn’s model) is used in some problems on
oil production or fluid - solid mixture transport in pressure tube 2, 3, 4]. Many problems on
stationary flow of viscous - plastic weve solved and showed in literatures,

The problem on laminar stationary cylindrical tube flow of viscous - plastic mixture with
viscous non - adherent sublayer near the wall has solved in [4]. Besides, it is known that all the
fluids in sluries (Auid - solid mixtures) have adhesion in shear. In this paper we have studied the
stationary laminar pressure flow of viscous - plastic fluid in the horizontal cylindrical tube with
the assumption of existence of viscous - adherent sublayer with small thickness é and viscosity ng
near the wall. '

The obtained system of correspondent motion equations with its boundary conditions has
been solved completely. The velocity profile and discharge of considered flow were compared with
those of Svedov - Bingham flow. We also have some estimations and compare with results showed
in [4].

§2. SYSTEM OF MOTION EQUATIONS AND ITS SOLUTION

Consider the one - dimensional stationary laminar pressure flow of viscous - plastic fluid in
the horizontal cylindrical tube generated by constant pressure gradient with the assumption of
existence of the viscous adherent sublayer near the wall, i.e. there is the sublayer of viscous fluid
with the very small thickness which was formed and moves near the wall. Here we don’t care about
a cause of formation of sublayer. The picture of such flow can be observed in the tube transport
of fluid - solid mixtures.

Denote by R a radius of the tube, B; = E — § a radius of shared boundary between the
main flow and the sublayer, § a thickness of sublayer and Orfz a system of cylindrical coordinates
having Oz coincide with axis of the cylinder (Fig. 1).

It is easy to find from continuity equations (for the main flow of viscous - plastic fluid and the
flow of viscous fluid in sublayer) and symmetry of flow that the flow characteristics depend only
on the radial coordinate r,
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Fig. 1. The tube and system of coordinates

From Navier - Stokes’ eguations, Henki - Iliusin equations, the equations of continuty and

symmetry of low we obtain the following motion equations:

A%y ldusub Ap
dr? r dr £
>z 1du  Ap n
et I s e A LY <r<H
dr2+rdr+£?7 nr yoTo TS

with boundary conditions:

Usub =0

r=
Ugyh =u

r=R,; r=R;

dumb du
~ o =1~

d?’ r=R) dT r=1Iy
dr r=rn
where gy - the velocity of flow in the viscous sublayer

u - the velocity of flow in viscou - plastic region
n - the structural viscousity of viscou - plastic fluid
ro - the radius of elastic core

A
2P ihe pressure gradient

7y - the ultimate shear stress (vield stress).
From balance condition of elastic core we have
Ap

To = ?g“rg.

(2.1)

(22)

(23)

(2.4)
(2.5)

(2.6)

(2.7)

Integrating (2.1), (2.2) and by using the equality (2.7) we have the solution of the equation

system (2.1), (2.2} satisfying the boundary conditions (2.3) - (2.6) as follows:

A
Ugnh = “ﬁg(RQ —+%); RI<r<R

4fnq
Ap T Ap
u= E(Rf —r?) - —7;1(R1 —-r)+ —4?;7;(}22 ~R?); r<r< Ry

The velocity in the elastic core up is determined by condition

r<rg

Uy = u[r:ra’
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we obtaln

Ap Tg Ap .
Ug = M(Rf —15) = ;(Rl — o) + ZE%(RZ —R¥; r<ro (2.11)
usfng equality (2.7} yields
| Ap 2 Ap .2 2
_ - : _R%. < 2.12
ug Ain (R 7’0) + Al (R ,Rl)) r=ro ( )

The formulae (2.8}, {2.9) and (2.11) (or (2.12)} represent the velocity profile in the cross -
section of the tube.

It should be noted that, at the shared boundary between the main flow and the sublayer near
the wall r = R, the conditions {2.4) and (2.5) are satisfied but the condition of “smoothness” of
velocity profill is not, i.e, '

du

du’sub
r=1t, dr

dr

r=I,

However, at this shared boundary, the inside shear stress is equal to the outside one as we
showed in the condition (2.5) above.
Fig. 2 shows a velocity distribution in the cross - section of the tube.
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Fig. 2 Velocity'proﬁle in the cross-section

It 1s wellknown the velocities of Svedov - Bingham flow are determined by the following
formulae {2, 4]:

A
vy = (B2~ )~ 2(R-7); m<r<R (2.18)
4fn 1
A
Ugy = 4—23(3 - ?‘0}2; r<rg (2.14)
and its discharge is
TAP (e 4 ps } 4)
=B e 2 =rt). 2.15
Q=" (R S0+ ord (2.15)
Besides, from (2.8) we have
Ap
Usub r=Ii = 42770 (RZ B Rf) (216]

Comparing (2.9}, (2.12) and {2.13), (2.14) we find that with the assumption of existence of
viscous adherent sublayer near the wall (thickness § = R — Hy), the flow of viscous - plastic fluid
in the tube is similar to the flow of viscous - plastic fluid in the tube with radius R; while this flow
slides inside the viscous sublayer with velocity equal to

Ap (R2 . RZ)

Usub =Ry = 4:£T]0 1)
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Moreover, the solution (2.8) shows that, the velocity distribution in the viscous sublayer
< r < R) is same similar to the velocity distribution of Poiselle flow, i.e. it looks like a part
< r < R) of stationary flow of viscous fluid in the whole of the tube.
The discharge of considered flow is

. Ry R

nguO + 2#/ urdr + 21rf UgyupTdr =
ra R,

4 1 TAp
(Ri — gR?T‘o + gfé) + é?q:)-(R‘l — Rf) (2.17)

Q

_wAp
"~ 8in

§3. DISCUSSION

For the evaluation of the obtained results, we consider the differences of velocities in both
2s: the flow with and without the viscous adherent sublayer near the wall.
a) In the sublayer near the wall By < r < R, from the formulae (2.8} and {2.13) we have:

Ap 2 2 Ap e 2 T
A = —(B —r')— —(R" =)+ —(R-r) =
b= ST (B =17 = LR - ) 2R -
Ap, o o f 1 1 To _
PP (L _2YiDBp_ 3.1
PR =) (- 1)+ 2iR=n) )
b} In the viscous - plastic layer rg < v < Ry, from the formulae {2.9) and (2.13) we have:
Ap o 4 To Ap o 2 Ap, 0 o T
o G R AL N - S U L 3 W X § S WERLY N g
Au ity (Rf —r) " (B —r)+ 4£r]0( £) 4&7( ré)+ 7?( ro)
Ap o g f 1 1 ™
_APipa A SN 3.2
(R Rl)(no n)+ (R~ R) (3.2)
¢) In the elastic core r < »y, from the formulae {2.12} and (2.14) we have:
Ap 1 1 o
— RE_pAy (= _ = —(R — R.}). 3.3
duo = G2 - &) (o - 1)+ 2(r - R) o 6)
According to Smondurev [4], the viscosity coefficient in sublayer near the wall 5y has only

*
merical value of structural viscosity coefficient in (115 =+ %) 50 Augyp > 0for Ry < r< R (=0

the wall) and Au = Ayg = Auwb\‘_ﬁR = const > 0 for r < R;.
- a - L - - . -
For convenience of comparison, the velocity profiles in both the cases are expressed in Fig. 3
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Fig. 8. Expression of radial longitudinal semisection and velocity profiles
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In Fig. 3 OAB,C,D; is the velocity profile of Svedov - Bingham flow (formulae (2.13), (2.14)).
OABCD is the velocity profile of flow with sublayer near wall (formulae (2.8), (2.9), (2.11)).
© From (2.15), (2.17) and (*) we have

C aQ=Q-0,= ﬂ(ﬂ‘l - R‘i‘)( LI }_) 4 ”AP,-Q(RS —-R¥) >0 (3.4)

8¢

-and AQ is exactly the volume of rotatory body given by the complete revolution of the area
D;C1B{ABCD {the shaded region) around the tube axis OF, Because of smallness of § we can
omit the terms containing high - power of § in (3.4) and relative difference of discharges can be
determined approximately by the formula

45(1—1+f—°—)

‘2)@ o~ ’310 : R . (3.5)
v _e (o
- rli-g+3(R) ] |
According to the [4] in “near the wall effect”, the boundary condition at r = Ry = R — ¢ was
Ap 2 .
;= ——|R% — (R - 6)? 3.6
U= [R* ~( )?] (3.6)

and the distribution of slurry velocities in the tube with “near the wall effect” was expressed in
Fig. 4 (Fig. 17, p. 52 [4])

A 8 <
{
¢ [ ﬂ‘q
iy | a
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Fig. 4

Thé author wrote that the difference between discharges of this flow and Svedov - Bingham’s
one is the volume of rotatory body given by revolution of the shaded region in Fig. 4. Besides,
the author determined the discharge of flow as follows :

E, R
Qz:ﬂrrg+2ﬁfurdr+21r/u5rdr=
o Ry . )
rApR‘f[ 4 ¢ Apg 1 /Apgy4 TAp /3, 20 1,
oD e — = ———— — _— | - - R*R -R . .
84n ! 3(Ap)+3(Ap)]+4Eﬂo(ZR Sty 1) (3.7)

(the formulae (I1.25}, p.52 and (I1.28), p.53 [4]).

The explanations and formulae in this work are not so clear; moreover, the discharge deter-
_ mined is to large if we compare it with that of flow having viscous non-adherent (or adherent)
sublayer near the wall.
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§¢4. CONCLUSION

" The system of correspondent motion equations of considered flow had been solved completely.
'he obtained results show that:

The veldcity distribution in viscous sublayer is similar to that of Poisell flow ffor By < r < R)
nd in the rest of considered flow it is similar to that of Svedov - Bingham’s one while the latter
ides inside viscous sublayer.

The additional discharge generated by sublayer effect is determined by the formular (3.4)}.

The results, which were showed in [4] {(“near the wall effect”) are not correct and especially

1e determined discharge by the formula (3.7} is too large
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HIEU UNG LOP MONG SAT THANH
TRONG DONG CHAY SVEDOV - BINGHAM

Trong bii ndy ching t5i xét déng chidy dirng cda chit }dng nhdt - déo trong dng tru tron ndm
-ang (déng Svedov - Bingham} véi gid thuy&t 13 6 tBn tai mdt 16p mdng nhét dinh s4t thanh
n. K&t qud thu dwee 43 dwoc so sdnh véi k&t gud khi xét ddng Svedov - Bingham. Chiing t8i
ng cé vai chd ¥ vi danh gid khi xem xét “hiéu dmg sit thinh” trinh biy trong céng trinh cla

noldurev & Xaforov.
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