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A NOTE ON NONLINEAR SYSTEMS WITH
DIFFERENT DEGREES OF EXCITATIONS

NGUYEN VAN DAO
Institute of Mechanics, NCNST of Vietnam

In this note an approximate solution of a differential equation of special form which is close
to the Liapunoff type is given. This solution is proportional to the small parameter .

1. DIFFERENTIAL EQUATION AND ITS APPROXIMATE SOLUTION

Let us consider a nonlinear system described by the differential equation

i+wiz =27 — 2% —hi + S f(p,3,2), ©=vt {1.1)
where w, -y, f, h, v are constants, ¢ is 2 small positive parameter, f{p, 7,2} is a periodic function
relatively to ¢ and analybic to z, 7. We are intersted in finding the periodic solution of the equation
{(1.1). It is noted that when & = 0 the equation (1.1) is degenerated into

i+ w?s = yz? — fz° (1.2)

which has a trivial stable solution z = 0. Hence, the solation of the equation (1.1) is found in the
form:

T = £a oS (§p+ 1,15) + %uy(a, ¢, 0) + *uz{a, ©,8) +..., (1.3)

where # = E(p + 1, Py w, p and g are integers, u;{a, @, f) are periodic functions of , # and do

not contain the first harmonics sin §, cos ¢. The amplitude o and phase ¢ are determined from the
equations of form

ia;r. cd(a, ¥} -+ EzAg(ﬂ ¥) +.
dy 5 (1.4}
e w——u+sB1(,1,b)+s Bg(a,¢)+...

To find the unknown functions wu;, A;, B; we calculate the derivatives %, Z from (1.3} and
substitute them and (1.3), (1.4) into (1.1). By comparing the coeflicients of £? we obtain

5\ 2
(y—a— + w-a—g) UL + w?u,y = 7&2 cos” f—

o
- [(w - Eu) % - ZawBl] cosf + l-(w = Bu) aa¢ + ZwAl] sin 4. (1.5)

Comparing the coefficients of the harmonics in (1.5} we have
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"ya 1 -
Ay=0, B;=0, ,u1= 5 (l - gcos29) (1.8}
If one compares the coefficients of €° in {1.1) one has
( a a2 2 .
V- + w—) ug -+ w2ug = 2ayuy cosf + f(p, acosd, —aw sin f)—
G a4
) G~ 2B cost ¢ [( = E) o2 4 2]
- —~v)— —2awB g+ - -y gin 4. 1.7
[(w 59 awBz| cos w p a 2% (17

The form of functions Az, B, and u, depends on the concrete form of the function f(yp, 7, £).

2. FORCED OSCILLATION

Let us consider the case wilen the function f{p, =, ) is of the form
flp, 5,%) = Esinvt (2.1)
and consider the resonant case p = g¢ = 1:
vew (2.2)

Comparing the coefficients of harmonics in (1.7} we have

5 2.3 . ’
(w—V)—EE——Z ng——g L g — Esin,
3B, . .
{ 39 = —Fcos, (2.3)
a 12 243
(J‘/E—— +w§§) uy +wiup = —— cos 34
From the equations (2.3) one obtaines
Ay = ~FEcosy ,
V+w
5+2a? Esm+
By =— : . 2.4
2 12e° (v +w)a (24)
2.3
, a
Uy = e cos 34.
Hence, the solution of the equation {1.1} in the second approximation is
2 3
_ ade’ (. 1 3 7%a
T =ceacos(vt+ o) +¢ W) (1 3 co8 29) + e YT cos 36, (2.5)
where a and 1 are determined from the system:
da 5 Ecosy
b Sosdtiiidh o
dt vitw 96
di 52 v2a?  e2Esiny (26)
—— =w-y— .
dt 12 w? a(v +w)

These equations can be easily solved.
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3. PARAMETRIC OSCILLATION
We suppose that f(, z, z) has the form

flp,2,2) = excosvt

wnd consider the rezonant case p=1, ¢ = 2:

v~ 2w,

The equations for A5, Bz and ug are

gA 5 1
(w V)~4—2 — 2qwBy = 72a® + —eacos 24,

T2/ 8y . 6w? 2
aB 1
(u) — g)agf + 2wAy = —Eeasin 23,
a2 1
(u% +w§§) Uy + wiuy = ~€;—2—72a3 cos 36 -+ %eacos(ﬂ + o).

Solving these equations gives:

eqd b e
A2=—'é;$1112'¢’, BQ=—W‘TZG2—‘2“I;COS2¢,
. 2.3
—ea T a
= ————— —cos(f + + —— cos 3.
2 2v(v + 2w) os(f + ¢) 1804 *°

The solution of the equation (1.1) in the second approximation is then

i 2 1 . 3 3.,2,.3
T = £a cos (Evt + ¢) + 52;—32— (1 — 5 cos 29) - 2—11_(—}3&2_@:) cos(f + ) -+ e48w4 cos 39,
where a and 4 satisfy the equations:
d 2
o oy,
dip 1 52, , &%
Sk . — 20 cos 29,
il it i T P

MOT NHAN XET VE HE PHI TUYEN
VGT CAC BAC K{CH DONG KHAC NHAU

(3.1)

(3.2)

(3.6)

Trong bii 43 dwa ra mét 1 gidi xdp xi ¢4 dang dic biét cho phwong trinh vi phin gin véi
Liapunép. Hai trudng hop cla dao déng cudng bic vd dao ddng théng 56 di dwoc khio sit.
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