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ON THE SIMULATION TECHNIQUE OF
STOCHASTIC PROCESSES AND NONLINEAR VIBRA.TIONS
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SUMMARY. In this paper the procedure and program for simulation of stochastic processes
are represented. The program is applied to nonlinear mechanical systems subjected to stochastic
stationary excitation. The results obtained are compared with the ones from other methods which

are used for estimating the exactitude of simulation technique.

§1. INTRODUCTION

The investigation of random vibration of non-linear dynamical systems is usually carried
out by some following methods: the method of Fokker-Planck-Kolmogorov equation(FPK) gives
equations for the probability density funciion of solutions of the systems, which are excited directly
or indirectly by white noises. In proper cases it is possible to find stationary sclutions of FPK
equation. Therefore, it is difficult to apply this method to general dynamical systems [3).

The statistical linearization method is widely used for nounlinear dynamical system but at
greater nonlinearity the exactitude of this method is worse (3, 4].

The perturbation method is alsc used widely but in practice it is able to find solution in the
first approximation order [i, 3, 4, 8|.

In order to overcome above-mentioned difficulties for more gemeral dynamic systems it is
necessary to use numerical method for simulation of stochastic pi"oc esses and looking for solutions of
nonlinear stochastic systems. The main difficulties of the method are to create a reliable computer
program for obtaining quite exact resulés.

In this paper the justification and procedure of simulation of stochastic processes are repre-
sented. This is the basis of creating the program for simulation and solving random differential
equation.

§2. SIMULATION OF A STOCHASTIC PROCESS

2.1. Simulation formula

Suppose that {z{{}} is a stationary Gaussian stochastic process with zero mean value
(< z(t) >= 0) and Sx (w) is its power spectral density function.

It is mecessary to create sample functions of the above process in the numerical and graphic
forms so that from the sample functions it is able to find again the power speciral density funciion
Sx (w) and other probability characteristics of thé given process {z(t)}.

At first, assume that z{t) is a sample of the stochastic process {z(t)} given by the numerical
series zy, Ty,... , Ty, which are corresponded to the regular points of time 0 = tg, 2y, ... ,ty_; = T.
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The number N is selected in the form N = 2%, where £ is a positive integer number. Using the
finite Fourier transform it is possible to obtain the following results:

N-1
T o
X(we) =X = 55 ; z; exp (~i2ngk/N) (2.1)
where 1 = +/—1 and
grx N1 N-1
Ty = g Xpexp (iZ?tk;'/N) = ,;j Ay exp (12nkj /N) (2.2}

Ap = E,;Xk .The coeﬁcients gabisfy the following properties:
Ay = A*%+k ,
here (*) denotes the complex conjugate, and
2 2w

Aw = E;— = m, Wi = kAw - (23)

The spectral density function is determined by the following formula {5]:

Sx{ws) = E%(IX,;P) = %(lAkF) : (2.4)

Therefore in a formula for calculating spectra it yields:
Sx(wy i) = Sxlwg ) (2.5)
From the formula (2.4} it is able to write:
3 2r | ,
(|4x[%) = 25 Sx{ws) (2.6)

Hence z; can be found from (2.2) where A satisfies {2.6).
As the stochastic process {2(t}} has the zero mean value, from (2.2) we have:

N-1 ey 1 -
(@) =(% e () =0

Therefore it is necessary to take Ay so that
{4} =0 (2.7)
Thus, Ay have to satisfy two conditions (2.6) and (2.7), and therefore it can be selected as follows:
Ag =ogexp(if); k=0,1,2,...,N—1, (2.8)
where f;, are independent random variables identica].ly distributed with the uniform density (1/27)

between 0 and 2w, and
2xS s (tu‘k)

2 (2.9)

af =
It is easy to verify that A, satisfy (2.6) and (2,7)'.
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Thus the sample function in the numerical form of stochastic process {x{t)} iz as follows:

, vor [y = o |
z{t,) = Z \ Z—i%u exp (18 ) exp (i27kj /N)
k=0

§=0,1,2,...,N -1 (2.10)
where the frequency domain of the given function Sx(w) is divided into N/2 + 1 points. We take
'§X {(we) = Sx(wi) with k=10,1,2,..., N/2,
Sxfwyg) = Sx(wy ) with k=0,1,2,... ,N/2— L
In order to use the FFT (Fast Fourier Transform) [5] formula (2.10) has to be rewritten as

N—-1 . .
127k .
()= 3 XChexp | Nj};;:o,l,z,..,,N—L (2.11)

k=0

[2nS
XCy = Eﬁ_}_}ﬁlexp ("Bk): E=0,1,2,... 1N/21 (2'12)

271'5)(((.0;;;_.,,;) .
XC%’-Hc = ——T————exp(z,@k); k=0,1,2,...,N/2—-1

where

2.2. Steps of realization
{1) Discrete domain of frequencies.

Suppose that the function Sx(w) is given, because the random processe {x(t)} has a finite
variance then with a number ¢ > 0, which is given as a sufficently small number, we can find waras
so that Sy {wpre.) < €. In practice, when the process is a white noise process, we can take the
enough large wyyax.

We take N = 2% (k is a positive integer number), which is the number of divided points, the
step of frequencies 1s the following:

Qwpax

At = N Wk S kAw.
k=0,1,2,...,N/2
{2) Discrete domaln of time.

At =

b= 7AL7=0,1,2,,.. N -1

wl:l ax

2
T =NAt, Aw = % Awdt = 27/N.

(3} Calculate 8, = ZTF,Ek, kE=0,1,2,...,N/2 where Ek are the independent random variables
identically distributed with the uniform density 1 between 0 and 1.

(4} Calculate: XC) from (2.2} and use XCy as inputs for the FFT, it’s outputs are z(t;) according
bo (2.11).

2.3 Examples

Example 1.

Sx(w) = const = 1/2r. We take wy. = 200, N = 512. The 10-th sample is shown in
Fig.1. The spectral density function is calculated from 10 sambles and is compared with the
initial spectral density function Sx({w). Their graphics are shown in Fig.2. The exact variance
o2 = 64.1503, the variance is calculated by the simulation method o2 ; = 63.6620. The error of

standard mean square between two spectral density functions-¢, - - 0.000133985. The graphics of
the probability density function is shown in Fig.3.
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Fig. 2. Exact and simulating SDPs N = 256, dy = 2.132F — 0601
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Fig. 3. Test probability density function N = 65, dy = 4.041% - 0002
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Example 2.
The spectral density function Sx(w) of a stationary Gaussian randem process is given by

Sx (@) a. i 1

W= |+
X 2r fo? 4 (w+w)? a2+ {w —wg)?
a = 3,wg = 10. The graphic of Sx(w) is shown in Fig. 4, the 10-th sample is shown in Fig.5. The
graphics of the initial spectral density function and of the simulation spectral density function are
shown in Fig. 6.

The exact variance o2 = 0.959449 and the simulation variance o2, . = 0.940765.The error of
standard mean square between two speciral density functions ¢, = 0.000002041.
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Fig. 5. 10-th Sample from spectral density N = 279, dy = 5.747F — 0001
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Fig. 6. Exact and simulation SDFs IV = 286, dy = 1.334F — 0002

§3. APPLICATION TO DUFFING EQUATION

Les us apply the simulation technique to Duffing equations with a white noise excitation in
order to compare the results of the simulation program and the program for solving non-linear
differential equatbions with the exact solution, which has been found before frem the method of
FPK equations and the statistical hnearization method with the change of the non-linear coeflicent.
Therefore it is able to estimate the computer program for solving the non-linear randon svstems,

3.1. Example 1

Consider the dynamical system governed by Dufling eqguation:
i+ 2hs +whz + px® = E(t) (3.1

where h, p, wq are constants, £(t) is a white noise process with intensicy D (ie. S = D/2r ),
This problein will be solved by three methods: FPXK equation, statisiical linearization and
simulation.
{1} Use FPK.equation
It is easy to find the following results [1].

px(z) = cexp [—ﬂ (fﬁxz + 3:&)] | (1.2)

D2 4
ce=1/ / px(z}d=z (3.3)
and < z >= (. Therefore )
A = / Ppx (z)dz (3.4)

will also be found by using a numerical integral computer program.
{2} Use simulation technigue

After the samples of a white noise process has been created the equation {3.1) has become
deterministic one with respect to each sample. The fourth-order Runge-Kutta formula can be used
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for solving this equation. The solution corresponds only one sample. Therefore using the program
for spectra it is able to find Sgaim(w),02,;,, and probability density function Pasirm (2)-
(3} Use statistical linearization method

From equation (3.1), according to the statistical linearization method we have
Z+ 2hE + A%z = £(t) ‘ (3.5)

where
AZ — wg +3HU2 (36)

After solving the linear equation (3.5) one can find o depend on A? (i.e. it had become a equation
of o?). After solving the obtained equation the result is as follows:

2
a2 = :——z (1+ 12;103/&)3)1/2 -1 (3.7)
where D
2 _ N
%0 = 4hwd (3.8)

is the variance of the solution of system (3.1) with p = 0.
After using all three above method for solving equation (3.1) with S¢(w) = 2/n (i.e. D = 4],

h =1, wi =1 and g takes the following values 0.001; 0.1; 1.0; 10.0; It is possible to obtain the

results described in the table 1, according to the three above methods. From the table one finds
the resulis of the simulation method are rather close to a exact ones. Therefore, the computer
program for simulating and solving random differential equations can be acceptable.

Tabie 1

H a?( Jﬁsim Tating
0.01 0.972143572 0.972561427 0971675407
0.1 0.817567495 0.817133622 0.805399495
1.0 0.467924062 0.460545075 (.434258545
10.0 - .188904231 0.188416542 0.166666667

" It is possible to find that the solution which has been found according to the simulation
method quite closes to the exact one. Therefore the computer program for simulation and solution
of random differential equation can give the reliable results,

For random non-linear dynamical systems subjected to non-white noise excitation the method
of FPX equation cannot be nsed. In this case the spectral density function of solution process could
be found by the methods of simulation and statistical linearization. The reliability of the simulation
computer program iz described in the previous part, the difference of the rusults obtained by the
two methods with various values of non-linear coefficient estimates the effect of the simulation
technigue.

3.2. Example 2

Let us consider the equation (3.1}, {(t) is a Gaussian stationary random process with zero
mean value, and the spectral density function Sx(w} is given by

SE(U") = 71'(&)2 —\L-u.%) (C.'. > O) . (3«9)
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The graphics of the function S¢{w) are given in Fig.7. According to the statistical linearization
method the equation which defines the variance has the following form: :

[ S
= d 3.10
i / (V —w?)? 4 4h2w? (3-10)
where i
A% =wd +3pc® - {3.11})

Equation (3.10) had been solved by means of a numerical method; variance o2 is found, and
we have the following spectral density function Sx (w) of the solution processes

Se(w)

- 3.12
Sx(0) = GFT o) 5 aha (8-12)
If the above simulation computer program is used for solving equation (3.1)-(3.9) then we can find
the spectral graphics of the solation process and the corresponding variance.

0.000 3. 984 7.369

Fig. 7. SDF of random excitation N = 258, dy = 3.252F — 0002

The graphic of the spectral density function from two above-mentioned methods are given in
Fig.8 and Fig.9 with h =1, w2 = 1, a = 2 and with g = 0.1 for the Fig. 8, with g = 10 for Fig. 9.

The values of variance, correspond to different values of y, are calculated by mean of the two
above methods, are given in table 2.

Table 2
M 7 Uﬁaim ' dglinz
0.01 0.221473099 0.220598963
0.1 0.215265430 0.207746310
1.0 0.177855675 0.147007730
10.0 0.097373894 0.063299285

Thus, the results which had been found by the statistical linearization method have quite a great
difference with those of the simulation method when the non-linear coefficient p is not small.
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Fig. 8. (p = 0,04) Lin. and sim. SDFs of responzes N = 256, dy = 3.973F — 0002
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Fig. 9. {2 = 10.0) Lin. and sim. SDFs of responses N = 258, dy = 9.243F — 0003

CONCLUSIONS

On the basis of above presented results it is able to find thai
‘ - The simulation technique can be applied to wider class of the dynamical systems, which are
subjected to both white noise excitation and arbitrary stationary stochastic one.

- The computer program presented in previous sections for solving random differential equa-
tions give the results with high exactitude. ' .

In these cases one can obtain power spectral density function, probability density and other
probability characteristics such as variance, mean value, ... of solution process.

This publication is completed with financial support from National Basis Research Program
in Natural Science.
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