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DUONG NGOC HAI
Institute of Mechanics, NCNST of Vietnam

1. INTRODUCTION

The thermal method is one of the major methods used to enhance oil recovery. In accordance
to 0.G.J. 69% of the enhanced oil recovery {(EOR) production in the United States iz due to the
thermal methods and, today, EOR accounts for more than 9% of the total oil production of North
America |1, 2]. In the paper the method using volume thermal source to act upon the reservoir
is investigated. The presented ‘mc-)del takes into account also the possible thermal exchange of
reservoir with surrounding medium.

§2. GOVERNING EQUATIONS

Thermo - and hydrodynam’cs of the process of saturated porous medinm heating is assessed
with regard to possible phase transfer of the first mode (melting or solidification of the saturating
component). Then subscripts 7 = 1,2,3 mark parameters of liquid (melted) phase, sclid {(unmel-
ted) phase and solid porous matrix, accordingly. Subscripts f and 0 characterize media at the
phase transition front and on the well boundary; o; is volumetric fraction of the i-th phase; T is
temperature, m is porosity; z is space coordinate; zo = |@q| is well radius; Z/(t) is the coordinate
of the mobile melting front; £ is time.

According to the mentioned designations, melting front & (t) will be a boundary between the
zone (which will be characterized by subscript £) of porous solid body - matrix (third phase) filled
with the melted second component (first phase): o = m; ag = 0; ag = 1 —m; T > T} and
the zone (which will be characterized by subscript s) of porous solid body filled with the solid
second component (second phase): a; = 0; oz = m; oz = 1 — m. Note that z;y — +oo formally
corresponds to the case when initially the saturating component is in liquid (T, > T}) state with
high viscosity, and melting surface is totally absent.

With these assumptions outside the surface of a strong break {of phase transition front Z; ()},
equations of continnity, phase filiration and also equations of heat inflow (heat conduction) of the
mixture in Fuler coordinate system can be introduced in the following way:

dpi ~
a’; + th”t - 0} (Z - 1l2)3):
k =
ﬂ:a_‘:ﬁw——-vpj _"=-*-_”0
1 1¢1 b1 2 3 .1 (21]
ar L .
PCE —+ alplcl{UIV)Tz V(AVT) -+ Q + q,

oy toztos =1, oytaz=m, ooy =0
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where the main notations are the same as above, @ is intensity of a volumetric heat source and g
describes heat losses to the top and botiom of the bed.

To close equation set {2.1), the relation of viscosity vs temperature (power law) and linear
relation of the melted liquid density to pressure and temperature are used.

Distribution of heat sources { appearing due to electromagnetic energy absorption iz defined
by Poynting equation and Bouguer - Lambert law:

oo

Q=-VE VA= (2.2)

H

|

where R is radiation intensity vector, and L 15 the medium high-frequency electromagnetic wave
(HFEW) energy length.

Neglecting pressure and temperature influence on the ahsorption length L, for homogeneous
and isotropic medium in the case of propagation of one-dimensional (flat, v = 0; eylindric; v = 1,
and spherical, » = 2) monochromatic wave, volumetric heat sources for the mixture on the whole
can be represented in the following way [3]:

0= B0(2) o (222), =

o = E(V)xg) 5(0) =1, 5(1) = Im, ‘5{2) = éli.n’,

(2:8)

where Ry is radiation intensity on the well border (z = o) defined by prrer N{sl and vadiator
surface area &p.

Equation set (2.1} with regard tc {2.2) or (2.3} is closed. Tt can be used to study gereral
behaviour of the medium heating process due to heat conductivity (surface heat source g,,) an
HFEW energy absorption {volumetric heat source @), Corresponding mathematical task consists of

finding solutions of the received equation set (2.1) at’'the following initial and boundary conditions:

t=0:" T=T, <T; orip=p., T:TC,O}'I};
) =a2p: T = Ty, or: AgSg VT, = —qo;

P=Fo or: umSoﬁﬁo = Go; (2-4)
x— too: T —T, O P — Peey, A4 T

and at the following condition at the phase transition front Z;(t):

F(f:'f(t),t) =0; T =177 = const,

' . 1 (di =
Uyprip = (1— p—z) R - (—xf VF) :
pi/mpz - mpg [VF|\ di

Fl=qp +q% qf = —X(VT7;)]
g% = —xe(VI'7y)]

(2.5)

f:i‘fﬂo;

E=&Fy+0°

Here gy is total mass consumption of the liquid (first) phase; 7, £ are intensiveness and specific heat
of phase transfer; q7, g% are heat flows coming to interphase surface from mobile and immobile
phases; go = g¢(%o,t) is intensiveness of total heat flows through the border ¥ = 7 {go > 0
corresponds to the case of heat supply; gqo < O corresponds to the case of heat removal; gy = 0
corresponds to absence of heat conduction on the well border); # is normal vector.
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§3. DIMENSIONLESS VARIABLES AND PARAMETERS.
THE PARTICULAR CASES

In order to analyse the eguations given, it is best to introduce the following dimensionless
variables and parameters which, together with the coefficient of porosity », determine the solution
zet of the investigated problem:

T:‘Ej, .Xzf-’ Xp=3, LM:%’ -6:%’ P:%’
) ) — T
b = E: ’ vi= -:i ' g pzpl,rplf ’ H’i((Tn)') k o U*Pg:;Sr! i
Pe; = @%&(Peclet number), N = a:—f;—fvc—i_,;o?; . Ki=Pe;NX, {3.1)

Here ¢ is heat capacity. The subscript # refers to certain characteristic parameters of the
medium.

Neglecting the thermal expansion of liquid and assumming that the liquid phase is incompress-
ible, the considered problem is simplified to the problem on the heating of porous media taking into
account convective thermal conductivity in the fluid and the existence of a volurne thermal sonrce
and heat loss. In this case the velocity and pressure fields in the Jiquid phase can be expressed
through the temperature field and the phase transition front dynamic in the following way:

XG{XO’XI)
(XN aXy
! 6f(X) dr ’ (3.2)
M, (8
:’,-—1+m5deXf —Ludg

g-l/
Xo

Neglecting the influence of temperature on the liquid phase viscosity the pressure field is found
in an elementary manner. For example, when v = 0:

dX
P=1+ man—é?f . X g [X X)) (3.3)

It should be noted that on the case of (3.2} and {3.3) the influence of the thermal effect is
expressed only through dynamic of interface surface X; and viscosity of iquid phase M, {4},

§4. ONE-DIMENTIONAL FLAT PROBLEM. THE EXISTENCE OF
STATIONARY SOLUTION WITH A PHASE TRANSFER FRONT

Consider the case of v =0, zy = const and the heat loss g has the following form:

2h

q= LO

where k) is the heat transfer coefficient, Ly is the thickness of heating medium layer. In this case
for region X € [ X5, X) the general form of the temperature field is the following:

Ko
f(z) = (1+Vm)( '—\/E_) {EXP[”(X

exp ( \/I?A—EX } - \f__ exp (

13

R - T, (4.1)

— Xo)] + Hexp[—{X, - Xo)} - (X; - X”}.{.

VHuX). (4.2)

2\/—



where ZIh 12
Hy = =22t (i=Lors),
bY) A{ L(’) ( )
H is the HFEW reflection coefficient {4].
Using the boundary conditions the integral constants Cy1, Cpz can be determined:

2Agexp(\/H,\gX0) + 2B,/ H); exp (\/‘HAQXJ) .

Cp = — s
& exp (2\/ HA@X(_)) + éxp (2\/ HAEX_f) (4 3)
O —2Asexp ( - ‘\/H,\gXD) + 2B/ Hyy exp ( -~ \/H,\g}.’f) a
e exp (— 2y HyeXo) +exp (— VHaeXy) ,
where ‘
A + 1- Héx —2{X; — Xa)l };
e =G (1+\/—)(1_m{ P ( 7 ON}
BE:M]-WKQ(I-%H exp[ (Xf—Xo)] )
(1 -+ VH)\E) (1 —+/Hy)
For the region X > X we have: '
KoL {1 - H)
b(z) = — 2 (X~ Xo) — L'9(X — X[)}+
(=) (L[":' " \/H‘,\S)(L{ej _ \/m exp[- (X _ 0) ( il
Car Clyy
HyeX <X 44
*avins " VIeX) = g o (2 VELX) 4
And from the boundary conditions aé infinity: § — f,, when X — 400 and 8¢ = 1 we have:
Cgy = f];
! (4.5)

Cgg = 245/ Has exp (\/E):Xf)

Ks L/ (1 = H)exp|—(X; — Xo)] |
(L) + Vi) (L) — i)

In order to determine X, using the energy conservation condition on the phase transition
front we have:

Kﬁ({ll_:\/%)({l £ \/_)_i;})] + %exp (\/ H,\ng) + M&Xp( — '\/H,\ng) = (4.6)
exp( VHMX})}

L) (1 — —{X; - \/
=££{K-’-‘L (1~ H) exp[~{X; — Xo)] OSlexP( HHXf)

Ko \ (L1 + ) (1 - VITs)

where

As=—1-

or

F{Xf) = Q: (4'7)

F(X ) — (1 - H) exp[*(Xf - XO” .
T Y VL) (L= V)
_ [Acexp (VHxeXo) + BevHie exp (VHX,)] exp (VEreX;)
K[ exp (2v/Hxe Xy} + exp (Zm)(f)]
[Aeexp ( — VHyuXo) — BevHye exp(— VHaXy)] exp (- VHi X;)
Kg[exp(—%/F{;Xg) +exp(—2\ffTMXf)] B
(1 - H) L exp[~(X; ~ Xo)]  AsvHis

(L + VH) (LY < VHhe)  Ks

14

(4.8)



Consider the function F{X ). When X; - X we have:

- ((;:ngf(ff\:i ii“)) " "gfqﬁ ~ - Lexp (VE o) +oxp (- 2VERX)). (49

And when XJ} — +oo we have:

VH N
FoYeoe, Ve o (4.10)
K, Kg

From (4.9) and (4.10) it follows that when F({X;} < 0 the equation {4.7) has a solution. This
always can be reached by increasing heat inflow Q.

§5. THE CASE OF PHASE TRANSITION SURFACE ASBSENCE (Tw > Ty)

Consider the case of one-dimensional symmetric (flat v = 0 and cylindrical v = 1) motion. In
this case the equation set and boundary conditions have following dimensionless form:

a4 1 d dg
—an 28 (v PN LN exol— (X - _ V(g —
el (X 55) + NXE exp[—(X ~ Xo)} — 205 X" (0 = 8co)
dP Gy
= = — = — v = 0 5.
X MU, U X o (gﬁlUXO) - const > 0, (5.1)
$r=14 B(P 1)~ Br(f - 8o0),
df
T = =—Qy, X —o0: o0, <too, P Py <-too, {5.2)

Tyt -
) 0 dX wz=xo+0
where By, and Br are dimensionless compresibility and thermal expansion coefficient, respectively.

It is easily to show that for the considered cases (v = 0 and 1) no solution of the system
of equations {5.1) exists which satisfies condition (5.2). Indeed, from second equation of (5.1} it
follows that when X — oo the pressure should increase without limat:

v=0; p®~const X -—+oo; (5 3)
v=1; p?~const InX — +oc; .

where contradicts the last condition of (5.2).
It can be shown, however, that a solution of equations (5.1) with the boundary conditions

df
X = XO‘:_ a

z=4oo: #—8, < +oo,

—Qo, F=PF,,

(5.4)

a=xy+0

i.e. without any coniraint on pressure asymptotic behaviour as X — +oo, exists. In this case
when v = 0 the temperature field has the following distribution:

N Pesexpl{X — X))

[+ F ) + Cexp{y: X), (5.5)

#{z) = oo —

where

il

1
‘2-( — PeyGy \/PE?GS + 16 H,:FPey ),

NPEEE

1
C = AE[QU* m_)—(EJr'm)]

1,2
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For the case v = 1 the medium temperature distributions can be determined, for example,
by numerical method. In both cases (v = 0 and 1) the medium pressure distribution can be
determined from the following eguation:

dF
a:fU(P:X): (5'6}

where

MGy d _ MyGeB,

CohXv T dP T gEixw

fulP, X) (5.7)

Because in the region (X, +oo) the derivation of the function f,, with respect to P is limited.
Therefore in this region a solution of eq. [5.6} exists and unique.

CONCLUSION

In the paper the method using volume thermal source to act npon the reservoir 1s investigated.
The model takes into account also the possible thermal exchange with surrounding medium is
presented. The particular cases and the existence and uniqueness of stationary seolutions aré
considered. i
This publication is completed with financial support from the National Basis Research Pro- |
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VE RAI TOAN TRUYEN NHIET VA TRUYEN CHAT
TRONG RESERVOIR KHONG CACH NHIET

Bai bdo nghién ctu phwong phép st dung ngubdn nhidt khéi d2 tic ddng lén reservoir. Trinh
biy mé hinh todn hoc ¢6 xét d€n sw trao d8i nhidt véi méi trudng xung quank. Nghién ctiu nhiing
tredng hop riéng vi sw t8n tai vi duy nhit cda nghiém dirng.
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