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.~ WEAK SELF-SUSTAINED SYSTEM UNDER
THE ACTIONS OF LESS WEAK EXCITATIONS

NGUYEN VAN DINH
Institute of Mechanics, NCNST of Vietnam

SUMMARY. It has been known that, in several cases, to study quasi-linear cscillating system,
the deg‘ees of smallness of various factors must be dl.stmgulshed in detail [2-7]. To affirm again
this mterestmg remark, we shall examine a weak {of order £ ) self-sustained system subjected to
less weak {of order €) excitations in resonance cases. It wlll be seen that the system considered is

enhanced.

§1. SYSTEM UNDER CONSIDERATION AND ITS
- APPROXIMATE SOLUTION

Let us consider a quasi-linear oscillating system described by the following differential equa-
fion:
i +tw?z=ef(z,wt) +e*(Az — q2° — hos + hdy— ki), (1.1)

i = ,Ba:ﬂ + 3p cos 2wt

1.2
f2 =2pzcoswt (12)

EA=wi-1, flz,wt)= {
where: z - an oscillatory variable; € > 0 - small parameter; overdots denote differentiation with
respect to time t; 3, 4 - coeflicients of the quadratic and cubic non-linearities, respectively; hg > 0
- damping viscous coeflicient; 2 > 0, k > 0, p > 0 - constants; 1 - the natural frequency, €24 - the
detuning parameter assumed to be of order £2. '

If p = 0, we have a “pure” self-sustained system with the positive friction force (hz — ki>).
If p > 0, the mentioned system is subjected to the external excitation 3pcos 2wt in subharmonic
resonance of order one-half or to the parametric one 2pz coswt in principal resonance {by funda-
mental we mean the cases where the natural frequency is near that of the external excitation or
one-half of that of the parametric one).
The damping (negative frlctmn) force is introduced to facilite the analyses and, as it will be
shown below, the quadratic non-linearity fz2 is necessary in the case of external excitation,
Using the a,symptotlc method [1], the solution of the differential equation {1.1) will be found
in the form:
z=acosy +€u1(a ) + ¢ ug(a 8,14y,
o = eAi(a,0) + £* Az{a, 0), (1.3)
§ =eBy {a,8) + ;ng (a,8), Pp=wt+d

where: a, § - slowly varying amplitude and dephase, respectively; vy, uz(A1, B, Az, B2) - unknown
functlons of a, 8, ¥ (a,8) which are per10d1c in 6, Y(#) with perlod 27; gy, ¢z do not contain the
first harmonics sin 4, cos y.

Substituting (1.2) into {1.1), equating the terms of like powers of ¢, then identifying the terms
of same harmonics, we obtain:
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Ay =B, =0;
1 1 592

+wiuy = facosy, i~ 0) (1.4)



and

d=624,(a,8) = £2aA,(a?, sin 26), (L)
af = e2aBy(a, ) = e2aB;(a?, cos 26). ‘

where Ay, By are first degree polynomials relative to a2.

The trivial solution a = 0 corresponds to the equilibrium regime {oscillation of order ¢ in the
case of external excitation). Following the method presented in [8], the conditions for asymptotic
stability of the equilibrium regime are of the form:

Re{4,(0,sin 24.)} <0, . (1.6)
wlhere f. are gsolution of the trigonometrical equation:
ﬁz (0,cos28.) =0 (7
The amplitude ag and the dephase 8y of the stationary oscillation satisfy the equation: |
Aslag,fs) = 0, Bz{ag,8g) =0 {1.8)

Eliminating 6o from (1.8) and neglecting the terms of order greater than e, we obtain the
relationship: '

: 3
W(AZ,8) =0, Af= Jad (1.9)

where W is a second degree polynomial in A7. :
Introducing the perturbations e = ¢ —aq, 66 = 0 — 6, we can establish the variational system:

,04s 9 As

e 2942 2942
(fa) =¢ Fay fa+e 5 Y |
3B 3B {1.10)
c 2952 2252
{60y =« 5 fa+te 35, &6
The characteristic equation of the system (1.10) is of the form:
94z | 0B, dA2 0B, 94,98 '
2_ g2z, “02 4 2002  Ofz @82 _
proe (Bao + aeo)" ‘ (Bao 56, Bbq aaﬂ) 0 (1)
The conditions for stability are:
d4, 8B,
et e <O (1.12a)
aAg 3By JdAz OB, ‘
- 0 J2b
Bag 80, 90, dag (1.12b)
The first condition {1.12a) leads to the inequality:
2 L2 2 _ A . ’
Ag> AL Ay=p, A=h-he - {1.133)
The second condition {1.12b) can be written as:
aw
— >0 .13b
i (1.13b)
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§2. SELF-SUSTAINED SYSTEM UNDER EXTERNAL EXCITATION

For the case f = f; {external excibat'ion) we have:

1 2 2 .
Ay=0 B =8 u = —2{ﬁ—;—- - ?%—COS 24 — pcos(zuﬁr—— ‘29]} (2.1)
and: 2 3 7
a = —ij{w (wkw2a2 - A) - égsin 29}
2w 4 w (2.2)
. £a 3y 58%\ .1 fp \
b= gl (T -52)] oo
The trigonometrical equation {1.7) becomes:
A— Eg cos 24, =0 (2.3)
@
therefore, the stability conditions (1.6} for the equilibrium regime are:
2,2
Re{~)\w:i: ﬁs —A2}>0 {2.4a)
of approximatively:
Re{ =2+ /FFp2 = A2 | > 0 (2.4b)
The relationship {1.9) is:
W = W,(A5, A) = (K% + €2)(A2) —2(kx + EA)AS + (A® = Bp* + A% =0 (2.5)
from which, we obtain: :
M=y £ YDy (2.6)
RN N A R :
where
4¢3y BE°
= t(-) o
Dy = (K + &%) 8% — (kA - €4)2 <0 (2.8)
in the interval: ) 3
% -’ﬂf—i\/kugz <A< fﬁf—‘\/w s (2.9)

Let us analyse the stability conditions {1.13).
It is easy o verify that A2 is the “amplitude” of the pure self-sustained system. Indeed, if
A A
p =0, from (2.8} we deduce A = %— , then, from (2.6), we obtain A2 = i A%, Thus, the first

stability condition (1.13a) requires that the amplitude of the stable stationary oscillation must be
large enough (greater than one-half of that of the pure self-sustained system]}.
The second stability condition (1.13b) is:

oWy
EYE

kX £A

)
>0 or A0>——~——k2+52+————k2+$2

(2.10)

Comparing {2.10) and (2.6) we conclude that only the oscillation whose amplitude corresponds
to the sign + in {2.6) may be stable.
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To estimate the influence of the external excitation, let us compare the resonance curves
AZ = AZ(A) of the pure self-sustained when p = 0 with those of the combined one when p > 0.
First, we suppose that A > Oi.e. k> hg (the positive friction is greater than the negative onej.
3 2 . .
The equilibrium regime is always unstable. For £ = 0 i.e. —f— =5 the system is neutralized,
the resonance curve is an ellipse of center Cy (A = 0, A% == A%) and its backbone curve CoC})
is the abscissa line A2 = AZ2. Increasing (decreasing) &, the ellipse is deformed, its center C

(A = ﬁk_/\ , A% = A%) moves to the right (left) along C,C}, the backbone curve CC’ has positive

(negative) slope If p = O (pure self-sustained system), these ellipses degenerate to their

&
K2+ £
corresponding centers [{Cy or C).

Figure 1 shows the resonance curves for the case X = 0.00012 > 0; & = 0.0024; % = 0.0036;
7 = 0.03 and ¢ = 0(a}; &€ = 0.0024(b, ¢c). Heavy (dashed) curves correspond to stable (unstable)
regimes. Obviously, the influence of the external excitation is significant: the maximum amphtude
of the “combined” system is greater enough in comparison with that of the pure self-sustzined one.
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Suppose now that A < 0 (h < hg) but A2 < §2p? (the resulting damping force is small
enough). The equilibrium regime is unstable in the interval [A| < 1/#%p%2 — A2 and stable if
|A] > +/0%p? — A%, The center Cy lies below the abscissa axis OA, the center C moves along the
abscissa line GG}, on the left (right) if € > 0 (£ < 0). In figure 2, the resonance curves correspond
to the case where A = —0.0006, other coefficients remain unchanged. In this case, the oscillation
appears under the action of the external excitation.

At last, if A < 0 and A? > B2%p?, the ethbnum regime is always stable, the system 18 not
excited.

It is noted that, if § = 0, the intensity p of the external excitation is absent in {2.2) and the
forced oscillation eu; = —ep cos(21}.’) — 20) is of order £. So without quadratic non-linearity, the
interaction between external and self-sustained excitations can be neglected.




4 AZ

—z= A
C
_ Fig. 2
§3. WEAK SELF-SUSTAINED SYSTEM UNDER
PARAMETRIC EXCITATION
qu the case f = f; {parametric excitation), we have:
1
A =0, B, =0, wu = ﬁ{pacosﬁ - %ﬁ cos( 24 —‘9)} ' (3.1)
and; . .
. ga 3 e .
a:—ﬂ{w(ikw2a2w,\) + FSHLZQ} (3 2)
: €a 2p? 3y p* .
af = “é;{ [(A‘f‘ “é:;z“) - T{CLQ] + w—2C0329}
The stability condition of the equilibrium regime are:
252
Re{—Aﬂ:\/p4m(A+—§ﬂ)2}>0 (3.3)

The relationship (1.9) is of the form:

W =Ws(AZ,A) — (K* +~%)(AD)® — 2[kh+q(A+ EQ’S?E)]Ag +hE+(A+ %)2 - (#*)* =0 (3.4)

or

2p2
, ko A=) D,

= ; +
Ap k2+'*72+ k2 + 42 k2 + 2

j where : \ ;
Dy = (K +7)(p*)" - [k(A + %L) - 'rh] >0 (3.6)
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in the interval

a .
|A+ W % SRLLI S (3.7)

k
The first stability condition (1.12a) of the sbatlona.ry oscillation is given by the same inequality
{1.13a).-
The second stability condition (1. 12b) gives:
2p”
CLLCT A>T (AJF?) (3.8)
or .
3(43) CT R+ B+

Comparing (3.3)-(3.7) and (2.4)-(2.10) we find that for k£ = 0.0024; A = 0.0012; p? = 0.0018
and v =0, 1= +0.0024 the resonance curves are given in the same ﬁgure 1 with 2 little modifica-
_p?

fion: the center Cp deplaces on the left, its new abscissa is § = 3

CONCLUSION

We have examined an oscillating system subjected simultaneously to weak {of order £2) positive
friction force and to less weak {of order €) external or parametric excitations in the resonance cases.
The results obtained show that these force and excitations renforce their actions together so that
the oscillation of large amplitude can be observed. The resonance curves are the ellipes whose
centers correspond to the oscillatory regime of the pure self-sustained system. In the case of

' external excitation, the guadratic non-linearity (of order =} is necessary.

This publication is completed with financial support from the National Basis Research Pro-

gram in Naturnal Sciences.
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HE TU CHAN YEU DUGI TAC DéNG
CUA NHUNG KicH PONG T YEU HON

Ba.1 béo kh&o sat hal trw o'ng hop twong tic trong hé dao ddng 4 tuyén gura. nhu'ng kich ddng
khic cfp: kich déng tw chin & cip €2 véi kich ddng cwimg birc hojc thong s8 & cip & khéng & tinh
trang <dng hwdng chi yéu (t‘in 8 twomg Gng 1in cin gip d5i holc bing thn &3 riéng) Két qua
cho thiy cdc kich déng di cdng tdc dung: cdc dwdng cdng hwdng Ia nhu‘ng enlip v&i tim twong
¥ng mirc bién d§ cia he thithn tw chin.
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